new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 8

A CTC Alignment-based Non-autoregressive Transformer for End-to-end Automatic Speech Recognition

Recently, end-to-end models have been widely used in automatic speech recognition (ASR) systems. Two of the most representative approaches are connectionist temporal classification (CTC) and attention-based encoder-decoder (AED) models. Autoregressive transformers, variants of AED, adopt an autoregressive mechanism for token generation and thus are relatively slow during inference. In this paper, we present a comprehensive study of a CTC Alignment-based Single-Step Non-Autoregressive Transformer (CASS-NAT) for end-to-end ASR. In CASS-NAT, word embeddings in the autoregressive transformer (AT) are substituted with token-level acoustic embeddings (TAE) that are extracted from encoder outputs with the acoustical boundary information offered by the CTC alignment. TAE can be obtained in parallel, resulting in a parallel generation of output tokens. During training, Viterbi-alignment is used for TAE generation, and multiple training strategies are further explored to improve the word error rate (WER) performance. During inference, an error-based alignment sampling method is investigated in depth to reduce the alignment mismatch in the training and testing processes. Experimental results show that the CASS-NAT has a WER that is close to AT on various ASR tasks, while providing a ~24x inference speedup. With and without self-supervised learning, we achieve new state-of-the-art results for non-autoregressive models on several datasets. We also analyze the behavior of the CASS-NAT decoder to explain why it can perform similarly to AT. We find that TAEs have similar functionality to word embeddings for grammatical structures, which might indicate the possibility of learning some semantic information from TAEs without a language model.

  • 4 authors
·
Apr 15, 2023

Masked Audio Generation using a Single Non-Autoregressive Transformer

We introduce MAGNeT, a masked generative sequence modeling method that operates directly over several streams of audio tokens. Unlike prior work, MAGNeT is comprised of a single-stage, non-autoregressive transformer. During training, we predict spans of masked tokens obtained from a masking scheduler, while during inference we gradually construct the output sequence using several decoding steps. To further enhance the quality of the generated audio, we introduce a novel rescoring method in which, we leverage an external pre-trained model to rescore and rank predictions from MAGNeT, which will be then used for later decoding steps. Lastly, we explore a hybrid version of MAGNeT, in which we fuse between autoregressive and non-autoregressive models to generate the first few seconds in an autoregressive manner while the rest of the sequence is being decoded in parallel. We demonstrate the efficiency of MAGNeT for the task of text-to-music and text-to-audio generation and conduct an extensive empirical evaluation, considering both objective metrics and human studies. The proposed approach is comparable to the evaluated baselines, while being significantly faster (x7 faster than the autoregressive baseline). Through ablation studies and analysis, we shed light on the importance of each of the components comprising MAGNeT, together with pointing to the trade-offs between autoregressive and non-autoregressive modeling, considering latency, throughput, and generation quality. Samples are available on our demo page https://pages.cs.huji.ac.il/adiyoss-lab/MAGNeT.

  • 9 authors
·
Jan 9, 2024 14

FastSpeech 2: Fast and High-Quality End-to-End Text to Speech

Non-autoregressive text to speech (TTS) models such as FastSpeech can synthesize speech significantly faster than previous autoregressive models with comparable quality. The training of FastSpeech model relies on an autoregressive teacher model for duration prediction (to provide more information as input) and knowledge distillation (to simplify the data distribution in output), which can ease the one-to-many mapping problem (i.e., multiple speech variations correspond to the same text) in TTS. However, FastSpeech has several disadvantages: 1) the teacher-student distillation pipeline is complicated and time-consuming, 2) the duration extracted from the teacher model is not accurate enough, and the target mel-spectrograms distilled from teacher model suffer from information loss due to data simplification, both of which limit the voice quality. In this paper, we propose FastSpeech 2, which addresses the issues in FastSpeech and better solves the one-to-many mapping problem in TTS by 1) directly training the model with ground-truth target instead of the simplified output from teacher, and 2) introducing more variation information of speech (e.g., pitch, energy and more accurate duration) as conditional inputs. Specifically, we extract duration, pitch and energy from speech waveform and directly take them as conditional inputs in training and use predicted values in inference. We further design FastSpeech 2s, which is the first attempt to directly generate speech waveform from text in parallel, enjoying the benefit of fully end-to-end inference. Experimental results show that 1) FastSpeech 2 achieves a 3x training speed-up over FastSpeech, and FastSpeech 2s enjoys even faster inference speed; 2) FastSpeech 2 and 2s outperform FastSpeech in voice quality, and FastSpeech 2 can even surpass autoregressive models. Audio samples are available at https://speechresearch.github.io/fastspeech2/.

