- PyTorch Tabular: A Framework for Deep Learning with Tabular Data In spite of showing unreasonable effectiveness in modalities like Text and Image, Deep Learning has always lagged Gradient Boosting in tabular data - both in popularity and performance. But recently there have been newer models created specifically for tabular data, which is pushing the performance bar. But popularity is still a challenge because there is no easy, ready-to-use library like Sci-Kit Learn for deep learning. PyTorch Tabular is a new deep learning library which makes working with Deep Learning and tabular data easy and fast. It is a library built on top of PyTorch and PyTorch Lightning and works on pandas dataframes directly. Many SOTA models like NODE and TabNet are already integrated and implemented in the library with a unified API. PyTorch Tabular is designed to be easily extensible for researchers, simple for practitioners, and robust in industrial deployments. 1 authors · Apr 28, 2021
- Drawing Pandas: A Benchmark for LLMs in Generating Plotting Code This paper introduces the human-curated PandasPlotBench dataset, designed to evaluate language models' effectiveness as assistants in visual data exploration. Our benchmark focuses on generating code for visualizing tabular data - such as a Pandas DataFrame - based on natural language instructions, complementing current evaluation tools and expanding their scope. The dataset includes 175 unique tasks. Our experiments assess several leading Large Language Models (LLMs) across three visualization libraries: Matplotlib, Seaborn, and Plotly. We show that the shortening of tasks has a minimal effect on plotting capabilities, allowing for the user interface that accommodates concise user input without sacrificing functionality or accuracy. Another of our findings reveals that while LLMs perform well with popular libraries like Matplotlib and Seaborn, challenges persist with Plotly, highlighting areas for improvement. We hope that the modular design of our benchmark will broaden the current studies on generating visualizations. Our benchmark is available online: https://huggingface.co/datasets/JetBrains-Research/plot_bench. The code for running the benchmark is also available: https://github.com/JetBrains-Research/PandasPlotBench. 4 authors · Dec 3, 2024
- Volatility Modeling of Stocks from Selected Sectors of the Indian Economy Using GARCH Volatility clustering is an important characteristic that has a significant effect on the behavior of stock markets. However, designing robust models for accurate prediction of future volatilities of stock prices is a very challenging research problem. We present several volatility models based on generalized autoregressive conditional heteroscedasticity (GARCH) framework for modeling the volatility of ten stocks listed in the national stock exchange (NSE) of India. The stocks are selected from the auto sector and the banking sector of the Indian economy, and they have a significant impact on the sectoral index of their respective sectors in the NSE. The historical stock price records from Jan 1, 2010, to Apr 30, 2021, are scraped from the Yahoo Finance website using the DataReader API of the Pandas module in the Python programming language. The GARCH modules are built and fine-tuned on the training data and then tested on the out-of-sample data to evaluate the performance of the models. The analysis of the results shows that asymmetric GARCH models yield more accurate forecasts on the future volatility of stocks. 3 authors · May 28, 2021
- ITUNLP at SemEval-2025 Task 8: Question-Answering over Tabular Data: A Zero-Shot Approach using LLM-Driven Code Generation This paper presents our system for SemEval-2025 Task 8: DataBench, Question-Answering over Tabular Data. The primary objective of this task is to perform question answering on given tabular datasets from diverse domains under two subtasks: DataBench QA (Subtask I) and DataBench Lite QA (Subtask II). To tackle both subtasks, we developed a zero-shot solution with a particular emphasis on leveraging Large Language Model (LLM)-based code generation. Specifically, we propose a Python code generation framework utilizing state-of-the-art open-source LLMs to generate executable Pandas code via optimized prompting strategies. Our experiments reveal that different LLMs exhibit varying levels of effectiveness in Python code generation. Additionally, results show that Python code generation achieves superior performance in tabular question answering compared to alternative approaches. Although our ranking among zero-shot systems is unknown at the time of this paper's submission, our system achieved eighth place in Subtask I and sixth place in Subtask~II among the 30 systems that outperformed the baseline in the open-source models category. 3 authors · Aug 1
- pyMethods2Test: A Dataset of Python Tests Mapped to Focal Methods Python is one of the fastest-growing programming languages and currently ranks as the top language in many lists, even recently overtaking JavaScript as the top language on GitHub. Given its importance in data science and machine learning, it is imperative to be able to effectively train LLMs to generate good unit test cases for Python code. This motivates the need for a large dataset to provide training and testing data. To date, while other large datasets exist for languages like Java, none publicly exist for Python. Python poses difficult challenges in generating such a dataset, due to its less rigid naming requirements. In this work, we consider two commonly used Python unit testing frameworks: Pytest and unittest. We analyze a large corpus of over 88K open-source GitHub projects utilizing these testing frameworks. Using a carefully designed set of heuristics, we are able to locate over 22 million test methods. We then analyze the test and non-test code and map individual unit tests to the focal method being tested. This provides an explicit traceability link from the test to the tested method. Our pyMethods2Test dataset contains over 2 million of these focal method mappings, as well as the ability to generate useful context for input to LLMs. The pyMethods2Test dataset is publicly available on Zenodo at: https://doi.org/10.5281/zenodo.14264518 2 authors · Feb 7
- Datasets for Studying Generalization from Easy to Hard Examples We describe new datasets for studying generalization from easy to hard examples. 8 authors · Aug 12, 2021
1 GriSPy: A Python package for Fixed-Radius Nearest Neighbors Search We present a new regular grid search algorithm for quick fixed-radius nearest-neighbor lookup developed in Python. This module indexes a set of k-dimensional points in a regular grid, with optional periodic conditions, providing a fast approach for nearest neighbors queries. In this first installment we provide three types of queries: bubble, shell and the nth-nearest; as well as three different metrics of interest in astronomy: the euclidean and two distance functions in spherical coordinates of varying precision, haversine and Vincenty; and the possibility of providing a custom distance function. This package results particularly useful for large datasets where a brute-force search turns impractical. 7 authors · Dec 19, 2019
- Panda: A pretrained forecast model for universal representation of chaotic dynamics Chaotic systems are intrinsically sensitive to small errors, challenging efforts to construct predictive data-driven models of real-world dynamical systems such as fluid flows or neuronal activity. Prior efforts comprise either specialized models trained separately on individual time series, or foundation models trained on vast time series databases with little underlying dynamical structure. Motivated by dynamical systems theory, we present Panda, Patched Attention for Nonlinear DynAmics. We train Panda on a novel synthetic, extensible dataset of 2 times 10^4 chaotic dynamical systems that we discover using an evolutionary algorithm. Trained purely on simulated data, Panda exhibits emergent properties: zero-shot forecasting of unseen real world chaotic systems, and nonlinear resonance patterns in cross-channel attention heads. Despite having been trained only on low-dimensional ordinary differential equations, Panda spontaneously develops the ability to predict partial differential equations without retraining. We demonstrate a neural scaling law for differential equations, underscoring the potential of pretrained models for probing abstract mathematical domains like nonlinear dynamics. 3 authors · May 19
13 BM25S: Orders of magnitude faster lexical search via eager sparse scoring We introduce BM25S, an efficient Python-based implementation of BM25 that only depends on Numpy and Scipy. BM25S achieves up to a 500x speedup compared to the most popular Python-based framework by eagerly computing BM25 scores during indexing and storing them into sparse matrices. It also achieves considerable speedups compared to highly optimized Java-based implementations, which are used by popular commercial products. Finally, BM25S reproduces the exact implementation of five BM25 variants based on Kamphuis et al. (2020) by extending eager scoring to non-sparse variants using a novel score shifting method. The code can be found at https://github.com/xhluca/bm25s 1 authors · Jul 4, 2024 3
- DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation We introduce DS-1000, a code generation benchmark with a thousand data science problems spanning seven Python libraries, such as NumPy and Pandas. Compared to prior works, DS-1000 incorporates three core features. First, our problems reflect diverse, realistic, and practical use cases since we collected them from StackOverflow. Second, our automatic evaluation is highly specific (reliable) -- across all Codex-002-predicted solutions that our evaluation accept, only 1.8% of them are incorrect; we achieve this with multi-criteria metrics, checking both functional correctness by running test cases and surface-form constraints by restricting API usages or keywords. Finally, we proactively defend against memorization by slightly modifying our problems to be different from the original StackOverflow source; consequently, models cannot answer them correctly by memorizing the solutions from pre-training. The current best public system (Codex-002) achieves 43.3% accuracy, leaving ample room for improvement. We release our benchmark at https://ds1000-code-gen.github.io. 10 authors · Nov 18, 2022
- The UCR Time Series Archive The UCR Time Series Archive - introduced in 2002, has become an important resource in the time series data mining community, with at least one thousand published papers making use of at least one data set from the archive. The original incarnation of the archive had sixteen data sets but since that time, it has gone through periodic expansions. The last expansion took place in the summer of 2015 when the archive grew from 45 to 85 data sets. This paper introduces and will focus on the new data expansion from 85 to 128 data sets. Beyond expanding this valuable resource, this paper offers pragmatic advice to anyone who may wish to evaluate a new algorithm on the archive. Finally, this paper makes a novel and yet actionable claim: of the hundreds of papers that show an improvement over the standard baseline (1-nearest neighbor classification), a large fraction may be mis-attributing the reasons for their improvement. Moreover, they may have been able to achieve the same improvement with a much simpler modification, requiring just a single line of code. 8 authors · Oct 17, 2018
