Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMixture-of-Experts Meets Instruction Tuning:A Winning Combination for Large Language Models
Sparse Mixture-of-Experts (MoE) is a neural architecture design that can be utilized to add learnable parameters to Large Language Models (LLMs) without increasing inference cost. Instruction tuning is a technique for training LLMs to follow instructions. We advocate combining these two approaches, as we find that MoE models benefit more from instruction tuning than dense models. In particular, we conduct empirical studies across three experimental setups: (i) Direct finetuning on individual downstream tasks devoid of instruction tuning; (ii) Instructiontuning followed by in-context few-shot or zero-shot generalization on downstream tasks; and (iii) Instruction tuning supplemented by further finetuning on individual downstream tasks. In the first scenario, MoE models overall underperform dense models of identical computational capacity. This narrative, however, dramatically changes with the introduction of instruction tuning (second and third scenario), used independently or in conjunction with task-specific finetuning. Our most powerful model, FLAN-MOE-32B, surpasses the performance of FLAN-PALM-62B on four benchmark tasks, while using only a third of the FLOPs. The advancements embodied byFLAN-MOE inspire a reevaluation of the design principles of large-scale, high-performance language models in the framework of task-agnostic learning.
Fantastic Questions and Where to Find Them: FairytaleQA -- An Authentic Dataset for Narrative Comprehension
Question answering (QA) is a fundamental means to facilitate assessment and training of narrative comprehension skills for both machines and young children, yet there is scarcity of high-quality QA datasets carefully designed to serve this purpose. In particular, existing datasets rarely distinguish fine-grained reading skills, such as the understanding of varying narrative elements. Drawing on the reading education research, we introduce FairytaleQA, a dataset focusing on narrative comprehension of kindergarten to eighth-grade students. Generated by educational experts based on an evidence-based theoretical framework, FairytaleQA consists of 10,580 explicit and implicit questions derived from 278 children-friendly stories, covering seven types of narrative elements or relations. Our dataset is valuable in two folds: First, we ran existing QA models on our dataset and confirmed that this annotation helps assess models' fine-grained learning skills. Second, the dataset supports question generation (QG) task in the education domain. Through benchmarking with QG models, we show that the QG model trained on FairytaleQA is capable of asking high-quality and more diverse questions.
Beyond LLMs: A Linguistic Approach to Causal Graph Generation from Narrative Texts
We propose a novel framework for generating causal graphs from narrative texts, bridging high-level causality and detailed event-specific relationships. Our method first extracts concise, agent-centered vertices using large language model (LLM)-based summarization. We introduce an "Expert Index," comprising seven linguistically informed features, integrated into a Situation-Task-Action-Consequence (STAC) classification model. This hybrid system, combining RoBERTa embeddings with the Expert Index, achieves superior precision in causal link identification compared to pure LLM-based approaches. Finally, a structured five-iteration prompting process refines and constructs connected causal graphs. Experiments on 100 narrative chapters and short stories demonstrate that our approach consistently outperforms GPT-4o and Claude 3.5 in causal graph quality, while maintaining readability. The open-source tool provides an interpretable, efficient solution for capturing nuanced causal chains in narratives.
1.5 million materials narratives generated by chatbots
The advent of artificial intelligence (AI) has enabled a comprehensive exploration of materials for various applications. However, AI models often prioritize frequently encountered materials in the scientific literature, limiting the selection of suitable candidates based on inherent physical and chemical properties. To address this imbalance, we have generated a dataset of 1,494,017 natural language-material paragraphs based on combined OQMD, Materials Project, JARVIS, COD and AFLOW2 databases, which are dominated by ab initio calculations and tend to be much more evenly distributed on the periodic table. The generated text narratives were then polled and scored by both human experts and ChatGPT-4, based on three rubrics: technical accuracy, language and structure, and relevance and depth of content, showing similar scores but with human-scored depth of content being the most lagging. The merger of multi-modality data sources and large language model (LLM) holds immense potential for AI frameworks to help the exploration and discovery of solid-state materials for specific applications.