  • 7 authors
·
Jun 8, 2020

OWSM-CTC: An Open Encoder-Only Speech Foundation Model for Speech Recognition, Translation, and Language Identification

There has been an increasing interest in large speech models that can perform multiple speech processing tasks in a single model. Such models usually adopt the encoder-decoder or decoder-only architecture due to their popularity and good performance in many domains. However, autoregressive models can be slower during inference compared to non-autoregressive models and also have potential risks of hallucination. Though prior studies observed promising results of non-autoregressive models for certain tasks at small scales, it remains unclear if they can be scaled to speech-to-text generation in diverse languages and tasks. Inspired by the Open Whisper-style Speech Model (OWSM) project, we propose OWSM-CTC, a novel encoder-only speech foundation model based on Connectionist Temporal Classification (CTC). It is trained on 180k hours of public audio data for multilingual automatic speech recognition (ASR), speech translation (ST), and language identification (LID). Compared to encoder-decoder OWSM, our OWSM-CTC achieves competitive results on ASR and up to 25% relative improvement on ST, while it is more robust and 3 to 4 times faster for inference. OWSM-CTC also improves the long-form ASR result with 20x speed-up. We will publicly release our codebase, pre-trained model, and training logs to promote open science in speech foundation models.

  • 4 authors
·
Feb 19, 2024

CapSpeech: Enabling Downstream Applications in Style-Captioned Text-to-Speech

Recent advancements in generative artificial intelligence have significantly transformed the field of style-captioned text-to-speech synthesis (CapTTS). However, adapting CapTTS to real-world applications remains challenging due to the lack of standardized, comprehensive datasets and limited research on downstream tasks built upon CapTTS. To address these gaps, we introduce CapSpeech, a new benchmark designed for a series of CapTTS-related tasks, including style-captioned text-to-speech synthesis with sound events (CapTTS-SE), accent-captioned TTS (AccCapTTS), emotion-captioned TTS (EmoCapTTS), and text-to-speech synthesis for chat agent (AgentTTS). CapSpeech comprises over 10 million machine-annotated audio-caption pairs and nearly 0.36 million human-annotated audio-caption pairs. In addition, we introduce two new datasets collected and recorded by a professional voice actor and experienced audio engineers, specifically for the AgentTTS and CapTTS-SE tasks. Alongside the datasets, we conduct comprehensive experiments using both autoregressive and non-autoregressive models on CapSpeech. Our results demonstrate high-fidelity and highly intelligible speech synthesis across a diverse range of speaking styles. To the best of our knowledge, CapSpeech is the largest available dataset offering comprehensive annotations for CapTTS-related tasks. The experiments and findings further provide valuable insights into the challenges of developing CapTTS systems.

A Survey on Non-Autoregressive Generation for Neural Machine Translation and Beyond

Non-autoregressive (NAR) generation, which is first proposed in neural machine translation (NMT) to speed up inference, has attracted much attention in both machine learning and natural language processing communities. While NAR generation can significantly accelerate inference speed for machine translation, the speedup comes at the cost of sacrificed translation accuracy compared to its counterpart, autoregressive (AR) generation. In recent years, many new models and algorithms have been designed/proposed to bridge the accuracy gap between NAR generation and AR generation. In this paper, we conduct a systematic survey with comparisons and discussions of various non-autoregressive translation (NAT) models from different aspects. Specifically, we categorize the efforts of NAT into several groups, including data manipulation, modeling methods, training criterion, decoding algorithms, and the benefit from pre-trained models. Furthermore, we briefly review other applications of NAR models beyond machine translation, such as grammatical error correction, text summarization, text style transfer, dialogue, semantic parsing, automatic speech recognition, and so on. In addition, we also discuss potential directions for future exploration, including releasing the dependency of KD, reasonable training objectives, pre-training for NAR, and wider applications, etc. We hope this survey can help researchers capture the latest progress in NAR generation, inspire the design of advanced NAR models and algorithms, and enable industry practitioners to choose appropriate solutions for their applications. The web page of this survey is at https://github.com/LitterBrother-Xiao/Overview-of-Non-autoregressive-Applications.

  • 7 authors
·
Apr 20, 2022

Bidirectional Representations Augmented Autoregressive Biological Sequence Generation:Application in De Novo Peptide Sequencing

Autoregressive (AR) models, common in sequence generation, are limited in many biological tasks such as de novo peptide sequencing and protein modeling by their unidirectional nature, failing to capture crucial global bidirectional token dependencies. Non-Autoregressive (NAR) models offer holistic, bidirectional representations but face challenges with generative coherence and scalability. To transcend this, we propose a hybrid framework enhancing AR generation by dynamically integrating rich contextual information from non-autoregressive mechanisms. Our approach couples a shared input encoder with two decoders: a non-autoregressive one learning latent bidirectional biological features, and an AR decoder synthesizing the biological sequence by leveraging these bidirectional features. A novel cross-decoder attention module enables the AR decoder to iteratively query and integrate these bidirectional features, enriching its predictions. This synergy is cultivated via a tailored training strategy with importance annealing for balanced objectives and cross-decoder gradient blocking for stable, focused learning. Evaluations on a demanding nine-species benchmark of de novo peptide sequencing show that our model substantially surpasses AR and NAR baselines. It uniquely harmonizes AR stability with NAR contextual awareness, delivering robust, superior performance on diverse downstream data. This research advances biological sequence modeling techniques and contributes a novel architectural paradigm for augmenting AR models with enhanced bidirectional understanding for complex sequence generation. Code is available at https://github.com/BEAM-Labs/denovo.