- HEAPO -- An Open Dataset for Heat Pump Optimization with Smart Electricity Meter Data and On-Site Inspection Protocols Heat pumps are essential for decarbonizing residential heating but consume substantial electrical energy, impacting operational costs and grid demand. Many systems run inefficiently due to planning flaws, operational faults, or misconfigurations. While optimizing performance requires skilled professionals, labor shortages hinder large-scale interventions. However, digital tools and improved data availability create new service opportunities for energy efficiency, predictive maintenance, and demand-side management. To support research and practical solutions, we present an open-source dataset of electricity consumption from 1,408 households with heat pumps and smart electricity meters in the canton of Zurich, Switzerland, recorded at 15-minute and daily resolutions between 2018-11-03 and 2024-03-21. The dataset includes household metadata, weather data from 8 stations, and ground truth data from 410 field visit protocols collected by energy consultants during system optimizations. Additionally, the dataset includes a Python-based data loader to facilitate seamless data processing and exploration. 4 authors · Mar 21
- Monash University, UEA, UCR Time Series Extrinsic Regression Archive Time series research has gathered lots of interests in the last decade, especially for Time Series Classification (TSC) and Time Series Forecasting (TSF). Research in TSC has greatly benefited from the University of California Riverside and University of East Anglia (UCR/UEA) Time Series Archives. On the other hand, the advancement in Time Series Forecasting relies on time series forecasting competitions such as the Makridakis competitions, NN3 and NN5 Neural Network competitions, and a few Kaggle competitions. Each year, thousands of papers proposing new algorithms for TSC and TSF have utilized these benchmarking archives. These algorithms are designed for these specific problems, but may not be useful for tasks such as predicting the heart rate of a person using photoplethysmogram (PPG) and accelerometer data. We refer to this problem as Time Series Extrinsic Regression (TSER), where we are interested in a more general methodology of predicting a single continuous value, from univariate or multivariate time series. This prediction can be from the same time series or not directly related to the predictor time series and does not necessarily need to be a future value or depend heavily on recent values. To the best of our knowledge, research into TSER has received much less attention in the time series research community and there are no models developed for general time series extrinsic regression problems. Most models are developed for a specific problem. Therefore, we aim to motivate and support the research into TSER by introducing the first TSER benchmarking archive. This archive contains 19 datasets from different domains, with varying number of dimensions, unequal length dimensions, and missing values. In this paper, we introduce the datasets in this archive and did an initial benchmark on existing models. 4 authors · Jun 19, 2020
- The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes Information Retrieval using dense low-dimensional representations recently became popular and showed out-performance to traditional sparse-representations like BM25. However, no previous work investigated how dense representations perform with large index sizes. We show theoretically and empirically that the performance for dense representations decreases quicker than sparse representations for increasing index sizes. In extreme cases, this can even lead to a tipping point where at a certain index size sparse representations outperform dense representations. We show that this behavior is tightly connected to the number of dimensions of the representations: The lower the dimension, the higher the chance for false positives, i.e. returning irrelevant documents. 2 authors · Dec 28, 2020
- A Systematic Literature Review of Software Engineering Research on Jupyter Notebook Context: Jupyter Notebook has emerged as a versatile tool that transforms how researchers, developers, and data scientists conduct and communicate their work. As the adoption of Jupyter notebooks continues to rise, so does the interest from the software engineering research community in improving the software engineering practices for Jupyter notebooks. Objective: The purpose of this study is to analyze trends, gaps, and methodologies used in software engineering research on Jupyter notebooks. Method: We selected 146 relevant publications from the DBLP Computer Science Bibliography up to the end of 2024, following established systematic literature review guidelines. We explored publication trends, categorized them based on software engineering topics, and reported findings based on those topics. Results: The most popular venues for publishing software engineering research on Jupyter notebooks are related to human-computer interaction instead of traditional software engineering venues. Researchers have addressed a wide range of software engineering topics on notebooks, such as code reuse, readability, and execution environment. Although reusability is one of the research topics for Jupyter notebooks, only 64 of the 146 studies can be reused based on their provided URLs. Additionally, most replication packages are not hosted on permanent repositories for long-term availability and adherence to open science principles. Conclusion: Solutions specific to notebooks for software engineering issues, including testing, refactoring, and documentation, are underexplored. Future research opportunities exist in automatic testing frameworks, refactoring clones between notebooks, and generating group documentation for coherent code cells. 3 authors · Apr 22
- Accelerated Hierarchical Density Clustering We present an accelerated algorithm for hierarchical density based clustering. Our new algorithm improves upon HDBSCAN*, which itself provided a significant qualitative improvement over the popular DBSCAN algorithm. The accelerated HDBSCAN* algorithm provides comparable performance to DBSCAN, while supporting variable density clusters, and eliminating the need for the difficult to tune distance scale parameter. This makes accelerated HDBSCAN* the default choice for density based clustering. Library available at: https://github.com/scikit-learn-contrib/hdbscan 2 authors · May 20, 2017
2 Valentine: Evaluating Matching Techniques for Dataset Discovery Data scientists today search large data lakes to discover and integrate datasets. In order to bring together disparate data sources, dataset discovery methods rely on some form of schema matching: the process of establishing correspondences between datasets. Traditionally, schema matching has been used to find matching pairs of columns between a source and a target schema. However, the use of schema matching in dataset discovery methods differs from its original use. Nowadays schema matching serves as a building block for indicating and ranking inter-dataset relationships. Surprisingly, although a discovery method's success relies highly on the quality of the underlying matching algorithms, the latest discovery methods employ existing schema matching algorithms in an ad-hoc fashion due to the lack of openly-available datasets with ground truth, reference method implementations, and evaluation metrics. In this paper, we aim to rectify the problem of evaluating the effectiveness and efficiency of schema matching methods for the specific needs of dataset discovery. To this end, we propose Valentine, an extensible open-source experiment suite to execute and organize large-scale automated matching experiments on tabular data. Valentine includes implementations of seminal schema matching methods that we either implemented from scratch (due to absence of open source code) or imported from open repositories. The contributions of Valentine are: i) the definition of four schema matching scenarios as encountered in dataset discovery methods, ii) a principled dataset fabrication process tailored to the scope of dataset discovery methods and iii) the most comprehensive evaluation of schema matching techniques to date, offering insight on the strengths and weaknesses of existing techniques, that can serve as a guide for employing schema matching in future dataset discovery methods. 9 authors · Oct 14, 2020
3 panda-gym: Open-source goal-conditioned environments for robotic learning This paper presents panda-gym, a set of Reinforcement Learning (RL) environments for the Franka Emika Panda robot integrated with OpenAI Gym. Five tasks are included: reach, push, slide, pick & place and stack. They all follow a Multi-Goal RL framework, allowing to use goal-oriented RL algorithms. To foster open-research, we chose to use the open-source physics engine PyBullet. The implementation chosen for this package allows to define very easily new tasks or new robots. This paper also presents a baseline of results obtained with state-of-the-art model-free off-policy algorithms. panda-gym is open-source and freely available at https://github.com/qgallouedec/panda-gym. 4 authors · Jun 25, 2021
7 D3: A Massive Dataset of Scholarly Metadata for Analyzing the State of Computer Science Research DBLP is the largest open-access repository of scientific articles on computer science and provides metadata associated with publications, authors, and venues. We retrieved more than 6 million publications from DBLP and extracted pertinent metadata (e.g., abstracts, author affiliations, citations) from the publication texts to create the DBLP Discovery Dataset (D3). D3 can be used to identify trends in research activity, productivity, focus, bias, accessibility, and impact of computer science research. We present an initial analysis focused on the volume of computer science research (e.g., number of papers, authors, research activity), trends in topics of interest, and citation patterns. Our findings show that computer science is a growing research field (approx. 15% annually), with an active and collaborative researcher community. While papers in recent years present more bibliographical entries in comparison to previous decades, the average number of citations has been declining. Investigating papers' abstracts reveals that recent topic trends are clearly reflected in D3. Finally, we list further applications of D3 and pose supplemental research questions. The D3 dataset, our findings, and source code are publicly available for research purposes. 4 authors · Apr 28, 2022
- A Public Image Database for Benchmark of Plant Seedling Classification Algorithms A database of images of approximately 960 unique plants belonging to 12 species at several growth stages is made publicly available. It comprises annotated RGB images with a physical resolution of roughly 10 pixels per mm. To standardise the evaluation of classification results obtained with the database, a benchmark based on f_{1} scores is proposed. The dataset is available at https://vision.eng.au.dk/plant-seedlings-dataset 5 authors · Nov 15, 2017
