new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 30

Forecasting Patient Flows with Pandemic Induced Concept Drift using Explainable Machine Learning

Accurately forecasting patient arrivals at Urgent Care Clinics (UCCs) and Emergency Departments (EDs) is important for effective resourcing and patient care. However, correctly estimating patient flows is not straightforward since it depends on many drivers. The predictability of patient arrivals has recently been further complicated by the COVID-19 pandemic conditions and the resulting lockdowns. This study investigates how a suite of novel quasi-real-time variables like Google search terms, pedestrian traffic, the prevailing incidence levels of influenza, as well as the COVID-19 Alert Level indicators can both generally improve the forecasting models of patient flows and effectively adapt the models to the unfolding disruptions of pandemic conditions. This research also uniquely contributes to the body of work in this domain by employing tools from the eXplainable AI field to investigate more deeply the internal mechanics of the models than has previously been done. The Voting ensemble-based method combining machine learning and statistical techniques was the most reliable in our experiments. Our study showed that the prevailing COVID-19 Alert Level feature together with Google search terms and pedestrian traffic were effective at producing generalisable forecasts. The implications of this study are that proxy variables can effectively augment standard autoregressive features to ensure accurate forecasting of patient flows. The experiments showed that the proposed features are potentially effective model inputs for preserving forecast accuracies in the event of future pandemic outbreaks.

  • 2 authors
·
Nov 1, 2022

FOLD-SE: An Efficient Rule-based Machine Learning Algorithm with Scalable Explainability

We present FOLD-SE, an efficient, explainable machine learning algorithm for classification tasks given tabular data containing numerical and categorical values. FOLD-SE generates a set of default rules-essentially a stratified normal logic program-as an (explainable) trained model. Explainability provided by FOLD-SE is scalable, meaning that regardless of the size of the dataset, the number of learned rules and learned literals stay quite small while good accuracy in classification is maintained. A model with smaller number of rules and literals is easier to understand for human beings. FOLD-SE is competitive with state-of-the-art machine learning algorithms such as XGBoost and Multi-Layer Perceptrons (MLP) wrt accuracy of prediction. However, unlike XGBoost and MLP, the FOLD-SE algorithm is explainable. The FOLD-SE algorithm builds upon our earlier work on developing the explainable FOLD-R++ machine learning algorithm for binary classification and inherits all of its positive features. Thus, pre-processing of the dataset, using techniques such as one-hot encoding, is not needed. Like FOLD-R++, FOLD-SE uses prefix sum to speed up computations resulting in FOLD-SE being an order of magnitude faster than XGBoost and MLP in execution speed. The FOLD-SE algorithm outperforms FOLD-R++ as well as other rule-learning algorithms such as RIPPER in efficiency, performance and scalability, especially for large datasets. A major reason for scalable explainability of FOLD-SE is the use of a literal selection heuristics based on Gini Impurity, as opposed to Information Gain used in FOLD-R++. A multi-category classification version of FOLD-SE is also presented.

  • 2 authors
·
Aug 16, 2022 1

LML: Language Model Learning a Dataset for Data-Augmented Prediction

This paper introduces a new approach to using Large Language Models (LLMs) for classification tasks, which are typically handled using Machine Learning (ML) models. Unlike ML models that rely heavily on data cleaning and feature engineering, this method streamlines the process using LLMs. This paper proposes a new concept called "Language Model Learning (LML)" powered by a new method called "Data-Augmented Prediction (DAP)". The classification is performed by LLMs using a method similar to humans manually exploring and understanding the data and deciding classifications using data as a reference. Training data is summarized and evaluated to determine the features that lead to the classification of each label the most. In the process of DAP, the system uses the data summary to automatically create a query, which is used to retrieve relevant rows from the dataset. A classification is generated by the LLM using data summary and relevant rows, ensuring satisfactory accuracy even with complex data. Usage of data summary and similar data in DAP ensures context-aware decision-making. The proposed method uses the words "Act as an Explainable Machine Learning Model" in the prompt to enhance the interpretability of the predictions by allowing users to review the logic behind each prediction. In some test cases, the system scored an accuracy above 90%, proving the effectiveness of the system and its potential to outperform conventional ML models in various scenarios. The code is available at https://github.com/Pro-GenAI/LML-DAP

  • 1 authors
·
Sep 27, 2024 3

GlucoLens: Explainable Postprandial Blood Glucose Prediction from Diet and Physical Activity

