new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 20

Sort & Slice: A Simple and Superior Alternative to Hash-Based Folding for Extended-Connectivity Fingerprints

Extended-connectivity fingerprints (ECFPs) are a ubiquitous tool in current cheminformatics and molecular machine learning, and one of the most prevalent molecular feature extraction techniques used for chemical prediction. Atom features learned by graph neural networks can be aggregated to compound-level representations using a large spectrum of graph pooling methods; in contrast, sets of detected ECFP substructures are by default transformed into bit vectors using only a simple hash-based folding procedure. We introduce a general mathematical framework for the vectorisation of structural fingerprints via a formal operation called substructure pooling that encompasses hash-based folding, algorithmic substructure-selection, and a wide variety of other potential techniques. We go on to describe Sort & Slice, an easy-to-implement and bit-collision-free alternative to hash-based folding for the pooling of ECFP substructures. Sort & Slice first sorts ECFP substructures according to their relative prevalence in a given set of training compounds and then slices away all but the L most frequent substructures which are subsequently used to generate a binary fingerprint of desired length, L. We computationally compare the performance of hash-based folding, Sort & Slice, and two advanced supervised substructure-selection schemes (filtering and mutual-information maximisation) for ECFP-based molecular property prediction. Our results indicate that, despite its technical simplicity, Sort & Slice robustly (and at times substantially) outperforms traditional hash-based folding as well as the other investigated methods across prediction tasks, data splitting techniques, machine-learning models and ECFP hyperparameters. We thus recommend that Sort & Slice canonically replace hash-based folding as the default substructure-pooling technique to vectorise ECFPs for supervised molecular machine learning.

  • 4 authors
·
Mar 10, 2024

Assessing Episodic Memory in LLMs with Sequence Order Recall Tasks

Current LLM benchmarks focus on evaluating models' memory of facts and semantic relations, primarily assessing semantic aspects of long-term memory. However, in humans, long-term memory also includes episodic memory, which links memories to their contexts, such as the time and place they occurred. The ability to contextualize memories is crucial for many cognitive tasks and everyday functions. This form of memory has not been evaluated in LLMs with existing benchmarks. To address the gap in evaluating memory in LLMs, we introduce Sequence Order Recall Tasks (SORT), which we adapt from tasks used to study episodic memory in cognitive psychology. SORT requires LLMs to recall the correct order of text segments, and provides a general framework that is both easily extendable and does not require any additional annotations. We present an initial evaluation dataset, Book-SORT, comprising 36k pairs of segments extracted from 9 books recently added to the public domain. Based on a human experiment with 155 participants, we show that humans can recall sequence order based on long-term memory of a book. We find that models can perform the task with high accuracy when relevant text is given in-context during the SORT evaluation. However, when presented with the book text only during training, LLMs' performance on SORT falls short. By allowing to evaluate more aspects of memory, we believe that SORT will aid in the emerging development of memory-augmented models.

  • 10 authors
·
Oct 10, 2024