- Non-Parametric Memory Guidance for Multi-Document Summarization Multi-document summarization (MDS) is a difficult task in Natural Language Processing, aiming to summarize information from several documents. However, the source documents are often insufficient to obtain a qualitative summary. We propose a retriever-guided model combined with non-parametric memory for summary generation. This model retrieves relevant candidates from a database and then generates the summary considering the candidates with a copy mechanism and the source documents. The retriever is implemented with Approximate Nearest Neighbor Search (ANN) to search large databases. Our method is evaluated on the MultiXScience dataset which includes scientific articles. Finally, we discuss our results and possible directions for future work. 2 authors · Nov 14, 2023
- FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility. 2 authors · Apr 19, 2024
2 CASPER: Concept-integrated Sparse Representation for Scientific Retrieval The exponential growth of scientific literature has made it increasingly difficult for researchers to keep up with the literature. In an attempt to alleviate this problem, we propose CASPER, a sparse retrieval model for scientific search that utilizes tokens and keyphrases as representation units (i.e. dimensions in the sparse embedding space), enabling it to represent queries and documents with research concepts and match them at both granular and conceptual levels. To overcome the lack of suitable training data, we propose mining training data by leveraging scholarly references (i.e. signals that capture how research concepts of papers are expressed in different settings), including titles, citation contexts, author-assigned keyphrases, and co-citations. CASPER outperforms strong dense and sparse retrieval baselines on eight scientific retrieval benchmarks. Moreover, we demonstrate that through simple post-processing, CASPER can be effectively used for the keyphrase generation tasks, achieving competitive performance with the established CopyRNN while producing more diverse keyphrases and being nearly four times faster. 4 authors · Aug 18
4 Datasheets for Datasets The machine learning community currently has no standardized process for documenting datasets, which can lead to severe consequences in high-stakes domains. To address this gap, we propose datasheets for datasets. In the electronics industry, every component, no matter how simple or complex, is accompanied with a datasheet that describes its operating characteristics, test results, recommended uses, and other information. By analogy, we propose that every dataset be accompanied with a datasheet that documents its motivation, composition, collection process, recommended uses, and so on. Datasheets for datasets will facilitate better communication between dataset creators and dataset consumers, and encourage the machine learning community to prioritize transparency and accountability. 7 authors · Mar 23, 2018
- ARC Sort: Enhanced and Time Efficient Sorting Algorithm This paper discusses about a sorting algorithm which uses the concept of buckets where each bucket represents a certain number of digits. A two dimensional data structure is used where one dimension represents buckets i. e; number of digits and each bucket's corresponding dimensions represents the input numbers that belong to that bucket. Each bucket is then individually sorted. Since every preceding bucket elements will always be smaller than the succeeding buckets no comparison between them is required. By doing this we can significantly reduced the time complexity of any sorting algorithm used to sort the given set of inputs. 4 authors · Jun 6, 2014
4 MONSTER: Monash Scalable Time Series Evaluation Repository We introduce MONSTER-the MONash Scalable Time Series Evaluation Repository-a collection of large datasets for time series classification. The field of time series classification has benefitted from common benchmarks set by the UCR and UEA time series classification repositories. However, the datasets in these benchmarks are small, with median sizes of 217 and 255 examples, respectively. In consequence they favour a narrow subspace of models that are optimised to achieve low classification error on a wide variety of smaller datasets, that is, models that minimise variance, and give little weight to computational issues such as scalability. Our hope is to diversify the field by introducing benchmarks using larger datasets. We believe that there is enormous potential for new progress in the field by engaging with the theoretical and practical challenges of learning effectively from larger quantities of data. 9 authors · Feb 20 2
1 Applications of Machine Learning to Lattice Quantum Field Theory There is great potential to apply machine learning in the area of numerical lattice quantum field theory, but full exploitation of that potential will require new strategies. In this white paper for the Snowmass community planning process, we discuss the unique requirements of machine learning for lattice quantum field theory research and outline what is needed to enable exploration and deployment of this approach in the future. 11 authors · Feb 10, 2022
- BASKET: A Large-Scale Video Dataset for Fine-Grained Skill Estimation We present BASKET, a large-scale basketball video dataset for fine-grained skill estimation. BASKET contains 4,477 hours of video capturing 32,232 basketball players from all over the world. Compared to prior skill estimation datasets, our dataset includes a massive number of skilled participants with unprecedented diversity in terms of gender, age, skill level, geographical location, etc. BASKET includes 20 fine-grained basketball skills, challenging modern video recognition models to capture the intricate nuances of player skill through in-depth video analysis. Given a long highlight video (8-10 minutes) of a particular player, the model needs to predict the skill level (e.g., excellent, good, average, fair, poor) for each of the 20 basketball skills. Our empirical analysis reveals that the current state-of-the-art video models struggle with this task, significantly lagging behind the human baseline. We believe that BASKET could be a useful resource for developing new video models with advanced long-range, fine-grained recognition capabilities. In addition, we hope that our dataset will be useful for domain-specific applications such as fair basketball scouting, personalized player development, and many others. Dataset and code are available at https://github.com/yulupan00/BASKET. 3 authors · Mar 26
1 Generic Approach to Visualization of Time Series Data Time series is a collection of data instances that are ordered according to a time stamp. Stock prices, temperature, etc are examples of time series data in real life. Time series data are used for forecasting sales, predicting trends. Visualization is the process of visually representing data or the relationship between features of a data either in a two-dimensional plot or a three-dimensional plot. Visualizing the time series data constitutes an important part of the process for working with a time series dataset. Visualizing the data not only helps in the modelling process but it can also be used to identify trends and features that cause those trends. In this work, we take a real-life time series dataset and analyse how the target feature relates to other features of the dataset through visualization. From the work that has been carried out, we present an effective method of visualization for time series data which will be much useful for machine learning modelling with such datasets. 2 authors · Jul 25, 2022
- Cluster Explanation via Polyhedral Descriptions Clustering is an unsupervised learning problem that aims to partition unlabelled data points into groups with similar features. Traditional clustering algorithms provide limited insight into the groups they find as their main focus is accuracy and not the interpretability of the group assignments. This has spurred a recent line of work on explainable machine learning for clustering. In this paper we focus on the cluster description problem where, given a dataset and its partition into clusters, the task is to explain the clusters. We introduce a new approach to explain clusters by constructing polyhedra around each cluster while minimizing either the complexity of the resulting polyhedra or the number of features used in the description. We formulate the cluster description problem as an integer program and present a column generation approach to search over an exponential number of candidate half-spaces that can be used to build the polyhedra. To deal with large datasets, we introduce a novel grouping scheme that first forms smaller groups of data points and then builds the polyhedra around the grouped data, a strategy which out-performs simply sub-sampling data. Compared to state of the art cluster description algorithms, our approach is able to achieve competitive interpretability with improved description accuracy. 2 authors · Oct 17, 2022
1 Manify: A Python Library for Learning Non-Euclidean Representations We present Manify, an open-source Python library for non-Euclidean representation learning. Leveraging manifold learning techniques, Manify provides tools for learning embeddings in (products of) non-Euclidean spaces, performing classification and regression with data that lives in such spaces, and estimating the curvature of a manifold. Manify aims to advance research and applications in machine learning by offering a comprehensive suite of tools for manifold-based data analysis. Our source code, examples, datasets, results, and documentation are available at https://github.com/pchlenski/manify 4 authors · Mar 12 1
- STARD: A Chinese Statute Retrieval Dataset with Real Queries Issued by Non-professionals Statute retrieval aims to find relevant statutory articles for specific queries. This process is the basis of a wide range of legal applications such as legal advice, automated judicial decisions, legal document drafting, etc. Existing statute retrieval benchmarks focus on formal and professional queries from sources like bar exams and legal case documents, thereby neglecting non-professional queries from the general public, which often lack precise legal terminology and references. To address this gap, we introduce the STAtute Retrieval Dataset (STARD), a Chinese dataset comprising 1,543 query cases collected from real-world legal consultations and 55,348 candidate statutory articles. Unlike existing statute retrieval datasets, which primarily focus on professional legal queries, STARD captures the complexity and diversity of real queries from the general public. Through a comprehensive evaluation of various retrieval baselines, we reveal that existing retrieval approaches all fall short of these real queries issued by non-professional users. The best method only achieves a Recall@100 of 0.907, suggesting the necessity for further exploration and additional research in this area. All the codes and datasets are available at: https://github.com/oneal2000/STARD/tree/main 9 authors · Jun 21, 2024
2 Large Language Models(LLMs) on Tabular Data: Prediction, Generation, and Understanding -- A Survey Recent breakthroughs in large language modeling have facilitated rigorous exploration of their application in diverse tasks related to tabular data modeling, such as prediction, tabular data synthesis, question answering, and table understanding. Each task presents unique challenges and opportunities. However, there is currently a lack of comprehensive review that summarizes and compares the key techniques, metrics, datasets, models, and optimization approaches in this research domain. This survey aims to address this gap by consolidating recent progress in these areas, offering a thorough survey and taxonomy of the datasets, metrics, and methodologies utilized. It identifies strengths, limitations, unexplored territories, and gaps in the existing literature, while providing some insights for future research directions in this vital and rapidly evolving field. It also provides relevant code and datasets references. Through this comprehensive review, we hope to provide interested readers with pertinent references and insightful perspectives, empowering them with the necessary tools and knowledge to effectively navigate and address the prevailing challenges in the field. 10 authors · Feb 27, 2024