Postprandial hyperglycemia, marked by the blood glucose level exceeding the normal range after meals, is a critical indicator of progression toward type 2 diabetes in prediabetic and healthy individuals. A key metric for understanding blood glucose dynamics after eating is the postprandial area under the curve (PAUC). Predicting PAUC in advance based on a person's diet and activity level and explaining what affects postprandial blood glucose could allow an individual to adjust their lifestyle accordingly to maintain normal glucose levels. In this paper, we propose GlucoLens, an explainable machine learning approach to predict PAUC and hyperglycemia from diet, activity, and recent glucose patterns. We conducted a five-week user study with 10 full-time working individuals to develop and evaluate the computational model. Our machine learning model takes multimodal data including fasting glucose, recent glucose, recent activity, and macronutrient amounts, and provides an interpretable prediction of the postprandial glucose pattern. Our extensive analyses of the collected data revealed that the trained model achieves a normalized root mean squared error (NRMSE) of 0.123. On average, GlucoLense with a Random Forest backbone provides a 16% better result than the baseline models. Additionally, GlucoLens predicts hyperglycemia with an accuracy of 74% and recommends different options to help avoid hyperglycemia through diverse counterfactual explanations. Code available: https://github.com/ab9mamun/GlucoLens.

  • 7 authors
·
Mar 5

Using Explainable AI and Transfer Learning to understand and predict the maintenance of Atlantic blocking with limited observational data

Blocking events are an important cause of extreme weather, especially long-lasting blocking events that trap weather systems in place. The duration of blocking events is, however, underestimated in climate models. Explainable Artificial Intelligence are a class of data analysis methods that can help identify physical causes of prolonged blocking events and diagnose model deficiencies. We demonstrate this approach on an idealized quasigeostrophic model developed by Marshall and Molteni (1993). We train a convolutional neural network (CNN), and subsequently, build a sparse predictive model for the persistence of Atlantic blocking, conditioned on an initial high-pressure anomaly. Shapley Additive ExPlanation (SHAP) analysis reveals that high-pressure anomalies in the American Southeast and North Atlantic, separated by a trough over Atlantic Canada, contribute significantly to prediction of sustained blocking events in the Atlantic region. This agrees with previous work that identified precursors in the same regions via wave train analysis. When we apply the same CNN to blockings in the ERA5 atmospheric reanalysis, there is insufficient data to accurately predict persistent blocks. We partially overcome this limitation by pre-training the CNN on the plentiful data of the Marshall-Molteni model, and then using Transfer Learning to achieve better predictions than direct training. SHAP analysis before and after transfer learning allows a comparison between the predictive features in the reanalysis and the quasigeostrophic model, quantifying dynamical biases in the idealized model. This work demonstrates the potential for machine learning methods to extract meaningful precursors of extreme weather events and achieve better prediction using limited observational data.

  • 5 authors
·
Apr 12, 2024

CardioForest: An Explainable Ensemble Learning Model for Automatic Wide QRS Complex Tachycardia Diagnosis from ECG

This study aims to develop and evaluate an ensemble machine learning-based framework for the automatic detection of Wide QRS Complex Tachycardia (WCT) from ECG signals, emphasizing diagnostic accuracy and interpretability using Explainable AI. The proposed system integrates ensemble learning techniques, i.e., an optimized Random Forest known as CardioForest, and models like XGBoost and LightGBM. The models were trained and tested on ECG data from the publicly available MIMIC-IV dataset. The testing was carried out with the assistance of accuracy, balanced accuracy, precision, recall, F1 score, ROC-AUC, and error rate (RMSE, MAE) measures. In addition, SHAP (SHapley Additive exPlanations) was used to ascertain model explainability and clinical relevance. The CardioForest model performed best on all metrics, achieving a test accuracy of 94.95%, a balanced accuracy of 88.31%, and high precision and recall metrics. SHAP analysis confirmed the model's ability to rank the most relevant ECG features, such as QRS duration, in accordance with clinical intuitions, thereby fostering trust and usability in clinical practice. The findings recognize CardioForest as an extremely dependable and interpretable WCT detection model. Being able to offer accurate predictions and transparency through explainability makes it a valuable tool to help cardiologists make timely and well-informed diagnoses, especially for high-stakes and emergency scenarios.

