new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 14

All is Not Lost: LLM Recovery without Checkpoints

Training LLMs on decentralized and wimpy computation nodes, e.g., multiple on-spot instances, lowers the training cost and enables model democratization. The inevitable challenge here is the churn of nodes due to failures and the operator's scheduling policies, leading to losing a stage - a part of the model. The conventional approaches to recover from failures are to either use checkpointing, where periodically a copy of the entire model is sent to an additional storage, or redundant computation. These approaches yield significant communication and/or computation overhead even in non-failure cases and scale poorly in settings with large models. In this paper, we propose, CheckFree, an efficient recovery method where a failing stage is substituted by a weighted average of the closest neighboring stages. In contrast to the state of the art, CheckFree requires no additional computation or storage. However, because of the nature of averaging neighbouring stages, it can only recover failures of intermediate stages. We further extend our method to CheckFree+ with out-of-order pipeline execution to tolerate crashes of the first and last stages. Thanks to out-of-order pipelining, behaviour of those stages is mimicked by their neighboring ones, which allows CheckFree+ to recover them by simply copying the weights from the immediate neighbour. To be able to recover the (de)embedding layers, CheckFree+ copies those layers to the neighboring stages, which requires relatively small storage overhead. We extensively evaluate our method on LLaMa models of model sizes from 124M to 1.5B with varying failure frequencies. In the case of low and medium failure rates (5-10%), CheckFree and CheckFree+ outperform both checkpointing and redundant computation in terms of convergence in wall-clock time by over 12%. Both of our proposals can be run via our code available at: https://github.com/gensyn-ai/CheckFree.

Gensyn Gensyn
·
Jun 18, 2025 3

Contextual Bandits in Payment Processing: Non-uniform Exploration and Supervised Learning at Adyen

Uniform random exploration in decision-making systems supports off-policy learning via supervision but incurs high regret, making it impractical for many applications. Conversely, non-uniform exploration offers better immediate performance but lacks support for off-policy learning. Recent research suggests that regression oracles can bridge this gap by combining non-uniform exploration with supervised learning. In this paper, we analyze these approaches within a real-world industrial context at Adyen, a large global payments processor characterized by batch logged delayed feedback, short-term memory, and dynamic action spaces under the Empirical Risk Minimization (ERM) framework. Our analysis reveals that while regression oracles significantly improve performance, they introduce challenges due to rigid algorithmic assumptions. Specifically, we observe that as a policy improves, subsequent generations may perform worse due to shifts in the reward distribution and increased class imbalance in the training data. This degradation occurs de spite improvements in other aspects of the training data, leading to decreased performance in successive policy iterations. We further explore the long-term impact of regression oracles, identifying a potential "oscillation effect." This effect arises when regression oracles influence probability estimates and the realizability of subsequent policy models, leading to fluctuations in performance across iterations. Our findings highlight the need for more adaptable algorithms that can leverage the benefits of regression oracles without introducing instability in policy performance over time.

  • 2 authors
·
Nov 30, 2024

ORacle: Large Vision-Language Models for Knowledge-Guided Holistic OR Domain Modeling

Every day, countless surgeries are performed worldwide, each within the distinct settings of operating rooms (ORs) that vary not only in their setups but also in the personnel, tools, and equipment used. This inherent diversity poses a substantial challenge for achieving a holistic understanding of the OR, as it requires models to generalize beyond their initial training datasets. To reduce this gap, we introduce ORacle, an advanced vision-language model designed for holistic OR domain modeling, which incorporates multi-view and temporal capabilities and can leverage external knowledge during inference, enabling it to adapt to previously unseen surgical scenarios. This capability is further enhanced by our novel data augmentation framework, which significantly diversifies the training dataset, ensuring ORacle's proficiency in applying the provided knowledge effectively. In rigorous testing, in scene graph generation, and downstream tasks on the 4D-OR dataset, ORacle not only demonstrates state-of-the-art performance but does so requiring less data than existing models. Furthermore, its adaptability is displayed through its ability to interpret unseen views, actions, and appearances of tools and equipment. This demonstrates ORacle's potential to significantly enhance the scalability and affordability of OR domain modeling and opens a pathway for future advancements in surgical data science. We will release our code and data upon acceptance.

  • 4 authors
·
Apr 10, 2024

How Far Can We Go with Practical Function-Level Program Repair?