  • 8 authors
·
Oct 9

StreetMath: Study of LLMs' Approximation Behaviors

There is a substantial body of literature examining the mathematical reasoning capabilities of large language models (LLMs), particularly their performance on precise arithmetic operations in autoregressive architectures. However, their ability to perform approximate reasoning in informal, fast-paced mathematical operations has received far less attention, especially among non-autoregressive decoder models. Our work addresses this gap by introducing StreetMath, a benchmark designed to evaluate models' approximation abilities under real-world approximation scenarios. We conduct extensive evaluations across different LLM architectures: Qwen3-4B-Instruct-2507, Qwen3-4B-Thinking-2507, Dream-v0-Instruct-7B, Falcon-Mamba-7B-Instruct, and Mamba-GPT-3B. Furthermore, we apply mechanistic interpretability techniques to probe their internal computational states. Our analysis reveals that LLMs generally attempt to compute exact values or invoke external tools even in tasks that call for approximation. Moreover, while models sometimes reach the correct answer in early layers or steps, they still consume more tokens when solving approximation tasks. Additional experiments indicate that exact and approximate arithmetic operations rely on largely separate neural components. Drawing upon research on cognitive psychology, we argue that LLMs do not exhibit cognitive miserliness in the same way humans do in street math settings. We open source our work https://github.com/ctseng777/StreetMath

  • 5 authors
·
Oct 27

Faster Re-translation Using Non-Autoregressive Model For Simultaneous Neural Machine Translation

Recently, simultaneous translation has gathered a lot of attention since it enables compelling applications such as subtitle translation for a live event or real-time video-call translation. Some of these translation applications allow editing of partial translation giving rise to re-translation approaches. The current re-translation approaches are based on autoregressive sequence generation models (ReTA), which generate tar-get tokens in the (partial) translation sequentially. The multiple re-translations with sequential generation inReTAmodelslead to an increased inference time gap between the incoming source input and the corresponding target output as the source input grows. Besides, due to the large number of inference operations involved, the ReTA models are not favorable for resource-constrained devices. In this work, we propose a faster re-translation system based on a non-autoregressive sequence generation model (FReTNA) to overcome the aforementioned limitations. We evaluate the proposed model on multiple translation tasks and our model reduces the inference times by several orders and achieves a competitive BLEUscore compared to the ReTA and streaming (Wait-k) models.The proposed model reduces the average computation time by a factor of 20 when compared to the ReTA model by incurring a small drop in the translation quality. It also outperforms the streaming-based Wait-k model both in terms of computation time (1.5 times lower) and translation quality.

  • 8 authors
·
Dec 29, 2020

DAWN: Dynamic Frame Avatar with Non-autoregressive Diffusion Framework for Talking Head Video Generation

Talking head generation intends to produce vivid and realistic talking head videos from a single portrait and speech audio clip. Although significant progress has been made in diffusion-based talking head generation, almost all methods rely on autoregressive strategies, which suffer from limited context utilization beyond the current generation step, error accumulation, and slower generation speed. To address these challenges, we present DAWN (Dynamic frame Avatar With Non-autoregressive diffusion), a framework that enables all-at-once generation of dynamic-length video sequences. Specifically, it consists of two main components: (1) audio-driven holistic facial dynamics generation in the latent motion space, and (2) audio-driven head pose and blink generation. Extensive experiments demonstrate that our method generates authentic and vivid videos with precise lip motions, and natural pose/blink movements. Additionally, with a high generation speed, DAWN possesses strong extrapolation capabilities, ensuring the stable production of high-quality long videos. These results highlight the considerable promise and potential impact of DAWN in the field of talking head video generation. Furthermore, we hope that DAWN sparks further exploration of non-autoregressive approaches in diffusion models. Our code will be publicly at https://github.com/Hanbo-Cheng/DAWN-pytorch.

  • 8 authors
·
Oct 17, 2024 2

Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition

Transformers have recently dominated the ASR field. Although able to yield good performance, they involve an autoregressive (AR) decoder to generate tokens one by one, which is computationally inefficient. To speed up inference, non-autoregressive (NAR) methods, e.g. single-step NAR, were designed, to enable parallel generation. However, due to an independence assumption within the output tokens, performance of single-step NAR is inferior to that of AR models, especially with a large-scale corpus. There are two challenges to improving single-step NAR: Firstly to accurately predict the number of output tokens and extract hidden variables; secondly, to enhance modeling of interdependence between output tokens. To tackle both challenges, we propose a fast and accurate parallel transformer, termed Paraformer. This utilizes a continuous integrate-and-fire based predictor to predict the number of tokens and generate hidden variables. A glancing language model (GLM) sampler then generates semantic embeddings to enhance the NAR decoder's ability to model context interdependence. Finally, we design a strategy to generate negative samples for minimum word error rate training to further improve performance. Experiments using the public AISHELL-1, AISHELL-2 benchmark, and an industrial-level 20,000 hour task demonstrate that the proposed Paraformer can attain comparable performance to the state-of-the-art AR transformer, with more than 10x speedup.