ShotBench: Expert-Level Cinematic Understanding in Vision-Language Models
Cinematography, the fundamental visual language of film, is essential for conveying narrative, emotion, and aesthetic quality. While recent Vision-Language Models (VLMs) demonstrate strong general visual understanding, their proficiency in comprehending the nuanced cinematic grammar embedded within individual shots remains largely unexplored and lacks robust evaluation. This critical gap limits both fine-grained visual comprehension and the precision of AI-assisted video generation. To address this, we introduce ShotBench, a comprehensive benchmark specifically designed for cinematic language understanding. It features over 3.5k expert-annotated QA pairs from images and video clips, meticulously curated from over 200 acclaimed (predominantly Oscar-nominated) films and spanning eight key cinematography dimensions. Our evaluation of 24 leading VLMs on ShotBench reveals their substantial limitations: even the top-performing model achieves less than 60% average accuracy, particularly struggling with fine-grained visual cues and complex spatial reasoning. To catalyze advancement in this domain, we construct ShotQA, a large-scale multimodal dataset comprising approximately 70k cinematic QA pairs. Leveraging ShotQA, we develop ShotVL through supervised fine-tuning and Group Relative Policy Optimization. ShotVL significantly outperforms all existing open-source and proprietary models on ShotBench, establishing new state-of-the-art performance. We open-source our models, data, and code to foster rapid progress in this crucial area of AI-driven cinematic understanding and generation.
VRBench: A Benchmark for Multi-Step Reasoning in Long Narrative Videos
We present VRBench, the first long narrative video benchmark crafted for evaluating large models' multi-step reasoning capabilities, addressing limitations in existing evaluations that overlook temporal reasoning and procedural validity. It comprises 1,010 long videos (with an average duration of 1.6 hours), along with 9,468 human-labeled multi-step question-answering pairs and 30,292 reasoning steps with timestamps. These videos are curated via a multi-stage filtering process including expert inter-rater reviewing to prioritize plot coherence. We develop a human-AI collaborative framework that generates coherent reasoning chains, each requiring multiple temporally grounded steps, spanning seven types (e.g., event attribution, implicit inference). VRBench designs a multi-phase evaluation pipeline that assesses models at both the outcome and process levels. Apart from the MCQs for the final results, we propose a progress-level LLM-guided scoring metric to evaluate the quality of the reasoning chain from multiple dimensions comprehensively. Through extensive evaluations of 12 LLMs and 16 VLMs on VRBench, we undertake a thorough analysis and provide valuable insights that advance the field of multi-step reasoning.
Social Story Frames: Contextual Reasoning about Narrative Intent and Reception
Reading stories evokes rich interpretive, affective, and evaluative responses, such as inferences about narrative intent or judgments about characters. Yet, computational models of reader response are limited, preventing nuanced analyses. To address this gap, we introduce SocialStoryFrames, a formalism for distilling plausible inferences about reader response, such as perceived author intent, explanatory and predictive reasoning, affective responses, and value judgments, using conversational context and a taxonomy grounded in narrative theory, linguistic pragmatics, and psychology. We develop two models, SSF-Generator and SSF-Classifier, validated through human surveys (N=382 participants) and expert annotations, respectively. We conduct pilot analyses to showcase the utility of the formalism for studying storytelling at scale. Specifically, applying our models to SSF-Corpus, a curated dataset of 6,140 social media stories from diverse contexts, we characterize the frequency and interdependence of storytelling intents, and we compare and contrast narrative practices (and their diversity) across communities. By linking fine-grained, context-sensitive modeling with a generic taxonomy of reader responses, SocialStoryFrames enable new research into storytelling in online communities.
AI for Scientific Discovery is a Social Problem
Artificial intelligence promises to accelerate scientific discovery, yet its benefits remain unevenly distributed. While technical obstacles such as scarce data, fragmented standards, and unequal access to computation are significant, we argue that the primary barriers are social and institutional. Narratives that defer progress to speculative "AI scientists," the undervaluing of data and infrastructure contributions, misaligned incentives, and gaps between domain experts and machine learning researchers all constrain impact. We highlight four interconnected challenges: community dysfunction, research priorities misaligned with upstream needs, data fragmentation, and infrastructure inequities. We argue that their roots lie in cultural and organizational practices. Addressing them requires not only technical innovation but also intentional community-building, cross-disciplinary education, shared benchmarks, and accessible infrastructure. We call for reframing AI for science as a collective social project, where sustainable collaboration and equitable participation are treated as prerequisites for technical progress.