  • 7 authors
·
Sep 30

A Survey on Explainable Reinforcement Learning: Concepts, Algorithms, Challenges

Reinforcement Learning (RL) is a popular machine learning paradigm where intelligent agents interact with the environment to fulfill a long-term goal. Driven by the resurgence of deep learning, Deep RL (DRL) has witnessed great success over a wide spectrum of complex control tasks. Despite the encouraging results achieved, the deep neural network-based backbone is widely deemed as a black box that impedes practitioners to trust and employ trained agents in realistic scenarios where high security and reliability are essential. To alleviate this issue, a large volume of literature devoted to shedding light on the inner workings of the intelligent agents has been proposed, by constructing intrinsic interpretability or post-hoc explainability. In this survey, we provide a comprehensive review of existing works on eXplainable RL (XRL) and introduce a new taxonomy where prior works are clearly categorized into model-explaining, reward-explaining, state-explaining, and task-explaining methods. We also review and highlight RL methods that conversely leverage human knowledge to promote learning efficiency and performance of agents while this kind of method is often ignored in XRL field. Some challenges and opportunities in XRL are discussed. This survey intends to provide a high-level summarization of XRL and to motivate future research on more effective XRL solutions. Corresponding open source codes are collected and categorized at https://github.com/Plankson/awesome-explainable-reinforcement-learning.

  • 7 authors
·
Nov 12, 2022

A Prescriptive Learning Analytics Framework: Beyond Predictive Modelling and onto Explainable AI with Prescriptive Analytics and ChatGPT

A significant body of recent research in the field of Learning Analytics has focused on leveraging machine learning approaches for predicting at-risk students in order to initiate timely interventions and thereby elevate retention and completion rates. The overarching feature of the majority of these research studies has been on the science of prediction only. The component of predictive analytics concerned with interpreting the internals of the models and explaining their predictions for individual cases to stakeholders has largely been neglected. Additionally, works that attempt to employ data-driven prescriptive analytics to automatically generate evidence-based remedial advice for at-risk learners are in their infancy. eXplainable AI is a field that has recently emerged providing cutting-edge tools which support transparent predictive analytics and techniques for generating tailored advice for at-risk students. This study proposes a novel framework that unifies both transparent machine learning as well as techniques for enabling prescriptive analytics, while integrating the latest advances in large language models. This work practically demonstrates the proposed framework using predictive models for identifying at-risk learners of programme non-completion. The study then further demonstrates how predictive modelling can be augmented with prescriptive analytics on two case studies in order to generate human-readable prescriptive feedback for those who are at risk using ChatGPT.

  • 1 authors
·
Aug 30, 2022

EXplainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: the MonuMAI cultural heritage use case

The latest Deep Learning (DL) models for detection and classification have achieved an unprecedented performance over classical machine learning algorithms. However, DL models are black-box methods hard to debug, interpret, and certify. DL alone cannot provide explanations that can be validated by a non technical audience. In contrast, symbolic AI systems that convert concepts into rules or symbols -- such as knowledge graphs -- are easier to explain. However, they present lower generalisation and scaling capabilities. A very important challenge is to fuse DL representations with expert knowledge. One way to address this challenge, as well as the performance-explainability trade-off is by leveraging the best of both streams without obviating domain expert knowledge. We tackle such problem by considering the symbolic knowledge is expressed in form of a domain expert knowledge graph. We present the eXplainable Neural-symbolic learning (X-NeSyL) methodology, designed to learn both symbolic and deep representations, together with an explainability metric to assess the level of alignment of machine and human expert explanations. The ultimate objective is to fuse DL representations with expert domain knowledge during the learning process to serve as a sound basis for explainability. X-NeSyL methodology involves the concrete use of two notions of explanation at inference and training time respectively: 1) EXPLANet: Expert-aligned eXplainable Part-based cLAssifier NETwork Architecture, a compositional CNN that makes use of symbolic representations, and 2) SHAP-Backprop, an explainable AI-informed training procedure that guides the DL process to align with such symbolic representations in form of knowledge graphs. We showcase X-NeSyL methodology using MonuMAI dataset for monument facade image classification, and demonstrate that our approach improves explainability and performance.