Recently, multiple Automated Program Repair (APR) techniques based on Large Language Models (LLMs) have been proposed to enhance the repair performance. While these techniques mainly focus on the single-line or hunk-level repair, they face significant challenges in real-world application due to the limited repair task scope and costly statement-level fault localization. However, the more practical function-level APR, which broadens the scope of APR task to fix entire buggy functions and requires only cost-efficient function-level fault localization, remains underexplored. In this paper, we conduct the first comprehensive study of LLM-based function-level APR including investigating the effect of the few-shot learning mechanism and the auxiliary repair-relevant information. Specifically, we adopt six widely-studied LLMs and construct a benchmark in both the Defects4J 1.2 and 2.0 datasets. Our study demonstrates that LLMs with zero-shot learning are already powerful function-level APR techniques, while applying the few-shot learning mechanism leads to disparate repair performance. Moreover, we find that directly applying the auxiliary repair-relevant information to LLMs significantly increases function-level repair performance. Inspired by our findings, we propose an LLM-based function-level APR technique, namely SRepair, which adopts a dual-LLM framework to leverage the power of the auxiliary repair-relevant information for advancing the repair performance. The evaluation results demonstrate that SRepair can correctly fix 300 single-function bugs in the Defects4J dataset, largely surpassing all previous APR techniques by at least 85%, without the need for the costly statement-level fault location information. Furthermore, SRepair successfully fixes 32 multi-function bugs in the Defects4J dataset, which is the first time achieved by any APR technique ever to our best knowledge.

  • 6 authors
·
Apr 19, 2024 1

RAG-Driven Data Quality Governance for Enterprise ERP Systems

Enterprise ERP systems managing hundreds of thousands of employee records face critical data quality challenges when human resources departments perform decentralized manual entry across multiple languages. We present an end-to-end pipeline combining automated data cleaning with LLM-driven SQL query generation, deployed on a production system managing 240,000 employee records over six months. The system operates in two integrated stages: a multi-stage cleaning pipeline that performs translation normalization, spelling correction, and entity deduplication during periodic synchronization from Microsoft SQL Server to PostgreSQL; and a retrieval-augmented generation framework powered by GPT-4o that translates natural-language questions in Turkish, Russian, and English into validated SQL queries. The query engine employs LangChain orchestration, FAISS vector similarity search, and few-shot learning with 500+ validated examples. Our evaluation demonstrates 92.5% query validity, 95.1% schema compliance, and 90.7\% semantic accuracy on 2,847 production queries. The system reduces query turnaround time from 2.3 days to under 5 seconds while maintaining 99.2% uptime, with GPT-4o achieving 46% lower latency and 68% cost reduction versus GPT-3.5. This modular architecture provides a reproducible framework for AI-native enterprise data governance, demonstrating real-world viability at enterprise scale with 4.3/5.0 user satisfaction.

  • 7 authors
·
Nov 18, 2025

SALT4Decompile: Inferring Source-level Abstract Logic Tree for LLM-Based Binary Decompilation

Decompilation is widely used in reverse engineering to recover high-level language code from binary executables. While recent approaches leveraging Large Language Models (LLMs) have shown promising progress, they typically treat assembly code as a linear sequence of instructions, overlooking arbitrary jump patterns and isolated data segments inherent to binary files. This limitation significantly hinders their ability to correctly infer source code semantics from assembly code. To address this limitation, we propose \saltm, a novel binary decompilation method that abstracts stable logical features shared between binary and source code. The core idea of \saltm is to abstract selected binary-level operations, such as specific jumps, into a high-level logic framework that better guides LLMs in semantic recovery. Given a binary function, \saltm constructs a Source-level Abstract Logic Tree (\salt) from assembly code to approximate the logic structure of high-level language. It then fine-tunes an LLM using the reconstructed \salt to generate decompiled code. Finally, the output is refined through error correction and symbol recovery to improve readability and correctness. We compare \saltm to three categories of baselines (general-purpose LLMs, commercial decompilers, and decompilation methods) using three well-known datasets (Decompile-Eval, MBPP, Exebench). Our experimental results demonstrate that \saltm is highly effective in recovering the logic of the source code, significantly outperforming state-of-the-art methods (e.g., 70.4\% TCP rate on Decompile-Eval with a 10.6\% improvement). The results further validate its robustness against four commonly used obfuscation techniques. Additionally, analyses of real-world software and a user study confirm that our decompiled output offers superior assistance to human analysts in comprehending binary functions.

