1 Training Dynamics Underlying Language Model Scaling Laws: Loss Deceleration and Zero-Sum Learning This work aims to understand how scaling improves language models, specifically in terms of training dynamics. We find that language models undergo loss deceleration early in training; an abrupt slowdown in the rate of loss improvement, resulting in piecewise linear behaviour of the loss curve in log-log space. Scaling up the model mitigates this transition by (1) decreasing the loss at which deceleration occurs, and (2) improving the log-log rate of loss improvement after deceleration. We attribute loss deceleration to a type of degenerate training dynamics we term zero-sum learning (ZSL). In ZSL, per-example gradients become systematically opposed, leading to destructive interference in per-example changes in loss. As a result, improving loss on one subset of examples degrades it on another, bottlenecking overall progress. Loss deceleration and ZSL provide new insights into the training dynamics underlying language model scaling laws, and could potentially be targeted directly to improve language models independent of scale. We make our code and artefacts available at: https://github.com/mirandrom/zsl 5 authors · Jun 5, 2025
1 The Minary Primitive of Computational Autopoiesis We introduce Minary, a computational framework designed as a candidate for the first formally provable autopoietic primitive. Minary represents interacting probabilistic events as multi-dimensional vectors and combines them via linear superposition rather than multiplicative scalar operations, thereby preserving uncertainty and enabling constructive and destructive interference in the range [-1,1]. A fixed set of ``perspectives'' evaluates ``semantic dimensions'' according to hidden competencies, and their interactions drive two discrete-time stochastic processes. We model this system as an iterated random affine map and use the theory of iterated random functions to prove that it converges in distribution to a unique stationary law; we moreover obtain an explicit closed form for the limiting expectation in terms of row, column, and global averages of the competency matrix. We then derive exact formulas for the mean and variance of the normalized consensus conditioned on the activation of a given semantic dimension, revealing how consensus depends on competency structure rather than raw input signals. Finally, we argue that Minary is organizationally closed yet operationally open in the sense of Maturana and Varela, and we discuss implications for building self-maintaining, distributed, and parallelizable computational systems that house a uniquely subjective notion of identity. 2 authors · Jan 7