  • 10 authors
·
Apr 24, 2021

Machine Learning and Deep Learning -- A review for Ecologists

1. The popularity of Machine learning (ML), Deep learning (DL), and Artificial intelligence (AI) has risen sharply in recent years. Despite this spike in popularity, the inner workings of ML and DL algorithms are often perceived as opaque, and their relationship to classical data analysis tools remains debated. 2. Although it is often assumed that ML and DL excel primarily at making predictions, ML and DL can also be used for analytical tasks traditionally addressed with statistical models. Moreover, most recent discussions and reviews on ML focus mainly on DL, missing out on synthesizing the wealth of ML algorithms with different advantages and general principles. 3. Here, we provide a comprehensive overview of the field of ML and DL, starting by summarizing its historical developments, existing algorithm families, differences to traditional statistical tools, and universal ML principles. We then discuss why and when ML and DL models excel at prediction tasks and where they could offer alternatives to traditional statistical methods for inference, highlighting current and emerging applications for ecological problems. Finally, we summarize emerging trends such as scientific and causal ML, explainable AI, and responsible AI that may significantly impact ecological data analysis in the future. 4. We conclude that ML and DL are powerful new tools for predictive modeling and data analysis. The superior performance of ML and DL algorithms compared to statistical models can be explained by their higher flexibility and automatic data-dependent complexity optimization. However, their use for causal inference is still disputed as the focus of ML and DL methods on predictions creates challenges for the interpretation of these models. Nevertheless, we expect ML and DL to become an indispensable tool in E&E, comparable to other traditional statistical tools.

  • 2 authors
·
Apr 11, 2022

Collective eXplainable AI: Explaining Cooperative Strategies and Agent Contribution in Multiagent Reinforcement Learning with Shapley Values

While Explainable Artificial Intelligence (XAI) is increasingly expanding more areas of application, little has been applied to make deep Reinforcement Learning (RL) more comprehensible. As RL becomes ubiquitous and used in critical and general public applications, it is essential to develop methods that make it better understood and more interpretable. This study proposes a novel approach to explain cooperative strategies in multiagent RL using Shapley values, a game theory concept used in XAI that successfully explains the rationale behind decisions taken by Machine Learning algorithms. Through testing common assumptions of this technique in two cooperation-centered socially challenging multi-agent environments environments, this article argues that Shapley values are a pertinent way to evaluate the contribution of players in a cooperative multi-agent RL context. To palliate the high overhead of this method, Shapley values are approximated using Monte Carlo sampling. Experimental results on Multiagent Particle and Sequential Social Dilemmas show that Shapley values succeed at estimating the contribution of each agent. These results could have implications that go beyond games in economics, (e.g., for non-discriminatory decision making, ethical and responsible AI-derived decisions or policy making under fairness constraints). They also expose how Shapley values only give general explanations about a model and cannot explain a single run, episode nor justify precise actions taken by agents. Future work should focus on addressing these critical aspects.

  • 3 authors
·
Oct 4, 2021

Multimodal Sleep Stage and Sleep Apnea Classification Using Vision Transformer: A Multitask Explainable Learning Approach

Sleep is an essential component of human physiology, contributing significantly to overall health and quality of life. Accurate sleep staging and disorder detection are crucial for assessing sleep quality. Studies in the literature have proposed PSG-based approaches and machine-learning methods utilizing single-modality signals. However, existing methods often lack multimodal, multilabel frameworks and address sleep stages and disorders classification separately. In this paper, we propose a 1D-Vision Transformer for simultaneous classification of sleep stages and sleep disorders. Our method exploits the sleep disorders' correlation with specific sleep stage patterns and performs a simultaneous identification of a sleep stage and sleep disorder. The model is trained and tested using multimodal-multilabel sensory data (including photoplethysmogram, respiratory flow, and respiratory effort signals). The proposed method shows an overall accuracy (cohen's Kappa) of 78% (0.66) for five-stage sleep classification and 74% (0.58) for sleep apnea classification. Moreover, we analyzed the encoder attention weights to clarify our models' predictions and investigate the influence different features have on the models' outputs. The result shows that identified patterns, such as respiratory troughs and peaks, make a higher contribution to the final classification process.

  • 6 authors
·
Feb 18

DeepHateExplainer: Explainable Hate Speech Detection in Under-resourced Bengali Language