- Similarità per la ricerca del dominio di una frase English. This document aims to study the best algorithms to verify the belonging of a specific document to a related domain by comparing different methods for calculating the distance between two vectors. This study has been made possible with the help of the structures made available by the Apache Spark framework. Starting from the study illustrated in the publication "New frontier of textual classification: Big data and distributed calculus" by Massimiliano Morrelli et al., We wanted to carry out a study on the possible implementation of a solution capable of calculating the Similarity of a sentence using the distributed environment. Italiano. Il presente documento persegue l'obiettivo di studiare gli algoritmi migliori per verificare l'appartenenza di un determinato documento a un relativo dominio tramite un confronto di diversi metodi per il calcolo della distanza fra due vettori. Tale studio \`e stato condotto con l'ausilio delle strutture messe a disposizione dal framework Apache Spark. Partendo dallo studio illustrato nella pubblicazione "Nuova frontiera della classificazione testuale: Big data e calcolo distribuito" di Massimiliano Morrelli et al., si \`e voluto realizzare uno studio sulla possibile implementazione di una soluzione in grado di calcolare la Similarit\`a di una frase sfruttando l'ambiente distribuito. 4 authors · Jan 31, 2020
- Accurate Stock Price Forecasting Using Robust and Optimized Deep Learning Models Designing robust frameworks for precise prediction of future prices of stocks has always been considered a very challenging research problem. The advocates of the classical efficient market hypothesis affirm that it is impossible to accurately predict the future prices in an efficiently operating market due to the stochastic nature of the stock price variables. However, numerous propositions exist in the literature with varying degrees of sophistication and complexity that illustrate how algorithms and models can be designed for making efficient, accurate, and robust predictions of stock prices. We present a gamut of ten deep learning models of regression for precise and robust prediction of the future prices of the stock of a critical company in the auto sector of India. Using a very granular stock price collected at 5 minutes intervals, we train the models based on the records from 31st Dec, 2012 to 27th Dec, 2013. The testing of the models is done using records from 30th Dec, 2013 to 9th Jan 2015. We explain the design principles of the models and analyze the results of their performance based on accuracy in forecasting and speed of execution. 2 authors · Mar 28, 2021
- A Time Series Analysis-Based Stock Price Prediction Using Machine Learning and Deep Learning Models Prediction of future movement of stock prices has always been a challenging task for the researchers. While the advocates of the efficient market hypothesis (EMH) believe that it is impossible to design any predictive framework that can accurately predict the movement of stock prices, there are seminal work in the literature that have clearly demonstrated that the seemingly random movement patterns in the time series of a stock price can be predicted with a high level of accuracy. Design of such predictive models requires choice of appropriate variables, right transformation methods of the variables, and tuning of the parameters of the models. In this work, we present a very robust and accurate framework of stock price prediction that consists of an agglomeration of statistical, machine learning and deep learning models. We use the daily stock price data, collected at five minutes interval of time, of a very well known company that is listed in the National Stock Exchange (NSE) of India. The granular data is aggregated into three slots in a day, and the aggregated data is used for building and training the forecasting models. We contend that the agglomerative approach of model building that uses a combination of statistical, machine learning, and deep learning approaches, can very effectively learn from the volatile and random movement patterns in a stock price data. We build eight classification and eight regression models based on statistical and machine learning approaches. In addition to these models, a deep learning regression model using a long-and-short-term memory (LSTM) network is also built. Extensive results have been presented on the performance of these models, and the results are critically analyzed. 2 authors · Apr 17, 2020
- Prototype-based Dataset Comparison Dataset summarisation is a fruitful approach to dataset inspection. However, when applied to a single dataset the discovery of visual concepts is restricted to those most prominent. We argue that a comparative approach can expand upon this paradigm to enable richer forms of dataset inspection that go beyond the most prominent concepts. To enable dataset comparison we present a module that learns concept-level prototypes across datasets. We leverage self-supervised learning to discover these prototypes without supervision, and we demonstrate the benefits of our approach in two case-studies. Our findings show that dataset comparison extends dataset inspection and we hope to encourage more works in this direction. Code and usage instructions available at https://github.com/Nanne/ProtoSim 1 authors · Sep 5, 2023
- A Large-Scale Dataset of Search Interests Related to Disease X Originating from Different Geographic Regions The World Health Organization added Disease X to their shortlist of blueprint priority diseases to represent a hypothetical, unknown pathogen that could cause a future epidemic. During different virus outbreaks of the past, such as COVID-19, Influenza, Lyme Disease, and Zika virus, researchers from various disciplines utilized Google Trends to mine multimodal components of web behavior to study, investigate, and analyze the global awareness, preparedness, and response associated with these respective virus outbreaks. As the world prepares for Disease X, a dataset on web behavior related to Disease X would be crucial to contribute towards the timely advancement of research in this field. Furthermore, none of the prior works in this field have focused on the development of a dataset to compile relevant web behavior data, which would help to prepare for Disease X. To address these research challenges, this work presents a dataset of web behavior related to Disease X, which emerged from different geographic regions of the world, between February 2018 and August 2023. Specifically, this dataset presents the search interests related to Disease X from 94 geographic regions. The dataset was developed by collecting data using Google Trends. The relevant search interests for all these regions for each month in this time range are available in this dataset. This paper also discusses the compliance of this dataset with the FAIR principles of scientific data management. Finally, an analysis of this dataset is presented to uphold the applicability, relevance, and usefulness of this dataset for the investigation of different research questions in the interrelated fields of Big Data, Data Mining, Healthcare, Epidemiology, and Data Analysis with a specific focus on Disease X. 5 authors · Dec 19, 2023
- A Real-World Energy Management Dataset from a Smart Company Building for Optimization and Machine Learning We present a large real-world dataset obtained from monitoring a smart company facility over the course of six years, from 2018 to 2023. The dataset includes energy consumption data from various facility areas and components, energy production data from a photovoltaic system and a combined heat and power plant, operational data from heating and cooling systems, and weather data from an on-site weather station. The measurement sensors installed throughout the facility are organized in a hierarchical metering structure with multiple sub-metering levels, which is reflected in the dataset. The dataset contains measurement data from 72 energy meters, 9 heat meters and a weather station. Both raw and processed data at different processing levels, including labeled issues, is available. In this paper, we describe the data acquisition and post-processing employed to create the dataset. The dataset enables the application of a wide range of methods in the domain of energy management, including optimization, modeling, and machine learning to optimize building operations and reduce costs and carbon emissions. 12 authors · Mar 14
- What country, university or research institute, performed the best on COVID-19? Bibliometric analysis of scientific literature In this article, we conduct data mining to discover the countries, universities and companies, produced or collaborated the most research on Covid-19 since the pandemic started. We present some interesting findings, but despite analysing all available records on COVID-19 from the Web of Science Core Collection, we failed to reach any significant conclusions on how the world responded to the COVID-19 pandemic. Therefore, we increased our analysis to include all available data records on pandemics and epidemics from 1900 to 2020. We discover some interesting results on countries, universities and companies, that produced collaborated most the most in research on pandemic and epidemics. Then we compared the results with the analysing on COVID-19 data records. This has created some interesting findings that are explained and graphically visualised in the article. 6 authors · May 19, 2020
1 PyTorch Frame: A Modular Framework for Multi-Modal Tabular Learning We present PyTorch Frame, a PyTorch-based framework for deep learning over multi-modal tabular data. PyTorch Frame makes tabular deep learning easy by providing a PyTorch-based data structure to handle complex tabular data, introducing a model abstraction to enable modular implementation of tabular models, and allowing external foundation models to be incorporated to handle complex columns (e.g., LLMs for text columns). We demonstrate the usefulness of PyTorch Frame by implementing diverse tabular models in a modular way, successfully applying these models to complex multi-modal tabular data, and integrating our framework with PyTorch Geometric, a PyTorch library for Graph Neural Networks (GNNs), to perform end-to-end learning over relational databases. 8 authors · Mar 31, 2024 1