  • 4 authors
·
Jun 16, 2022

High-Fidelity Speech Synthesis with Minimal Supervision: All Using Diffusion Models

Text-to-speech (TTS) methods have shown promising results in voice cloning, but they require a large number of labeled text-speech pairs. Minimally-supervised speech synthesis decouples TTS by combining two types of discrete speech representations(semantic \& acoustic) and using two sequence-to-sequence tasks to enable training with minimal supervision. However, existing methods suffer from information redundancy and dimension explosion in semantic representation, and high-frequency waveform distortion in discrete acoustic representation. Autoregressive frameworks exhibit typical instability and uncontrollability issues. And non-autoregressive frameworks suffer from prosodic averaging caused by duration prediction models. To address these issues, we propose a minimally-supervised high-fidelity speech synthesis method, where all modules are constructed based on the diffusion models. The non-autoregressive framework enhances controllability, and the duration diffusion model enables diversified prosodic expression. Contrastive Token-Acoustic Pretraining (CTAP) is used as an intermediate semantic representation to solve the problems of information redundancy and dimension explosion in existing semantic coding methods. Mel-spectrogram is used as the acoustic representation. Both semantic and acoustic representations are predicted by continuous variable regression tasks to solve the problem of high-frequency fine-grained waveform distortion. Experimental results show that our proposed method outperforms the baseline method. We provide audio samples on our website.

  • 7 authors
·
Sep 27, 2023

Seed-TTS: A Family of High-Quality Versatile Speech Generation Models

We introduce Seed-TTS, a family of large-scale autoregressive text-to-speech (TTS) models capable of generating speech that is virtually indistinguishable from human speech. Seed-TTS serves as a foundation model for speech generation and excels in speech in-context learning, achieving performance in speaker similarity and naturalness that matches ground truth human speech in both objective and subjective evaluations. With fine-tuning, we achieve even higher subjective scores across these metrics. Seed-TTS offers superior controllability over various speech attributes such as emotion and is capable of generating highly expressive and diverse speech for speakers in the wild. Furthermore, we propose a self-distillation method for speech factorization, as well as a reinforcement learning approach to enhance model robustness, speaker similarity, and controllability. We additionally present a non-autoregressive (NAR) variant of the Seed-TTS model, named Seed-TTS_DiT, which utilizes a fully diffusion-based architecture. Unlike previous NAR-based TTS systems, Seed-TTS_DiT does not depend on pre-estimated phoneme durations and performs speech generation through end-to-end processing. We demonstrate that this variant achieves comparable performance to the language model-based variant and showcase its effectiveness in speech editing. We encourage readers to listen to demos at https://bytedancespeech.github.io/seedtts_tech_report.

  • 46 authors
·
Jun 4, 2024 2

dKV-Cache: The Cache for Diffusion Language Models

Diffusion Language Models (DLMs) have been seen as a promising competitor for autoregressive language models. However, diffusion language models have long been constrained by slow inference. A core challenge is that their non-autoregressive architecture and bidirectional attention preclude the key-value cache that accelerates decoding. We address this bottleneck by proposing a KV-cache-like mechanism, delayed KV-Cache, for the denoising process of DLMs. Our approach is motivated by the observation that different tokens have distinct representation dynamics throughout the diffusion process. Accordingly, we propose a delayed and conditioned caching strategy for key and value states. We design two complementary variants to cache key and value step-by-step: (1) dKV-Cache-Decode, which provides almost lossless acceleration, and even improves performance on long sequences, suggesting that existing DLMs may under-utilise contextual information during inference. (2) dKV-Cache-Greedy, which has aggressive caching with reduced lifespan, achieving higher speed-ups with quadratic time complexity at the cost of some performance degradation. dKV-Cache, in final, achieves from 2-10x speedup in inference, largely narrowing the gap between ARs and DLMs. We evaluate our dKV-Cache on several benchmarks, delivering acceleration across general language understanding, mathematical, and code-generation benchmarks. Experiments demonstrate that cache can also be used in DLMs, even in a training-free manner from current DLMs.