The exponential growths of social media and micro-blogging sites not only provide platforms for empowering freedom of expressions and individual voices, but also enables people to express anti-social behaviour like online harassment, cyberbullying, and hate speech. Numerous works have been proposed to utilize textual data for social and anti-social behaviour analysis, by predicting the contexts mostly for highly-resourced languages like English. However, some languages are under-resourced, e.g., South Asian languages like Bengali, that lack computational resources for accurate natural language processing (NLP). In this paper, we propose an explainable approach for hate speech detection from the under-resourced Bengali language, which we called DeepHateExplainer. Bengali texts are first comprehensively preprocessed, before classifying them into political, personal, geopolitical, and religious hates using a neural ensemble method of transformer-based neural architectures (i.e., monolingual Bangla BERT-base, multilingual BERT-cased/uncased, and XLM-RoBERTa). Important(most and least) terms are then identified using sensitivity analysis and layer-wise relevance propagation(LRP), before providing human-interpretable explanations. Finally, we compute comprehensiveness and sufficiency scores to measure the quality of explanations w.r.t faithfulness. Evaluations against machine learning~(linear and tree-based models) and neural networks (i.e., CNN, Bi-LSTM, and Conv-LSTM with word embeddings) baselines yield F1-scores of 78%, 91%, 89%, and 84%, for political, personal, geopolitical, and religious hates, respectively, outperforming both ML and DNN baselines.

  • 9 authors
·
Dec 28, 2020

Evaluating Explainable AI: Which Algorithmic Explanations Help Users Predict Model Behavior?

Algorithmic approaches to interpreting machine learning models have proliferated in recent years. We carry out human subject tests that are the first of their kind to isolate the effect of algorithmic explanations on a key aspect of model interpretability, simulatability, while avoiding important confounding experimental factors. A model is simulatable when a person can predict its behavior on new inputs. Through two kinds of simulation tests involving text and tabular data, we evaluate five explanations methods: (1) LIME, (2) Anchor, (3) Decision Boundary, (4) a Prototype model, and (5) a Composite approach that combines explanations from each method. Clear evidence of method effectiveness is found in very few cases: LIME improves simulatability in tabular classification, and our Prototype method is effective in counterfactual simulation tests. We also collect subjective ratings of explanations, but we do not find that ratings are predictive of how helpful explanations are. Our results provide the first reliable and comprehensive estimates of how explanations influence simulatability across a variety of explanation methods and data domains. We show that (1) we need to be careful about the metrics we use to evaluate explanation methods, and (2) there is significant room for improvement in current methods. All our supporting code, data, and models are publicly available at: https://github.com/peterbhase/InterpretableNLP-ACL2020

  • 2 authors
·
May 4, 2020

FEAMOE: Fair, Explainable and Adaptive Mixture of Experts

Three key properties that are desired of trustworthy machine learning models deployed in high-stakes environments are fairness, explainability, and an ability to account for various kinds of "drift". While drifts in model accuracy, for example due to covariate shift, have been widely investigated, drifts in fairness metrics over time remain largely unexplored. In this paper, we propose FEAMOE, a novel "mixture-of-experts" inspired framework aimed at learning fairer, more explainable/interpretable models that can also rapidly adjust to drifts in both the accuracy and the fairness of a classifier. We illustrate our framework for three popular fairness measures and demonstrate how drift can be handled with respect to these fairness constraints. Experiments on multiple datasets show that our framework as applied to a mixture of linear experts is able to perform comparably to neural networks in terms of accuracy while producing fairer models. We then use the large-scale HMDA dataset and show that while various models trained on HMDA demonstrate drift with respect to both accuracy and fairness, FEAMOE can ably handle these drifts with respect to all the considered fairness measures and maintain model accuracy as well. We also prove that the proposed framework allows for producing fast Shapley value explanations, which makes computationally efficient feature attribution based explanations of model decisions readily available via FEAMOE.

  • 3 authors
·
Oct 10, 2022

Explainable AI through a Democratic Lens: DhondtXAI for Proportional Feature Importance Using the D'Hondt Method

In democratic societies, electoral systems play a crucial role in translating public preferences into political representation. Among these, the D'Hondt method is widely used to ensure proportional representation, balancing fair representation with governmental stability. Recently, there has been a growing interest in applying similar principles of proportional representation to enhance interpretability in machine learning, specifically in Explainable AI (XAI). This study investigates the integration of D'Hondt-based voting principles in the DhondtXAI method, which leverages resource allocation concepts to interpret feature importance within AI models. Through a comparison of SHAP (Shapley Additive Explanations) and DhondtXAI, we evaluate their effectiveness in feature attribution within CatBoost and XGBoost models for breast cancer and diabetes prediction, respectively. The DhondtXAI approach allows for alliance formation and thresholding to enhance interpretability, representing feature importance as seats in a parliamentary view. Statistical correlation analyses between SHAP values and DhondtXAI allocations support the consistency of interpretations, demonstrating DhondtXAI's potential as a complementary tool for understanding feature importance in AI models. The results highlight that integrating electoral principles, such as proportional representation and alliances, into AI explainability can improve user understanding, especially in high-stakes fields like healthcare.