- FineFreq: A Multilingual Character Frequency Dataset from Web-Scale Text We present FineFreq, a large-scale multilingual character frequency dataset derived from the FineWeb and FineWeb2 corpora, covering over 1900 languages and spanning 2013-2025. The dataset contains frequency counts for 96 trillion characters processed from 57 TB of compressed text. For each language, FineFreq provides per-character statistics with aggregate and year-level frequencies, allowing fine-grained temporal analysis. The dataset preserves naturally occurring multilingual features such as cross-script borrowings, emoji, and acronyms without applying artificial filtering. Each character entry includes Unicode metadata (category, script, block), enabling domain-specific or other downstream filtering and analysis. The full dataset is released in both CSV and Parquet formats, with associated metadata, available on GitHub and HuggingFace. https://github.com/Bin-2/FineFreq 1 authors · Dec 10
2 TACT: Advancing Complex Aggregative Reasoning with Information Extraction Tools Large Language Models (LLMs) often do not perform well on queries that require the aggregation of information across texts. To better evaluate this setting and facilitate modeling efforts, we introduce TACT - Text And Calculations through Tables, a dataset crafted to evaluate LLMs' reasoning and computational abilities using complex instructions. TACT contains challenging instructions that demand stitching information scattered across one or more texts, and performing complex integration on this information to generate the answer. We construct this dataset by leveraging an existing dataset of texts and their associated tables. For each such tables, we formulate new queries, and gather their respective answers. We demonstrate that all contemporary LLMs perform poorly on this dataset, achieving an accuracy below 38\%. To pinpoint the difficulties and thoroughly dissect the problem, we analyze model performance across three components: table-generation, Pandas command-generation, and execution. Unexpectedly, we discover that each component presents substantial challenges for current LLMs. These insights lead us to propose a focused modeling framework, which we refer to as IE as a tool. Specifically, we propose to add "tools" for each of the above steps, and implement each such tool with few-shot prompting. This approach shows an improvement over existing prompting techniques, offering a promising direction for enhancing model capabilities in these tasks. 8 authors · Jun 5, 2024
- Multi-Vector Models with Textual Guidance for Fine-Grained Scientific Document Similarity We present a new scientific document similarity model based on matching fine-grained aspects of texts. To train our model, we exploit a naturally-occurring source of supervision: sentences in the full-text of papers that cite multiple papers together (co-citations). Such co-citations not only reflect close paper relatedness, but also provide textual descriptions of how the co-cited papers are related. This novel form of textual supervision is used for learning to match aspects across papers. We develop multi-vector representations where vectors correspond to sentence-level aspects of documents, and present two methods for aspect matching: (1) A fast method that only matches single aspects, and (2) a method that makes sparse multiple matches with an Optimal Transport mechanism that computes an Earth Mover's Distance between aspects. Our approach improves performance on document similarity tasks in four datasets. Further, our fast single-match method achieves competitive results, paving the way for applying fine-grained similarity to large scientific corpora. Code, data, and models available at: https://github.com/allenai/aspire 3 authors · Nov 16, 2021
1 Foundations of Vector Retrieval Vectors are universal mathematical objects that can represent text, images, speech, or a mix of these data modalities. That happens regardless of whether data is represented by hand-crafted features or learnt embeddings. Collect a large enough quantity of such vectors and the question of retrieval becomes urgently relevant: Finding vectors that are more similar to a query vector. This monograph is concerned with the question above and covers fundamental concepts along with advanced data structures and algorithms for vector retrieval. In doing so, it recaps this fascinating topic and lowers barriers of entry into this rich area of research. 1 authors · Jan 17, 2024
- Sketch2FullStack: Generating Skeleton Code of Full Stack Website and Application from Sketch using Deep Learning and Computer Vision For a full-stack web or app development, it requires a software firm or more specifically a team of experienced developers to contribute a large portion of their time and resources to design the website and then convert it to code. As a result, the efficiency of the development team is significantly reduced when it comes to converting UI wireframes and database schemas into an actual working system. It would save valuable resources and fasten the overall workflow if the clients or developers can automate this process of converting the pre-made full-stack website design to get a partially working if not fully working code. In this paper, we present a novel approach of generating the skeleton code from sketched images using Deep Learning and Computer Vision approaches. The dataset for training are first-hand sketched images of low fidelity wireframes, database schemas and class diagrams. The approach consists of three parts. First, the front-end or UI elements detection and extraction from custom-made UI wireframes. Second, individual database table creation from schema designs and lastly, creating a class file from class diagrams. 5 authors · Nov 26, 2022
- M2DS: Multilingual Dataset for Multi-document Summarisation In the rapidly evolving digital era, there is an increasing demand for concise information as individuals seek to distil key insights from various sources. Recent attention from researchers on Multi-document Summarisation (MDS) has resulted in diverse datasets covering customer reviews, academic papers, medical and legal documents, and news articles. However, the English-centric nature of these datasets has created a conspicuous void for multilingual datasets in today's globalised digital landscape, where linguistic diversity is celebrated. Media platforms such as British Broadcasting Corporation (BBC) have disseminated news in 20+ languages for decades. With only 380 million people speaking English natively as their first language, accounting for less than 5% of the global population, the vast majority primarily relies on other languages. These facts underscore the need for inclusivity in MDS research, utilising resources from diverse languages. Recognising this gap, we present the Multilingual Dataset for Multi-document Summarisation (M2DS), which, to the best of our knowledge, is the first dataset of its kind. It includes document-summary pairs in five languages from BBC articles published during the 2010-2023 period. This paper introduces M2DS, emphasising its unique multilingual aspect, and includes baseline scores from state-of-the-art MDS models evaluated on our dataset. 3 authors · Jul 17, 2024
- Metallicity and α-abundance for 48 million stars in low-extinction regions in the Milky Way We estimate ([M/H], [alpha/M]) for 48 million giants and dwarfs in low-dust extinction regions from the Gaia DR3 XP spectra by using tree-based machine-learning models trained on APOGEE DR17 and metal-poor star sample from Li et al. The root mean square error of our estimation is 0.0890 dex for [M/H] and 0.0436 dex for [alpha/M], when we evaluate our models on the test data that are not used in training the models. Because the training data is dominated by giants, our estimation is most reliable for giants. The high-[alpha/M] stars and low-[alpha/M] stars selected by our ([M/H], [alpha/M]) show different kinematical properties for giants and low-temperature dwarfs. We further investigate how our machine-learning models extract information on ([M/H], [alpha/M]). Intriguingly, we find that our models seem to extract information on [alpha/M] from Na D lines (589 nm) and Mg I line (516 nm). This result is understandable given the observed correlation between Na and Mg abundances in the literature. The catalog of ([M/H], [alpha/M]) as well as their associated uncertainties are publicly available online. 1 authors · Apr 1, 2024
2 Tabular Transformers for Modeling Multivariate Time Series Tabular datasets are ubiquitous in data science applications. Given their importance, it seems natural to apply state-of-the-art deep learning algorithms in order to fully unlock their potential. Here we propose neural network models that represent tabular time series that can optionally leverage their hierarchical structure. This results in two architectures for tabular time series: one for learning representations that is analogous to BERT and can be pre-trained end-to-end and used in downstream tasks, and one that is akin to GPT and can be used for generation of realistic synthetic tabular sequences. We demonstrate our models on two datasets: a synthetic credit card transaction dataset, where the learned representations are used for fraud detection and synthetic data generation, and on a real pollution dataset, where the learned encodings are used to predict atmospheric pollutant concentrations. Code and data are available at https://github.com/IBM/TabFormer. 9 authors · Nov 3, 2020
1 Design and Analysis of Robust Deep Learning Models for Stock Price Prediction Building predictive models for robust and accurate prediction of stock prices and stock price movement is a challenging research problem to solve. The well-known efficient market hypothesis believes in the impossibility of accurate prediction of future stock prices in an efficient stock market as the stock prices are assumed to be purely stochastic. However, numerous works proposed by researchers have demonstrated that it is possible to predict future stock prices with a high level of precision using sophisticated algorithms, model architectures, and the selection of appropriate variables in the models. This chapter proposes a collection of predictive regression models built on deep learning architecture for robust and precise prediction of the future prices of a stock listed in the diversified sectors in the National Stock Exchange (NSE) of India. The Metastock tool is used to download the historical stock prices over a period of two years (2013- 2014) at 5 minutes intervals. While the records for the first year are used to train the models, the testing is carried out using the remaining records. The design approaches of all the models and their performance results are presented in detail. The models are also compared based on their execution time and accuracy of prediction. 2 authors · Jun 17, 2021
- PyThaiNLP: Thai Natural Language Processing in Python We present PyThaiNLP, a free and open-source natural language processing (NLP) library for Thai language implemented in Python. It provides a wide range of software, models, and datasets for Thai language. We first provide a brief historical context of tools for Thai language prior to the development of PyThaiNLP. We then outline the functionalities it provided as well as datasets and pre-trained language models. We later summarize its development milestones and discuss our experience during its development. We conclude by demonstrating how industrial and research communities utilize PyThaiNLP in their work. The library is freely available at https://github.com/pythainlp/pythainlp. 9 authors · Dec 7, 2023