  • 4 authors
·
May 21 2

SimpleSpeech 2: Towards Simple and Efficient Text-to-Speech with Flow-based Scalar Latent Transformer Diffusion Models

Scaling Text-to-speech (TTS) to large-scale datasets has been demonstrated as an effective method for improving the diversity and naturalness of synthesized speech. At the high level, previous large-scale TTS models can be categorized into either Auto-regressive (AR) based (e.g., VALL-E) or Non-auto-regressive (NAR) based models (e.g., NaturalSpeech 2/3). Although these works demonstrate good performance, they still have potential weaknesses. For instance, AR-based models are plagued by unstable generation quality and slow generation speed; meanwhile, some NAR-based models need phoneme-level duration alignment information, thereby increasing the complexity of data pre-processing, model design, and loss design. In this work, we build upon our previous publication by implementing a simple and efficient non-autoregressive (NAR) TTS framework, termed SimpleSpeech 2. SimpleSpeech 2 effectively combines the strengths of both autoregressive (AR) and non-autoregressive (NAR) methods, offering the following key advantages: (1) simplified data preparation; (2) straightforward model and loss design; and (3) stable, high-quality generation performance with fast inference speed. Compared to our previous publication, we present ({\romannumeral1}) a detailed analysis of the influence of speech tokenizer and noisy label for TTS performance; ({\romannumeral2}) four distinct types of sentence duration predictors; ({\romannumeral3}) a novel flow-based scalar latent transformer diffusion model. With these improvement, we show a significant improvement in generation performance and generation speed compared to our previous work and other state-of-the-art (SOTA) large-scale TTS models. Furthermore, we show that SimpleSpeech 2 can be seamlessly extended to multilingual TTS by training it on multilingual speech datasets. Demos are available on: {https://dongchaoyang.top/SimpleSpeech2\_demo/}.

  • 8 authors
·
Aug 25, 2024

It's Raw! Audio Generation with State-Space Models

Developing architectures suitable for modeling raw audio is a challenging problem due to the high sampling rates of audio waveforms. Standard sequence modeling approaches like RNNs and CNNs have previously been tailored to fit the demands of audio, but the resultant architectures make undesirable computational tradeoffs and struggle to model waveforms effectively. We propose SaShiMi, a new multi-scale architecture for waveform modeling built around the recently introduced S4 model for long sequence modeling. We identify that S4 can be unstable during autoregressive generation, and provide a simple improvement to its parameterization by drawing connections to Hurwitz matrices. SaShiMi yields state-of-the-art performance for unconditional waveform generation in the autoregressive setting. Additionally, SaShiMi improves non-autoregressive generation performance when used as the backbone architecture for a diffusion model. Compared to prior architectures in the autoregressive generation setting, SaShiMi generates piano and speech waveforms which humans find more musical and coherent respectively, e.g. 2x better mean opinion scores than WaveNet on an unconditional speech generation task. On a music generation task, SaShiMi outperforms WaveNet on density estimation and speed at both training and inference even when using 3x fewer parameters. Code can be found at https://github.com/HazyResearch/state-spaces and samples at https://hazyresearch.stanford.edu/sashimi-examples.

  • 4 authors
·
Feb 19, 2022

Unifying Continuous and Discrete Text Diffusion with Non-simultaneous Diffusion Processes

Diffusion models have emerged as a promising approach for text generation, with recent works falling into two main categories: discrete and continuous diffusion models. Discrete diffusion models apply token corruption independently using categorical distributions, allowing for different diffusion progress across tokens but lacking fine-grained control. Continuous diffusion models map tokens to continuous spaces and apply fine-grained noise, but the diffusion progress is uniform across tokens, limiting their ability to capture semantic nuances. To address these limitations, we propose \underline{N}on-simultan\underline{e}ous C\underline{o}ntinuous \underline{Diff}usion Models (NeoDiff), a novel diffusion model that integrates the strengths of both discrete and continuous approaches. NeoDiff introduces a Poisson diffusion process for the forward process, enabling a flexible and fine-grained noising paradigm, and employs a time predictor for the reverse process to adaptively modulate the denoising progress based on token semantics. Furthermore, NeoDiff utilizes an optimized schedule for inference to ensure more precise noise control and improved performance. Our approach unifies the theories of discrete and continuous diffusion models, offering a more principled and effective framework for text generation. Experimental results on several text generation tasks demonstrate NeoDiff's superior performance compared to baselines of non-autoregressive continuous and discrete diffusion models, iterative-based methods and autoregressive diffusion-based methods. These results highlight NeoDiff's potential as a powerful tool for generating high-quality text and advancing the field of diffusion-based text generation.