  • 5 authors
·
Sep 18, 2025

Better Language Model Inversion by Compactly Representing Next-Token Distributions

Language model inversion seeks to recover hidden prompts using only language model outputs. This capability has implications for security and accountability in language model deployments, such as leaking private information from an API-protected language model's system message. We propose a new method -- prompt inversion from logprob sequences (PILS) -- that recovers hidden prompts by gleaning clues from the model's next-token probabilities over the course of multiple generation steps. Our method is enabled by a key insight: The vector-valued outputs of a language model occupy a low-dimensional subspace. This enables us to losslessly compress the full next-token probability distribution over multiple generation steps using a linear map, allowing more output information to be used for inversion. Our approach yields massive gains over previous state-of-the-art methods for recovering hidden prompts, achieving 2--3.5 times higher exact recovery rates across test sets, in one case increasing the recovery rate from 17% to 60%. Our method also exhibits surprisingly good generalization behavior; for instance, an inverter trained on 16 generations steps gets 5--27 points higher prompt recovery when we increase the number of steps to 32 at test time. Furthermore, we demonstrate strong performance of our method on the more challenging task of recovering hidden system messages. We also analyze the role of verbatim repetition in prompt recovery and propose a new method for cross-family model transfer for logit-based inverters. Our findings show that next-token probabilities are a considerably more vulnerable attack surface for inversion attacks than previously known.

  • 5 authors
·
Jun 20, 2025 2

RAP-Gen: Retrieval-Augmented Patch Generation with CodeT5 for Automatic Program Repair

Automatic program repair (APR) is crucial to reduce manual debugging efforts for developers and improve software reliability. While conventional search-based techniques typically rely on heuristic rules or a redundancy assumption to mine fix patterns, recent years have witnessed the surge of deep learning (DL) based approaches to automate the program repair process in a data-driven manner. However, their performance is often limited by a fixed set of parameters to model the highly complex search space of APR. To ease such burden on the parametric models, in this work, we propose a novel Retrieval-Augmented Patch Generation framework (RAP-Gen) by explicitly leveraging relevant fix patterns retrieved from a codebase of previous bug-fix pairs. Specifically, we build a hybrid patch retriever to account for both lexical and semantic matching based on the raw source code in a language-agnostic manner, which does not rely on any code-specific features. In addition, we adapt a code-aware language model CodeT5 as our foundation model to facilitate both patch retrieval and generation tasks in a unified manner. We adopt a stage-wise approach where the patch retriever first retrieves a relevant external bug-fix pair to augment the buggy input for the CodeT5 patch generator, which synthesizes a ranked list of repair patch candidates. Notably, RAP-Gen is a generic APR framework that can flexibly integrate different patch retrievers and generators to repair various types of bugs. We thoroughly evaluate RAP-Gen on three benchmarks in two programming languages, including the TFix benchmark in JavaScript, and Code Refinement and Defects4J benchmarks in Java, where the bug localization information may or may not be provided. Experimental results show that RAP-Gen significantly outperforms previous state-of-the-art approaches on all benchmarks, e.g., repairing 15 more bugs on 818 Defects4J bugs.

  • 4 authors
·
Sep 12, 2023

PASER: Post-Training Data Selection for Efficient Pruned Large Language Model Recovery

Model pruning is an effective approach for compressing large language models. However, this process often leads to significant degradation of model capabilities. While post-training techniques such as instruction tuning are commonly employed to recover model performance, existing methods often overlook the uneven deterioration of model capabilities and incur high computational costs. Moreover, some instruction data irrelevant to model capability recovery may introduce negative effects. To address these challenges, we propose the Post-training dAta Selection method for Efficient pruned large language model Recovery (PASER). PASER aims to identify instructions where model capabilities are most severely compromised within a certain recovery data budget. Our approach first applies manifold learning and spectral clustering to group recovery data in the semantic space, revealing capability-specific instruction sets. We then adaptively allocate the data budget to different clusters based on the degrees of model capability degradation. In each cluster, we prioritize data samples where model performance has declined dramatically. To mitigate potential negative transfer, we also detect and filter out conflicting or irrelevant recovery data. Extensive experiments demonstrate that PASER significantly outperforms conventional baselines, effectively recovering the general capabilities of pruned LLMs while utilizing merely 4\%-20\% of the original post-training data.

  • 6 authors
·
Feb 18, 2025