- HAConvGNN: Hierarchical Attention Based Convolutional Graph Neural Network for Code Documentation Generation in Jupyter Notebooks Jupyter notebook allows data scientists to write machine learning code together with its documentation in cells. In this paper, we propose a new task of code documentation generation (CDG) for computational notebooks. In contrast to the previous CDG tasks which focus on generating documentation for single code snippets, in a computational notebook, one documentation in a markdown cell often corresponds to multiple code cells, and these code cells have an inherent structure. We proposed a new model (HAConvGNN) that uses a hierarchical attention mechanism to consider the relevant code cells and the relevant code tokens information when generating the documentation. Tested on a new corpus constructed from well-documented Kaggle notebooks, we show that our model outperforms other baseline models. 5 authors · Mar 31, 2021
- Alchemy: A Quantum Chemistry Dataset for Benchmarking AI Models We introduce a new molecular dataset, named Alchemy, for developing machine learning models useful in chemistry and material science. As of June 20th 2019, the dataset comprises of 12 quantum mechanical properties of 119,487 organic molecules with up to 14 heavy atoms, sampled from the GDB MedChem database. The Alchemy dataset expands the volume and diversity of existing molecular datasets. Our extensive benchmarks of the state-of-the-art graph neural network models on Alchemy clearly manifest the usefulness of new data in validating and developing machine learning models for chemistry and material science. We further launch a contest to attract attentions from researchers in the related fields. More details can be found on the contest website https://alchemy.tencent.com. At the time of benchamrking experiment, we have generated 119,487 molecules in our Alchemy dataset. More molecular samples are generated since then. Hence, we provide a list of molecules used in the reported benchmarks. 12 authors · Jun 22, 2019
- Race and ethnicity data for first, middle, and last names We provide the largest compiled publicly available dictionaries of first, middle, and last names for the purpose of imputing race and ethnicity using, for example, Bayesian Improved Surname Geocoding (BISG). The dictionaries are based on the voter files of six Southern states that collect self-reported racial data upon voter registration. Our data cover a much larger scope of names than any comparable dataset, containing roughly one million first names, 1.1 million middle names, and 1.4 million surnames. Individuals are categorized into five mutually exclusive racial and ethnic groups -- White, Black, Hispanic, Asian, and Other -- and racial/ethnic counts by name are provided for every name in each dictionary. Counts can then be normalized row-wise or column-wise to obtain conditional probabilities of race given name or name given race. These conditional probabilities can then be deployed for imputation in a data analytic task for which ground truth racial and ethnic data is not available. 3 authors · Aug 26, 2022
1 Building astroBERT, a language model for Astronomy & Astrophysics The existing search tools for exploring the NASA Astrophysics Data System (ADS) can be quite rich and empowering (e.g., similar and trending operators), but researchers are not yet allowed to fully leverage semantic search. For example, a query for "results from the Planck mission" should be able to distinguish between all the various meanings of Planck (person, mission, constant, institutions and more) without further clarification from the user. At ADS, we are applying modern machine learning and natural language processing techniques to our dataset of recent astronomy publications to train astroBERT, a deeply contextual language model based on research at Google. Using astroBERT, we aim to enrich the ADS dataset and improve its discoverability, and in particular we are developing our own named entity recognition tool. We present here our preliminary results and lessons learned. 17 authors · Dec 1, 2021
- Word and Document Embeddings based on Neural Network Approaches Data representation is a fundamental task in machine learning. The representation of data affects the performance of the whole machine learning system. In a long history, the representation of data is done by feature engineering, and researchers aim at designing better features for specific tasks. Recently, the rapid development of deep learning and representation learning has brought new inspiration to various domains. In natural language processing, the most widely used feature representation is the Bag-of-Words model. This model has the data sparsity problem and cannot keep the word order information. Other features such as part-of-speech tagging or more complex syntax features can only fit for specific tasks in most cases. This thesis focuses on word representation and document representation. We compare the existing systems and present our new model. First, for generating word embeddings, we make comprehensive comparisons among existing word embedding models. In terms of theory, we figure out the relationship between the two most important models, i.e., Skip-gram and GloVe. In our experiments, we analyze three key points in generating word embeddings, including the model construction, the training corpus and parameter design. We evaluate word embeddings with three types of tasks, and we argue that they cover the existing use of word embeddings. Through theory and practical experiments, we present some guidelines for how to generate a good word embedding. Second, in Chinese character or word representation. We introduce the joint training of Chinese character and word. ... Third, for document representation, we analyze the existing document representation models, including recursive NNs, recurrent NNs and convolutional NNs. We point out the drawbacks of these models and present our new model, the recurrent convolutional neural networks. ... 1 authors · Nov 17, 2016
- Generative Models for Synthetic Data: Transforming Data Mining in the GenAI Era Generative models such as Large Language Models, Diffusion Models, and generative adversarial networks have recently revolutionized the creation of synthetic data, offering scalable solutions to data scarcity, privacy, and annotation challenges in data mining. This tutorial introduces the foundations and latest advances in synthetic data generation, covers key methodologies and practical frameworks, and discusses evaluation strategies and applications. Attendees will gain actionable insights into leveraging generative synthetic data to enhance data mining research and practice. More information can be found on our website: https://syndata4dm.github.io/. 6 authors · Aug 27
2 Theano: A Python framework for fast computation of mathematical expressions Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it. 113 authors · May 9, 2016
12 The Multimodal Universe: Enabling Large-Scale Machine Learning with 100TB of Astronomical Scientific Data We present the MULTIMODAL UNIVERSE, a large-scale multimodal dataset of scientific astronomical data, compiled specifically to facilitate machine learning research. Overall, the MULTIMODAL UNIVERSE contains hundreds of millions of astronomical observations, constituting 100\,TB of multi-channel and hyper-spectral images, spectra, multivariate time series, as well as a wide variety of associated scientific measurements and "metadata". In addition, we include a range of benchmark tasks representative of standard practices for machine learning methods in astrophysics. This massive dataset will enable the development of large multi-modal models specifically targeted towards scientific applications. All codes used to compile the MULTIMODAL UNIVERSE and a description of how to access the data is available at https://github.com/MultimodalUniverse/MultimodalUniverse 29 authors · Dec 3, 2024
- 3DLNews: A Three-decade Dataset of US Local News Articles We present 3DLNews, a novel dataset with local news articles from the United States spanning the period from 1996 to 2024. It contains almost 1 million URLs (with HTML text) from over 14,000 local newspapers, TV, and radio stations across all 50 states, and provides a broad snapshot of the US local news landscape. The dataset was collected by scraping Google and Twitter search results. We employed a multi-step filtering process to remove non-news article links and enriched the dataset with metadata such as the names and geo-coordinates of the source news media organizations, article publication dates, etc. Furthermore, we demonstrated the utility of 3DLNews by outlining four applications. 2 authors · Aug 8, 2024
- Parsed Categoric Encodings with Automunge The Automunge open source python library platform for tabular data pre-processing automates feature engineering data transformations of numerical encoding and missing data infill to received tidy data on bases fit to properties of columns in a designated train set for consistent and efficient application to subsequent data pipelines such as for inference, where transformations may be applied to distinct columns in "family tree" sets with generations and branches of derivations. Included in the library of transformations are methods to extract structure from bounded categorical string sets by way of automated string parsing, in which comparisons between entries in the set of unique values are parsed to identify character subset overlaps which may be encoded by appended columns of boolean overlap detection activations or by replacing string entries with identified overlap partitions. Further string parsing options, which may also be applied to unbounded categoric sets, include extraction of numeric substring partitions from entries or search functions to identify presence of specified substring partitions. The aggregation of these methods into "family tree" sets of transformations are demonstrated for use to automatically extract structure from categoric string compositions in relation to the set of entries in a column, such as may be applied to prepare categoric string set encodings for machine learning without human intervention. 1 authors · Feb 18, 2022
- The 2021 Tokyo Olympics Multilingual News Article Dataset In this paper, we introduce a dataset of multilingual news articles covering the 2021 Tokyo Olympics. A total of 10,940 news articles were gathered from 1,918 different publishers, covering 1,350 sub-events of the 2021 Olympics, and published between July 1, 2021, and August 14, 2021. These articles are written in nine languages from different language families and in different scripts. To create the dataset, the raw news articles were first retrieved via a service that collects and analyzes news articles. Then, the articles were grouped using an online clustering algorithm, with each group containing articles reporting on the same sub-event. Finally, the groups were manually annotated and evaluated. The development of this dataset aims to provide a resource for evaluating the performance of multilingual news clustering algorithms, for which limited datasets are available. It can also be used to analyze the dynamics and events of the 2021 Tokyo Olympics from different perspectives. The dataset is available in CSV format and can be accessed from the CLARIN.SI repository. 4 authors · Feb 10
- The ITU Faroese Pairs Dataset This article documents a dataset of sentence pairs between Faroese and Danish, produced at ITU Copenhagen. The data covers tranlsation from both source languages, and is intended for use as training data for machine translation systems in this language pair. 3 authors · Jun 17, 2022