  • 1 authors
·
Nov 7, 2024

Developing an Explainable Artificial Intelligent (XAI) Model for Predicting Pile Driving Vibrations in Bangkok's Subsoil

This study presents an explainable artificial intelligent (XAI) model for predicting pile driving vibrations in Bangkok's soft clay subsoil. A deep neural network was developed using a dataset of 1,018 real-world pile driving measurements, encompassing variations in pile dimensions, hammer characteristics, sensor locations, and vibration measurement axes. The model achieved a mean absolute error (MAE) of 0.276, outperforming traditional empirical methods and other machine learning approaches such as XGBoost and CatBoost. SHapley Additive exPlanations (SHAP) analysis was employed to interpret the model's predictions, revealing complex relationships between input features and peak particle velocity (PPV). Distance from the pile driving location emerged as the most influential factor, followed by hammer weight and pile size. Non-linear relationships and threshold effects were observed, providing new insights into vibration propagation in soft clay. A web-based application was developed to facilitate adoption by practicing engineers, bridging the gap between advanced machine learning techniques and practical engineering applications. This research contributes to the field of geotechnical engineering by offering a more accurate and nuanced approach to predicting pile driving vibrations, with implications for optimizing construction practices and mitigating environmental impacts in urban areas. The model and its source code are publicly available, promoting transparency and reproducibility in geotechnical research.

  • 2 authors
·
Sep 8, 2024

Towards integration of Privacy Enhancing Technologies in Explainable Artificial Intelligence

Explainable Artificial Intelligence (XAI) is a crucial pathway in mitigating the risk of non-transparency in the decision-making process of black-box Artificial Intelligence (AI) systems. However, despite the benefits, XAI methods are found to leak the privacy of individuals whose data is used in training or querying the models. Researchers have demonstrated privacy attacks that exploit explanations to infer sensitive personal information of individuals. Currently there is a lack of defenses against known privacy attacks targeting explanations when vulnerable XAI are used in production and machine learning as a service system. To address this gap, in this article, we explore Privacy Enhancing Technologies (PETs) as a defense mechanism against attribute inference on explanations provided by feature-based XAI methods. We empirically evaluate 3 types of PETs, namely synthetic training data, differentially private training and noise addition, on two categories of feature-based XAI. Our evaluation determines different responses from the mitigation methods and side-effects of PETs on other system properties such as utility and performance. In the best case, PETs integration in explanations reduced the risk of the attack by 49.47%, while maintaining model utility and explanation quality. Through our evaluation, we identify strategies for using PETs in XAI for maximizing benefits and minimizing the success of this privacy attack on sensitive personal information.

  • 4 authors
·
Jul 6

Concept-Based Explainable Artificial Intelligence: Metrics and Benchmarks

Concept-based explanation methods, such as concept bottleneck models (CBMs), aim to improve the interpretability of machine learning models by linking their decisions to human-understandable concepts, under the critical assumption that such concepts can be accurately attributed to the network's feature space. However, this foundational assumption has not been rigorously validated, mainly because the field lacks standardised metrics and benchmarks to assess the existence and spatial alignment of such concepts. To address this, we propose three metrics: the concept global importance metric, the concept existence metric, and the concept location metric, including a technique for visualising concept activations, i.e., concept activation mapping. We benchmark post-hoc CBMs to illustrate their capabilities and challenges. Through qualitative and quantitative experiments, we demonstrate that, in many cases, even the most important concepts determined by post-hoc CBMs are not present in input images; moreover, when they are present, their saliency maps fail to align with the expected regions by either activating across an entire object or misidentifying relevant concept-specific regions. We analyse the root causes of these limitations, such as the natural correlation of concepts. Our findings underscore the need for more careful application of concept-based explanation techniques especially in settings where spatial interpretability is critical.

  • 3 authors
·
Jan 31

Employing Explainable Artificial Intelligence (XAI) Methodologies to Analyze the Correlation between Input Variables and Tensile Strength in Additively Manufactured Samples

This research paper explores the impact of various input parameters, including Infill percentage, Layer Height, Extrusion Temperature, and Print Speed, on the resulting Tensile Strength in objects produced through additive manufacturing. The main objective of this study is to enhance our understanding of the correlation between the input parameters and Tensile Strength, as well as to identify the key factors influencing the performance of the additive manufacturing process. To achieve this objective, we introduced the utilization of Explainable Artificial Intelligence (XAI) techniques for the first time, which allowed us to analyze the data and gain valuable insights into the system's behavior. Specifically, we employed SHAP (SHapley Additive exPlanations), a widely adopted framework for interpreting machine learning model predictions, to provide explanations for the behavior of a machine learning model trained on the data. Our findings reveal that the Infill percentage and Extrusion Temperature have the most significant influence on Tensile Strength, while the impact of Layer Height and Print Speed is relatively minor. Furthermore, we discovered that the relationship between the input parameters and Tensile Strength is highly intricate and nonlinear, making it difficult to accurately describe using simple linear models.