  • 3 authors
·
May 28

PortaSpeech: Portable and High-Quality Generative Text-to-Speech

Non-autoregressive text-to-speech (NAR-TTS) models such as FastSpeech 2 and Glow-TTS can synthesize high-quality speech from the given text in parallel. After analyzing two kinds of generative NAR-TTS models (VAE and normalizing flow), we find that: VAE is good at capturing the long-range semantics features (e.g., prosody) even with small model size but suffers from blurry and unnatural results; and normalizing flow is good at reconstructing the frequency bin-wise details but performs poorly when the number of model parameters is limited. Inspired by these observations, to generate diverse speech with natural details and rich prosody using a lightweight architecture, we propose PortaSpeech, a portable and high-quality generative text-to-speech model. Specifically, 1) to model both the prosody and mel-spectrogram details accurately, we adopt a lightweight VAE with an enhanced prior followed by a flow-based post-net with strong conditional inputs as the main architecture. 2) To further compress the model size and memory footprint, we introduce the grouped parameter sharing mechanism to the affine coupling layers in the post-net. 3) To improve the expressiveness of synthesized speech and reduce the dependency on accurate fine-grained alignment between text and speech, we propose a linguistic encoder with mixture alignment combining hard inter-word alignment and soft intra-word alignment, which explicitly extracts word-level semantic information. Experimental results show that PortaSpeech outperforms other TTS models in both voice quality and prosody modeling in terms of subjective and objective evaluation metrics, and shows only a slight performance degradation when reducing the model parameters to 6.7M (about 4x model size and 3x runtime memory compression ratio compared with FastSpeech 2). Our extensive ablation studies demonstrate that each design in PortaSpeech is effective.

  • 3 authors
·
Sep 30, 2021

Making the Most of your Model: Methods for Finetuning and Applying Pretrained Transformers

This thesis provides methods and analysis of models which make progress on this goal. The techniques outlined are task agnostic, and should provide benefit when used with nearly any transformer LM. We introduce two new finetuning methods which add new capabilities to the models they are used on. The first adds a recurrence mechanism, which removes the fixed-window sized constraint and improves the efficiency of a transformer decoder. The second allows masked language models (MLMs) to be used for initialization of both the encoder and decoder of a non-autoregressive sequence-to-sequence transformer, opening up generative applications of models which were previously only used for natural language understanding tasks. We also introduce two new techniques for improving the quality of predictions of any transformer decoder without additional finetuning. One, hidden state optimization, can be applied to any transformer decoder to improve the quality of predictions at inference time, especially for few-shot classification. The other, conditional beam search, allows practitioners to search for natural language generation (NLG) model outputs with high likelihood while conditioning on the event that the output is not degenerate (e.g. empty, repetitive, etc.). Finally, we provide theoretical and empirical insights on the divergence of model-likelihood and output quality which has widely been observed in prior work. These insights apply to any model which represents a distribution over text, and apply to language models which are not transformers or even autoregressive. We argue that the NLP community has, to some extent, misunderstood the implications of these findings, and encourage a point of view which has more nuance.

  • 1 authors
·
Aug 28, 2024

Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis

Diffusion models, such as Stable Diffusion, have made significant strides in visual generation, yet their paradigm remains fundamentally different from autoregressive language models, complicating the development of unified language-vision models. Recent efforts like LlamaGen have attempted autoregressive image generation using discrete VQVAE tokens, but the large number of tokens involved renders this approach inefficient and slow. In this work, we present Meissonic, which elevates non-autoregressive masked image modeling (MIM) text-to-image to a level comparable with state-of-the-art diffusion models like SDXL. By incorporating a comprehensive suite of architectural innovations, advanced positional encoding strategies, and optimized sampling conditions, Meissonic substantially improves MIM's performance and efficiency. Additionally, we leverage high-quality training data, integrate micro-conditions informed by human preference scores, and employ feature compression layers to further enhance image fidelity and resolution. Our model not only matches but often exceeds the performance of existing models like SDXL in generating high-quality, high-resolution images. Extensive experiments validate Meissonic's capabilities, demonstrating its potential as a new standard in text-to-image synthesis. We release a model checkpoint capable of producing 1024 times 1024 resolution images.

  • 9 authors
·
Oct 10, 2024 2

Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval

The ability to accurately model the fitness landscape of protein sequences is critical to a wide range of applications, from quantifying the effects of human variants on disease likelihood, to predicting immune-escape mutations in viruses and designing novel biotherapeutic proteins. Deep generative models of protein sequences trained on multiple sequence alignments have been the most successful approaches so far to address these tasks. The performance of these methods is however contingent on the availability of sufficiently deep and diverse alignments for reliable training. Their potential scope is thus limited by the fact many protein families are hard, if not impossible, to align. Large language models trained on massive quantities of non-aligned protein sequences from diverse families address these problems and show potential to eventually bridge the performance gap. We introduce Tranception, a novel transformer architecture leveraging autoregressive predictions and retrieval of homologous sequences at inference to achieve state-of-the-art fitness prediction performance. Given its markedly higher performance on multiple mutants, robustness to shallow alignments and ability to score indels, our approach offers significant gain of scope over existing approaches. To enable more rigorous model testing across a broader range of protein families, we develop ProteinGym -- an extensive set of multiplexed assays of variant effects, substantially increasing both the number and diversity of assays compared to existing benchmarks.