- HYTREL: Hypergraph-enhanced Tabular Data Representation Learning Language models pretrained on large collections of tabular data have demonstrated their effectiveness in several downstream tasks. However, many of these models do not take into account the row/column permutation invariances, hierarchical structure, etc. that exist in tabular data. To alleviate these limitations, we propose HYTREL, a tabular language model, that captures the permutation invariances and three more structural properties of tabular data by using hypergraphs - where the table cells make up the nodes and the cells occurring jointly together in each row, column, and the entire table are used to form three different types of hyperedges. We show that HYTREL is maximally invariant under certain conditions for tabular data, i.e., two tables obtain the same representations via HYTREL iff the two tables are identical up to permutations. Our empirical results demonstrate that HYTREL consistently outperforms other competitive baselines on four downstream tasks with minimal pretraining, illustrating the advantages of incorporating the inductive biases associated with tabular data into the representations. Finally, our qualitative analyses showcase that HYTREL can assimilate the table structures to generate robust representations for the cells, rows, columns, and the entire table. 7 authors · Jul 14, 2023
- Technical Report on the CleverHans v2.1.0 Adversarial Examples Library CleverHans is a software library that provides standardized reference implementations of adversarial example construction techniques and adversarial training. The library may be used to develop more robust machine learning models and to provide standardized benchmarks of models' performance in the adversarial setting. Benchmarks constructed without a standardized implementation of adversarial example construction are not comparable to each other, because a good result may indicate a robust model or it may merely indicate a weak implementation of the adversarial example construction procedure. This technical report is structured as follows. Section 1 provides an overview of adversarial examples in machine learning and of the CleverHans software. Section 2 presents the core functionalities of the library: namely the attacks based on adversarial examples and defenses to improve the robustness of machine learning models to these attacks. Section 3 describes how to report benchmark results using the library. Section 4 describes the versioning system. 26 authors · Oct 3, 2016
- Functional Map of the World We present a new dataset, Functional Map of the World (fMoW), which aims to inspire the development of machine learning models capable of predicting the functional purpose of buildings and land use from temporal sequences of satellite images and a rich set of metadata features. The metadata provided with each image enables reasoning about location, time, sun angles, physical sizes, and other features when making predictions about objects in the image. Our dataset consists of over 1 million images from over 200 countries. For each image, we provide at least one bounding box annotation containing one of 63 categories, including a "false detection" category. We present an analysis of the dataset along with baseline approaches that reason about metadata and temporal views. Our data, code, and pretrained models have been made publicly available. 4 authors · Nov 21, 2017
- Monash Time Series Forecasting Archive Many businesses and industries nowadays rely on large quantities of time series data making time series forecasting an important research area. Global forecasting models that are trained across sets of time series have shown a huge potential in providing accurate forecasts compared with the traditional univariate forecasting models that work on isolated series. However, there are currently no comprehensive time series archives for forecasting that contain datasets of time series from similar sources available for the research community to evaluate the performance of new global forecasting algorithms over a wide variety of datasets. In this paper, we present such a comprehensive time series forecasting archive containing 20 publicly available time series datasets from varied domains, with different characteristics in terms of frequency, series lengths, and inclusion of missing values. We also characterise the datasets, and identify similarities and differences among them, by conducting a feature analysis. Furthermore, we present the performance of a set of standard baseline forecasting methods over all datasets across eight error metrics, for the benefit of researchers using the archive to benchmark their forecasting algorithms. 5 authors · May 14, 2021
- DataFinder: Scientific Dataset Recommendation from Natural Language Descriptions Modern machine learning relies on datasets to develop and validate research ideas. Given the growth of publicly available data, finding the right dataset to use is increasingly difficult. Any research question imposes explicit and implicit constraints on how well a given dataset will enable researchers to answer this question, such as dataset size, modality, and domain. We operationalize the task of recommending datasets given a short natural language description of a research idea, to help people find relevant datasets for their needs. Dataset recommendation poses unique challenges as an information retrieval problem; datasets are hard to directly index for search and there are no corpora readily available for this task. To facilitate this task, we build the DataFinder Dataset which consists of a larger automatically-constructed training set (17.5K queries) and a smaller expert-annotated evaluation set (392 queries). Using this data, we compare various information retrieval algorithms on our test set and present a superior bi-encoder retriever for text-based dataset recommendation. This system, trained on the DataFinder Dataset, finds more relevant search results than existing third-party dataset search engines. To encourage progress on dataset recommendation, we release our dataset and models to the public. 5 authors · May 26, 2023
1 Towards Foundation Time Series Model: To Synthesize Or Not To Synthesize? The industry is rich in cases when we are required to make forecasting for large amounts of time series at once. However, we might be in a situation where we can not afford to train a separate model for each of them. Such issue in time series modeling remains without due attention. The remedy for this setting is the establishment of a foundation model. Such a model is expected to work in zero-shot and few-shot regimes. However, what should we take as a training dataset for such kind of model? Witnessing the benefits from the enrichment of NLP datasets with artificially-generated data, we might want to adopt their experience for time series. In contrast to natural language, the process of generation of synthetic time series data is even more favorable because it provides full control of series patterns, time horizons, and number of samples. In this work, we consider the essential question if it is advantageous to train a foundation model on synthetic data or it is better to utilize only a limited number of real-life examples. Our experiments are conducted only for regular time series and speak in favor of leveraging solely the real time series. Moreover, the choice of the proper source dataset strongly influences the performance during inference. When provided access even to a limited quantity of short time series data, employing it within a supervised framework yields more favorable results than training on a larger volume of synthetic data. The code for our experiments is publicly available on Github https://github.com/sb-ai-lab/synthesize_or_not. 5 authors · Mar 4, 2024
2 Towards Foundation Models for Relational Databases [Vision Paper] Tabular representation learning has recently gained a lot of attention. However, existing approaches only learn a representation from a single table, and thus ignore the potential to learn from the full structure of relational databases, including neighboring tables that can contain important information for a contextualized representation. Moreover, current models are significantly limited in scale, which prevents that they learn from large databases. In this paper, we thus introduce our vision of relational representation learning, that can not only learn from the full relational structure, but also can scale to larger database sizes that are commonly found in real-world. Moreover, we also discuss opportunities and challenges we see along the way to enable this vision and present initial very promising results. Overall, we argue that this direction can lead to foundation models for relational databases that are today only available for text and images. 3 authors · May 24, 2023
- Extending the Pre-Training of BLOOM for Improved Support of Traditional Chinese: Models, Methods and Results In this paper we present the multilingual language model BLOOM-zh that features enhanced support for Traditional Chinese. BLOOM-zh has its origins in the open-source BLOOM models presented by BigScience in 2022. Starting from released models, we extended the pre-training of BLOOM by additional 7.4 billion tokens in Traditional Chinese and English covering a variety of domains such as news articles, books, encyclopedias, educational materials as well as spoken language. In order to show the properties of BLOOM-zh, both existing and newly created benchmark scenarios are used for evaluating the performance. BLOOM-zh outperforms its predecessor on most Traditional Chinese benchmarks while maintaining its English capability. We release all our models to the research community. 9 authors · Mar 8, 2023
- A Few Brief Notes on DeepImpact, COIL, and a Conceptual Framework for Information Retrieval Techniques Recent developments in representational learning for information retrieval can be organized in a conceptual framework that establishes two pairs of contrasts: sparse vs. dense representations and unsupervised vs. learned representations. Sparse learned representations can further be decomposed into expansion and term weighting components. This framework allows us to understand the relationship between recently proposed techniques such as DPR, ANCE, DeepCT, DeepImpact, and COIL, and furthermore, gaps revealed by our analysis point to "low hanging fruit" in terms of techniques that have yet to be explored. We present a novel technique dubbed "uniCOIL", a simple extension of COIL that achieves to our knowledge the current state-of-the-art in sparse retrieval on the popular MS MARCO passage ranking dataset. Our implementation using the Anserini IR toolkit is built on the Lucene search library and thus fully compatible with standard inverted indexes. 2 authors · Jun 28, 2021