  • 2 authors
·
May 28, 2023

Interpretable Bangla Sarcasm Detection using BERT and Explainable AI

A positive phrase or a sentence with an underlying negative motive is usually defined as sarcasm that is widely used in today's social media platforms such as Facebook, Twitter, Reddit, etc. In recent times active users in social media platforms are increasing dramatically which raises the need for an automated NLP-based system that can be utilized in various tasks such as determining market demand, sentiment analysis, threat detection, etc. However, since sarcasm usually implies the opposite meaning and its detection is frequently a challenging issue, data meaning extraction through an NLP-based model becomes more complicated. As a result, there has been a lot of study on sarcasm detection in English over the past several years, and there's been a noticeable improvement and yet sarcasm detection in the Bangla language's state remains the same. In this article, we present a BERT-based system that can achieve 99.60\% while the utilized traditional machine learning algorithms are only capable of achieving 89.93\%. Additionally, we have employed Local Interpretable Model-Agnostic Explanations that introduce explainability to our system. Moreover, we have utilized a newly collected bangla sarcasm dataset, BanglaSarc that was constructed specifically for the evaluation of this study. This dataset consists of fresh records of sarcastic and non-sarcastic comments, the majority of which are acquired from Facebook and YouTube comment sections.

  • 6 authors
·
Mar 22, 2023

Toward a traceable, explainable, and fairJD/Resume recommendation system

In the last few decades, companies are interested to adopt an online automated recruitment process in an international recruitment environment. The problem is that the recruitment of employees through the manual procedure is a time and money consuming process. As a result, processing a significant number of applications through conventional methods can lead to the recruitment of clumsy individuals. Different JD/Resume matching model architectures have been proposed and reveal a high accuracy level in selecting relevant candidatesfor the required job positions. However, the development of an automatic recruitment system is still one of the main challenges. The reason is that the development of a fully automated recruitment system is a difficult task and poses different challenges. For example, providing a detailed matching explanation for the targeted stakeholders is needed to ensure a transparent recommendation. There are several knowledge bases that represent skills and competencies (e.g, ESCO, O*NET) that are used to identify the candidate and the required job skills for a matching purpose. Besides, modernpre-trained language models are fine-tuned for this context such as identifying lines where a specific feature was introduced. Typically, pre-trained language models use transfer-based machine learning models to be fine-tuned for a specific field. In this proposal, our aim is to explore how modern language models (based on transformers) can be combined with knowledge bases and ontologies to enhance the JD/Resume matching process. Our system aims at using knowledge bases and features to support the explainability of the JD/Resume matching. Finally, given that multiple software components, datasets, ontology, andmachine learning models will be explored, we aim at proposing a fair, ex-plainable, and traceable architecture for a Resume/JD matching purpose.

  • 3 authors
·
Feb 2, 2022

TransICD: Transformer Based Code-wise Attention Model for Explainable ICD Coding

International Classification of Disease (ICD) coding procedure which refers to tagging medical notes with diagnosis codes has been shown to be effective and crucial to the billing system in medical sector. Currently, ICD codes are assigned to a clinical note manually which is likely to cause many errors. Moreover, training skilled coders also requires time and human resources. Therefore, automating the ICD code determination process is an important task. With the advancement of artificial intelligence theory and computational hardware, machine learning approach has emerged as a suitable solution to automate this process. In this project, we apply a transformer-based architecture to capture the interdependence among the tokens of a document and then use a code-wise attention mechanism to learn code-specific representations of the entire document. Finally, they are fed to separate dense layers for corresponding code prediction. Furthermore, to handle the imbalance in the code frequency of clinical datasets, we employ a label distribution aware margin (LDAM) loss function. The experimental results on the MIMIC-III dataset show that our proposed model outperforms other baselines by a significant margin. In particular, our best setting achieves a micro-AUC score of 0.923 compared to 0.868 of bidirectional recurrent neural networks. We also show that by using the code-wise attention mechanism, the model can provide more insights about its prediction, and thus it can support clinicians to make reliable decisions. Our code is available online (https://github.com/biplob1ly/TransICD)