Separate the Wheat from the Chaff: Model Deficiency Unlearning via Parameter-Efficient Module Operation
Large language models (LLMs) have been widely used in various applications but are known to suffer from issues related to untruthfulness and toxicity. While parameter-efficient modules (PEMs) have demonstrated their effectiveness in equipping models with new skills, leveraging PEMs for deficiency unlearning remains underexplored. In this work, we propose a PEMs operation approach, namely Extraction-before-Subtraction (Ext-Sub), to enhance the truthfulness and detoxification of LLMs through the integration of ``expert'' PEM and ``anti-expert'' PEM. Remarkably, even anti-expert PEM possess valuable capabilities due to their proficiency in generating fabricated content, which necessitates language modeling and logical narrative competence. Rather than merely negating the parameters, our approach involves extracting and eliminating solely the deficiency capability within anti-expert PEM while preserving the general capabilities. To evaluate the effectiveness of our approach in terms of truthfulness and detoxification, we conduct extensive experiments on LLMs, encompassing additional abilities such as language modeling and mathematical reasoning. Our empirical results demonstrate that our approach effectively improves truthfulness and detoxification, while largely preserving the fundamental abilities of LLMs.
DITING: A Multi-Agent Evaluation Framework for Benchmarking Web Novel Translation
Large language models (LLMs) have substantially advanced machine translation (MT), yet their effectiveness in translating web novels remains unclear. Existing benchmarks rely on surface-level metrics that fail to capture the distinctive traits of this genre. To address these gaps, we introduce DITING, the first comprehensive evaluation framework for web novel translation, assessing narrative and cultural fidelity across six dimensions: idiom translation, lexical ambiguity, terminology localization, tense consistency, zero-pronoun resolution, and cultural safety, supported by over 18K expert-annotated Chinese-English sentence pairs. We further propose AgentEval, a reasoning-driven multi-agent evaluation framework that simulates expert deliberation to assess translation quality beyond lexical overlap, achieving the highest correlation with human judgments among seven tested automatic metrics. To enable metric comparison, we develop MetricAlign, a meta-evaluation dataset of 300 sentence pairs annotated with error labels and scalar quality scores. Comprehensive evaluation of fourteen open, closed, and commercial models reveals that Chinese-trained LLMs surpass larger foreign counterparts, and that DeepSeek-V3 delivers the most faithful and stylistically coherent translations. Our work establishes a new paradigm for exploring LLM-based web novel translation and provides public resources to advance future research.
Workflow is All You Need: Escaping the "Statistical Smoothing Trap" via High-Entropy Information Foraging and Adversarial Pacing
Central to long-form text generation in vertical domains is the "impossible trinity" confronting current large language models (LLMs): the simultaneous achievement of low hallucination, deep logical coherence, and personalized expression. This study establishes that this bottleneck arises from existing generative paradigms succumbing to the Statistical Smoothing Trap, a phenomenon that overlooks the high-entropy information acquisition and structured cognitive processes integral to expert-level writing. To address this limitation, we propose the DeepNews Framework, an agentic workflow that explicitly models the implicit cognitive processes of seasoned financial journalists. The framework integrates three core modules: first, a dual-granularity retrieval mechanism grounded in information foraging theory, which enforces a 10:1 saturated information input ratio to mitigate hallucinatory outputs; second, schema-guided strategic planning, a process leveraging domain expert knowledge bases (narrative schemas) and Atomic Blocks to forge a robust logical skeleton; third, adversarial constraint prompting, a technique deploying tactics including Rhythm Break and Logic Fog to disrupt the probabilistic smoothness inherent in model-generated text. Experiments delineate a salient Knowledge Cliff in deep financial reporting: content truthfulness collapses when retrieved context falls below 15,000 characters, while a high-redundancy input exceeding 30,000 characters stabilizes the Hallucination-Free Rate (HFR) above 85%. In an ecological validity blind test conducted with a top-tier Chinese technology media outlet, the DeepNews system--built on a previous-generation model (DeepSeek-V3-0324)-achieved a 25% submission acceptance rate, significantly outperforming the 0% acceptance rate of zero-shot generation by a state-of-the-art (SOTA) model (GPT-5).