  • 7 authors
·
May 27, 2022

TokenUnify: Scalable Autoregressive Visual Pre-training with Mixture Token Prediction

Autoregressive next-token prediction is a standard pretraining method for large-scale language models, but its application to vision tasks is hindered by the non-sequential nature of image data, leading to cumulative errors. Most vision models employ masked autoencoder (MAE) based pretraining, which faces scalability issues. To address these challenges, we introduce TokenUnify, a novel pretraining method that integrates random token prediction, next-token prediction, and next-all token prediction. We provide theoretical evidence demonstrating that TokenUnify mitigates cumulative errors in visual autoregression. Cooperated with TokenUnify, we have assembled a large-scale electron microscopy (EM) image dataset with ultra-high resolution, ideal for creating spatially correlated long sequences. This dataset includes over 120 million annotated voxels, making it the largest neuron segmentation dataset to date and providing a unified benchmark for experimental validation. Leveraging the Mamba network inherently suited for long-sequence modeling on this dataset, TokenUnify not only reduces the computational complexity but also leads to a significant 45\% improvement in segmentation performance on downstream EM neuron segmentation tasks compared to existing methods. Furthermore, TokenUnify demonstrates superior scalability over MAE and traditional autoregressive methods, effectively bridging the gap between pretraining strategies for language and vision models. Code is available at https://github.com/ydchen0806/TokenUnify.

  • 8 authors
·
May 27, 2024

Language Models are Few-Shot Learners

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.

  • 31 authors
·
May 28, 2020 1

Beyond Autoregression: An Empirical Study of Diffusion Large Language Models for Code Generation

LLMs have become the mainstream approaches to code generation. Existing LLMs mainly employ autoregressive generation, i.e. generating code token-by-token from left to right. However, the underlying autoregressive generation has two limitations in code generation. First, autoregressive LLMs only generate a token at each step, showing low efficiency in practice. Second, programming is a non-sequential process involving back-and-forth editing, while autoregressive LLMs only employ the left-to-right generation order. These two intrinsic limitations hinder the further development of LLMs in code generation. Recently, diffusion LLMs have emerged as a promising alternative. Diffusion LLMs address the above limitations with two advances, including multi-token prediction (i.e. generating multiple tokens at each step) and flexible generation order (i.e. flexibly determining which positions to generate tokens). However, there is no systematic study exploring diffusion LLMs in code generation. To bridge the knowledge gap, we present the first empirical study of diffusion LLMs for code generation. Our study involves 9 representative diffusion LLMs and conduct experiments on 4 widely used benchmarks. Based on the results, we summarize the following findings. (1) Existing diffusion LLMs are competitive with autoregressive LLMs with similar sizes. (2) Diffusion LLMs have a stronger length extrapolation ability than autoregressive LLMs and perform better in long code understanding. (3) We explore factors impacting the effectiveness and efficiency of diffusion LLMs, and provide practical guidance. (4) We discuss several promising further directions to improve diffusion LLMs on code generation. We open-source all source code, data, and results to facilitate the following research. The code is publicly available at https://github.com/zhangyitonggg/dllm4code.

  • 5 authors
·
Sep 14

Tracing the Representation Geometry of Language Models from Pretraining to Post-training

Standard training metrics like loss fail to explain the emergence of complex capabilities in large language models. We take a spectral approach to investigate the geometry of learned representations across pretraining and post-training, measuring effective rank (RankMe) and eigenspectrum decay (α-ReQ). With OLMo (1B-7B) and Pythia (160M-12B) models, we uncover a consistent non-monotonic sequence of three geometric phases during autoregressive pretraining. The initial "warmup" phase exhibits rapid representational collapse. This is followed by an "entropy-seeking" phase, where the manifold's dimensionality expands substantially, coinciding with peak n-gram memorization. Subsequently, a "compression-seeking" phase imposes anisotropic consolidation, selectively preserving variance along dominant eigendirections while contracting others, a transition marked with significant improvement in downstream task performance. We show these phases can emerge from a fundamental interplay of cross-entropy optimization under skewed token frequencies and representational bottlenecks (d ll |V|). Post-training further transforms geometry: SFT and DPO drive "entropy-seeking" dynamics to integrate specific instructional or preferential data, improving in-distribution performance while degrading out-of-distribution robustness. Conversely, RLVR induces "compression-seeking", enhancing reward alignment but reducing generation diversity.

  • 7 authors
·
Sep 26

What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?

Large pretrained Transformer language models have been shown to exhibit zero-shot generalization, i.e. they can perform a wide variety of tasks that they were not explicitly trained on. However, the architectures and pretraining objectives used across state-of-the-art models differ significantly, and there has been limited systematic comparison of these factors. In this work, we present a large-scale evaluation of modeling choices and their impact on zero-shot generalization. In particular, we focus on text-to-text models and experiment with three model architectures (causal/non-causal decoder-only and encoder-decoder), trained with two different pretraining objectives (autoregressive and masked language modeling), and evaluated with and without multitask prompted finetuning. We train models with over 5 billion parameters for more than 170 billion tokens, thereby increasing the likelihood that our conclusions will transfer to even larger scales. Our experiments show that causal decoder-only models trained on an autoregressive language modeling objective exhibit the strongest zero-shot generalization after purely unsupervised pretraining. However, models with non-causal visibility on their input trained with a masked language modeling objective followed by multitask finetuning perform the best among our experiments. We therefore consider the adaptation of pretrained models across architectures and objectives. We find that pretrained non-causal decoder models can be adapted into performant generative causal decoder models, using autoregressive language modeling as a downstream task. Furthermore, we find that pretrained causal decoder models can be efficiently adapted into non-causal decoder models, ultimately achieving competitive performance after multitask finetuning. Code and checkpoints are available at https://github.com/bigscience-workshop/architecture-objective.