  • 3 authors
·
Mar 28, 2021

Enhancing End Stage Renal Disease Outcome Prediction: A Multi-Sourced Data-Driven Approach

Objective: To improve prediction of Chronic Kidney Disease (CKD) progression to End Stage Renal Disease (ESRD) using machine learning (ML) and deep learning (DL) models applied to an integrated clinical and claims dataset of varying observation windows, supported by explainable AI (XAI) to enhance interpretability and reduce bias. Materials and Methods: We utilized data about 10,326 CKD patients, combining their clinical and claims information from 2009 to 2018. Following data preprocessing, cohort identification, and feature engineering, we evaluated multiple statistical, ML and DL models using data extracted from five distinct observation windows. Feature importance and Shapley value analysis were employed to understand key predictors. Models were tested for robustness, clinical relevance, misclassification errors and bias issues. Results: Integrated data models outperformed those using single data sources, with the Long Short-Term Memory (LSTM) model achieving the highest AUC (0.93) and F1 score (0.65). A 24-month observation window was identified as optimal for balancing early detection and prediction accuracy. The 2021 eGFR equation improved prediction accuracy and reduced racial bias, notably for African American patients. Discussion: Improved ESRD prediction accuracy, results interpretability and bias mitigation strategies presented in this study have the potential to significantly enhance CKD and ESRD management, support targeted early interventions and reduce healthcare disparities. Conclusion: This study presents a robust framework for predicting ESRD outcomes in CKD patients, improving clinical decision-making and patient care through multi-sourced, integrated data and AI/ML methods. Future research will expand data integration and explore the application of this framework to other chronic diseases.

  • 2 authors
·
Oct 1, 2024

On the Road to Clarity: Exploring Explainable AI for World Models in a Driver Assistance System

In Autonomous Driving (AD) transparency and safety are paramount, as mistakes are costly. However, neural networks used in AD systems are generally considered black boxes. As a countermeasure, we have methods of explainable AI (XAI), such as feature relevance estimation and dimensionality reduction. Coarse graining techniques can also help reduce dimensionality and find interpretable global patterns. A specific coarse graining method is Renormalization Groups from statistical physics. It has previously been applied to Restricted Boltzmann Machines (RBMs) to interpret unsupervised learning. We refine this technique by building a transparent backbone model for convolutional variational autoencoders (VAE) that allows mapping latent values to input features and has performance comparable to trained black box VAEs. Moreover, we propose a custom feature map visualization technique to analyze the internal convolutional layers in the VAE to explain internal causes of poor reconstruction that may lead to dangerous traffic scenarios in AD applications. In a second key contribution, we propose explanation and evaluation techniques for the internal dynamics and feature relevance of prediction networks. We test a long short-term memory (LSTM) network in the computer vision domain to evaluate the predictability and in future applications potentially safety of prediction models. We showcase our methods by analyzing a VAE-LSTM world model that predicts pedestrian perception in an urban traffic situation.

  • 6 authors
·
Apr 26, 2024

A Comprehensive Guide to Explainable AI: From Classical Models to LLMs

Explainable Artificial Intelligence (XAI) addresses the growing need for transparency and interpretability in AI systems, enabling trust and accountability in decision-making processes. This book offers a comprehensive guide to XAI, bridging foundational concepts with advanced methodologies. It explores interpretability in traditional models such as Decision Trees, Linear Regression, and Support Vector Machines, alongside the challenges of explaining deep learning architectures like CNNs, RNNs, and Large Language Models (LLMs), including BERT, GPT, and T5. The book presents practical techniques such as SHAP, LIME, Grad-CAM, counterfactual explanations, and causal inference, supported by Python code examples for real-world applications. Case studies illustrate XAI's role in healthcare, finance, and policymaking, demonstrating its impact on fairness and decision support. The book also covers evaluation metrics for explanation quality, an overview of cutting-edge XAI tools and frameworks, and emerging research directions, such as interpretability in federated learning and ethical AI considerations. Designed for a broad audience, this resource equips readers with the theoretical insights and practical skills needed to master XAI. Hands-on examples and additional resources are available at the companion GitHub repository: https://github.com/Echoslayer/XAI_From_Classical_Models_to_LLMs.

  • 27 authors
·
Dec 1, 2024