GraphXAIN: Narratives to Explain Graph Neural Networks
Graph Neural Networks (GNNs) are a powerful technique for machine learning on graph-structured data, yet they pose challenges in interpretability. Existing GNN explanation methods usually yield technical outputs, such as subgraphs and feature importance scores, that are difficult for non-data scientists to understand and thereby violate the purpose of explanations. Motivated by recent Explainable AI (XAI) research, we propose GraphXAIN, a method that generates natural language narratives explaining GNN predictions. GraphXAIN is a model- and explainer-agnostic method that uses Large Language Models (LLMs) to translate explanatory subgraphs and feature importance scores into coherent, story-like explanations of GNN decision-making processes. Evaluations on real-world datasets demonstrate GraphXAIN's ability to improve graph explanations. A survey of machine learning researchers and practitioners reveals that GraphXAIN enhances four explainability dimensions: understandability, satisfaction, convincingness, and suitability for communicating model predictions. When combined with another graph explainer method, GraphXAIN further improves trustworthiness, insightfulness, confidence, and usability. Notably, 95% of participants found GraphXAIN to be a valuable addition to the GNN explanation method. By incorporating natural language narratives, our approach serves both graph practitioners and non-expert users by providing clearer and more effective explanations.
RoadSocial: A Diverse VideoQA Dataset and Benchmark for Road Event Understanding from Social Video Narratives
We introduce RoadSocial, a large-scale, diverse VideoQA dataset tailored for generic road event understanding from social media narratives. Unlike existing datasets limited by regional bias, viewpoint bias and expert-driven annotations, RoadSocial captures the global complexity of road events with varied geographies, camera viewpoints (CCTV, handheld, drones) and rich social discourse. Our scalable semi-automatic annotation framework leverages Text LLMs and Video LLMs to generate comprehensive question-answer pairs across 12 challenging QA tasks, pushing the boundaries of road event understanding. RoadSocial is derived from social media videos spanning 14M frames and 414K social comments, resulting in a dataset with 13.2K videos, 674 tags and 260K high-quality QA pairs. We evaluate 18 Video LLMs (open-source and proprietary, driving-specific and general-purpose) on our road event understanding benchmark. We also demonstrate RoadSocial's utility in improving road event understanding capabilities of general-purpose Video LLMs.
NOVA: A Benchmark for Anomaly Localization and Clinical Reasoning in Brain MRI
In many real-world applications, deployed models encounter inputs that differ from the data seen during training. Out-of-distribution detection identifies whether an input stems from an unseen distribution, while open-world recognition flags such inputs to ensure the system remains robust as ever-emerging, previously unknown categories appear and must be addressed without retraining. Foundation and vision-language models are pre-trained on large and diverse datasets with the expectation of broad generalization across domains, including medical imaging. However, benchmarking these models on test sets with only a few common outlier types silently collapses the evaluation back to a closed-set problem, masking failures on rare or truly novel conditions encountered in clinical use. We therefore present NOVA, a challenging, real-life evaluation-only benchmark of sim900 brain MRI scans that span 281 rare pathologies and heterogeneous acquisition protocols. Each case includes rich clinical narratives and double-blinded expert bounding-box annotations. Together, these enable joint assessment of anomaly localisation, visual captioning, and diagnostic reasoning. Because NOVA is never used for training, it serves as an extreme stress-test of out-of-distribution generalisation: models must bridge a distribution gap both in sample appearance and in semantic space. Baseline results with leading vision-language models (GPT-4o, Gemini 2.0 Flash, and Qwen2.5-VL-72B) reveal substantial performance drops across all tasks, establishing NOVA as a rigorous testbed for advancing models that can detect, localize, and reason about truly unknown anomalies.
PathMR: Multimodal Visual Reasoning for Interpretable Pathology Diagnosis
Deep learning based automated pathological diagnosis has markedly improved diagnostic efficiency and reduced variability between observers, yet its clinical adoption remains limited by opaque model decisions and a lack of traceable rationale. To address this, recent multimodal visual reasoning architectures provide a unified framework that generates segmentation masks at the pixel level alongside semantically aligned textual explanations. By localizing lesion regions and producing expert style diagnostic narratives, these models deliver the transparent and interpretable insights necessary for dependable AI assisted pathology. Building on these advancements, we propose PathMR, a cell-level Multimodal visual Reasoning framework for Pathological image analysis. Given a pathological image and a textual query, PathMR generates expert-level diagnostic explanations while simultaneously predicting cell distribution patterns. To benchmark its performance, we evaluated our approach on the publicly available PathGen dataset as well as on our newly developed GADVR dataset. Extensive experiments on these two datasets demonstrate that PathMR consistently outperforms state-of-the-art visual reasoning methods in text generation quality, segmentation accuracy, and cross-modal alignment. These results highlight the potential of PathMR for improving interpretability in AI-driven pathological diagnosis. The code will be publicly available in https://github.com/zhangye-zoe/PathMR.