  • 8 authors
·
Apr 12, 2022

MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer

The recent large-scale text-to-speech (TTS) systems are usually grouped as autoregressive and non-autoregressive systems. The autoregressive systems implicitly model duration but exhibit certain deficiencies in robustness and lack of duration controllability. Non-autoregressive systems require explicit alignment information between text and speech during training and predict durations for linguistic units (e.g. phone), which may compromise their naturalness. In this paper, we introduce Masked Generative Codec Transformer (MaskGCT), a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision, as well as phone-level duration prediction. MaskGCT is a two-stage model: in the first stage, the model uses text to predict semantic tokens extracted from a speech self-supervised learning (SSL) model, and in the second stage, the model predicts acoustic tokens conditioned on these semantic tokens. MaskGCT follows the mask-and-predict learning paradigm. During training, MaskGCT learns to predict masked semantic or acoustic tokens based on given conditions and prompts. During inference, the model generates tokens of a specified length in a parallel manner. Experiments with 100K hours of in-the-wild speech demonstrate that MaskGCT outperforms the current state-of-the-art zero-shot TTS systems in terms of quality, similarity, and intelligibility. Audio samples are available at https://maskgct.github.io/.

  • 10 authors
·
Sep 1, 2024

DASpeech: Directed Acyclic Transformer for Fast and High-quality Speech-to-Speech Translation

Direct speech-to-speech translation (S2ST) translates speech from one language into another using a single model. However, due to the presence of linguistic and acoustic diversity, the target speech follows a complex multimodal distribution, posing challenges to achieving both high-quality translations and fast decoding speeds for S2ST models. In this paper, we propose DASpeech, a non-autoregressive direct S2ST model which realizes both fast and high-quality S2ST. To better capture the complex distribution of the target speech, DASpeech adopts the two-pass architecture to decompose the generation process into two steps, where a linguistic decoder first generates the target text, and an acoustic decoder then generates the target speech based on the hidden states of the linguistic decoder. Specifically, we use the decoder of DA-Transformer as the linguistic decoder, and use FastSpeech 2 as the acoustic decoder. DA-Transformer models translations with a directed acyclic graph (DAG). To consider all potential paths in the DAG during training, we calculate the expected hidden states for each target token via dynamic programming, and feed them into the acoustic decoder to predict the target mel-spectrogram. During inference, we select the most probable path and take hidden states on that path as input to the acoustic decoder. Experiments on the CVSS Fr-En benchmark demonstrate that DASpeech can achieve comparable or even better performance than the state-of-the-art S2ST model Translatotron 2, while preserving up to 18.53x speedup compared to the autoregressive baseline. Compared with the previous non-autoregressive S2ST model, DASpeech does not rely on knowledge distillation and iterative decoding, achieving significant improvements in both translation quality and decoding speed. Furthermore, DASpeech shows the ability to preserve the speaker's voice of the source speech during translation.

  • 3 authors
·
Oct 11, 2023

FlexSpeech: Towards Stable, Controllable and Expressive Text-to-Speech

Current speech generation research can be categorized into two primary classes: non-autoregressive and autoregressive. The fundamental distinction between these approaches lies in the duration prediction strategy employed for predictable-length sequences. The NAR methods ensure stability in speech generation by explicitly and independently modeling the duration of each phonetic unit. Conversely, AR methods employ an autoregressive paradigm to predict the compressed speech token by implicitly modeling duration with Markov properties. Although this approach improves prosody, it does not provide the structural guarantees necessary for stability. To simultaneously address the issues of stability and naturalness in speech generation, we propose FlexSpeech, a stable, controllable, and expressive TTS model. The motivation behind FlexSpeech is to incorporate Markov dependencies and preference optimization directly on the duration predictor to boost its naturalness while maintaining explicit modeling of the phonetic units to ensure stability. Specifically, we decompose the speech generation task into two components: an AR duration predictor and a NAR acoustic model. The acoustic model is trained on a substantial amount of data to learn to render audio more stably, given reference audio prosody and phone durations. The duration predictor is optimized in a lightweight manner for different stylistic variations, thereby enabling rapid style transfer while maintaining a decoupled relationship with the specified speaker timbre. Experimental results demonstrate that our approach achieves SOTA stability and naturalness in zero-shot TTS. More importantly, when transferring to a specific stylistic domain, we can accomplish lightweight optimization of the duration module solely with about 100 data samples, without the need to adjust the acoustic model, thereby enabling rapid and stable style transfer.

  • 5 authors
·
May 8