2 Computational reproducibility of Jupyter notebooks from biomedical publications Jupyter notebooks facilitate the bundling of executable code with its documentation and output in one interactive environment, and they represent a popular mechanism to document and share computational workflows. The reproducibility of computational aspects of research is a key component of scientific reproducibility but has not yet been assessed at scale for Jupyter notebooks associated with biomedical publications. We address computational reproducibility at two levels: First, using fully automated workflows, we analyzed the computational reproducibility of Jupyter notebooks related to publications indexed in PubMed Central. We identified such notebooks by mining the articles full text, locating them on GitHub and re-running them in an environment as close to the original as possible. We documented reproduction success and exceptions and explored relationships between notebook reproducibility and variables related to the notebooks or publications. Second, this study represents a reproducibility attempt in and of itself, using essentially the same methodology twice on PubMed Central over two years. Out of 27271 notebooks from 2660 GitHub repositories associated with 3467 articles, 22578 notebooks were written in Python, including 15817 that had their dependencies declared in standard requirement files and that we attempted to re-run automatically. For 10388 of these, all declared dependencies could be installed successfully, and we re-ran them to assess reproducibility. Of these, 1203 notebooks ran through without any errors, including 879 that produced results identical to those reported in the original notebook and 324 for which our results differed from the originally reported ones. Running the other notebooks resulted in exceptions. We zoom in on common problems, highlight trends and discuss potential improvements to Jupyter-related workflows associated with biomedical publications. 2 authors · Aug 10, 2023
3 SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval In neural Information Retrieval (IR), ongoing research is directed towards improving the first retriever in ranking pipelines. Learning dense embeddings to conduct retrieval using efficient approximate nearest neighbors methods has proven to work well. Meanwhile, there has been a growing interest in learning sparse representations for documents and queries, that could inherit from the desirable properties of bag-of-words models such as the exact matching of terms and the efficiency of inverted indexes. Introduced recently, the SPLADE model provides highly sparse representations and competitive results with respect to state-of-the-art dense and sparse approaches. In this paper, we build on SPLADE and propose several significant improvements in terms of effectiveness and/or efficiency. More specifically, we modify the pooling mechanism, benchmark a model solely based on document expansion, and introduce models trained with distillation. We also report results on the BEIR benchmark. Overall, SPLADE is considerably improved with more than 9\% gains on NDCG@10 on TREC DL 2019, leading to state-of-the-art results on the BEIR benchmark. 4 authors · Sep 21, 2021
2 Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain Time series has been left behind in the era of pre-training and transfer learning. While research in the fields of natural language processing and computer vision are enjoying progressively larger datasets to train massive models, the most popular time series datasets consist of only tens of thousands of time steps, limiting our ability to study the effectiveness of pre-training and scaling. Recent studies have also cast doubt on the need for expressive models and scale. To alleviate these issues, we introduce three large-scale time series forecasting datasets from the cloud operations (CloudOps) domain, the largest having billions of observations, enabling further study into pre-training and scaling of time series models. We build the empirical groundwork for studying pre-training and scaling of time series models and pave the way for future research by identifying a promising candidate architecture. We show that it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size. Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method - achieving a 27% reduction in error on the largest dataset. Code and datasets will be released. 4 authors · Oct 8, 2023
- On Generalizations of Some Distance Based Classifiers for HDLSS Data In high dimension, low sample size (HDLSS) settings, classifiers based on Euclidean distances like the nearest neighbor classifier and the average distance classifier perform quite poorly if differences between locations of the underlying populations get masked by scale differences. To rectify this problem, several modifications of these classifiers have been proposed in the literature. However, existing methods are confined to location and scale differences only, and often fail to discriminate among populations differing outside of the first two moments. In this article, we propose some simple transformations of these classifiers resulting into improved performance even when the underlying populations have the same location and scale. We further propose a generalization of these classifiers based on the idea of grouping of variables. The high-dimensional behavior of the proposed classifiers is studied theoretically. Numerical experiments with a variety of simulated examples as well as an extensive analysis of real data sets exhibit advantages of the proposed methods. 4 authors · Feb 8, 2019
- Sigma: A dataset for text-to-code semantic parsing with statistical analysis In the domain of semantic parsing, significant progress has been achieved in Text-to-SQL and question-answering tasks, both of which focus on extracting information from data sources in their native formats. However, the inherent constraints of their formal meaning representations, such as SQL programming language or basic logical forms, hinder their ability to analyze data from various perspectives, such as conducting statistical analyses. To address this limitation and inspire research in this field, we design SIGMA, a new dataset for Text-to-Code semantic parsing with statistical analysis. SIGMA comprises 6000 questions with corresponding Python code labels, spanning across 160 databases. Half of the questions involve query types, which return information in its original format, while the remaining 50% are statistical analysis questions, which perform statistical operations on the data. The Python code labels in our dataset cover 4 types of query types and 40 types of statistical analysis patterns. We evaluated the SIGMA dataset using three different baseline models: LGESQL, SmBoP, and SLSQL. The experimental results show that the LGESQL model with ELECTRA outperforms all other models, achieving 83.37% structure accuracy. In terms of execution accuracy, the SmBoP model, when combined with GraPPa and T5, reaches 76.38%. 5 authors · Apr 5
- Decomposition of Time Series Data to Check Consistency between Fund Style and Actual Fund Composition of Mutual Funds We propose a novel approach for analysis of the composition of an equity mutual fund based on the time series decomposition of the price movements of the individual stocks of the fund. The proposed scheme can be applied to check whether the style proclaimed for a mutual fund actually matches with the fund composition. We have applied our proposed framework on eight well known mutual funds of varying styles in the Indian financial market to check the consistency between their fund style and actual fund composition, and have obtained extensive results from our experiments. A detailed analysis of the results has shown that while in majority of the cases the actual allocations of funds are consistent with the corresponding fund styles, there have been some notable deviations too. 2 authors · May 14, 2017
- Risk forecasting using Long Short-Term Memory Mixture Density Networks This work aims to implement Long Short-Term Memory mixture density networks (LSTM-MDNs) for Value-at-Risk forecasting and compare their performance with established models (historical simulation, CMM, and GARCH) using a defined backtesting procedure. The focus was on the neural network's ability to capture volatility clustering and its real-world applicability. Three architectures were tested: a 2-component mixture density network, a regularized 2-component model (Arimond et al., 2020), and a 3-component mixture model, the latter being tested for the first time in Value-at-Risk forecasting. Backtesting was performed on three stock indices (FTSE 100, S&P 500, EURO STOXX 50) over two distinct two-year periods (2017-2018 as a calm period, 2021-2022 as turbulent). Model performance was assessed through unconditional coverage and independence assumption tests. The neural network's ability to handle volatility clustering was validated via correlation analysis and graphical evaluation. Results show limited success for the neural network approach. LSTM-MDNs performed poorly for 2017/2018 but outperformed benchmark models in 2021/2022. The LSTM mechanism allowed the neural network to capture volatility clustering similarly to GARCH models. However, several issues were identified: the need for proper model initialization and reliance on large datasets for effective learning. The findings suggest that while LSTM-MDNs provide adequate risk forecasts, further research and adjustments are necessary for stable performance. 1 authors · Jan 2
- On the Role of Neural Collapse in Transfer Learning We study the ability of foundation models to learn representations for classification that are transferable to new, unseen classes. Recent results in the literature show that representations learned by a single classifier over many classes are competitive on few-shot learning problems with representations learned by special-purpose algorithms designed for such problems. In this paper we provide an explanation for this behavior based on the recently observed phenomenon that the features learned by overparameterized classification networks show an interesting clustering property, called neural collapse. We demonstrate both theoretically and empirically that neural collapse generalizes to new samples from the training classes, and -- more importantly -- to new classes as well, allowing foundation models to provide feature maps that work well in transfer learning and, specifically, in the few-shot setting. 3 authors · Dec 30, 2021
- Medical Concept Representation Learning from Electronic Health Records and its Application on Heart Failure Prediction Objective: To transform heterogeneous clinical data from electronic health records into clinically meaningful constructed features using data driven method that rely, in part, on temporal relations among data. Materials and Methods: The clinically meaningful representations of medical concepts and patients are the key for health analytic applications. Most of existing approaches directly construct features mapped to raw data (e.g., ICD or CPT codes), or utilize some ontology mapping such as SNOMED codes. However, none of the existing approaches leverage EHR data directly for learning such concept representation. We propose a new way to represent heterogeneous medical concepts (e.g., diagnoses, medications and procedures) based on co-occurrence patterns in longitudinal electronic health records. The intuition behind the method is to map medical concepts that are co-occuring closely in time to similar concept vectors so that their distance will be small. We also derive a simple method to construct patient vectors from the related medical concept vectors. Results: For qualitative evaluation, we study similar medical concepts across diagnosis, medication and procedure. In quantitative evaluation, our proposed representation significantly improves the predictive modeling performance for onset of heart failure (HF), where classification methods (e.g. logistic regression, neural network, support vector machine and K-nearest neighbors) achieve up to 23% improvement in area under the ROC curve (AUC) using this proposed representation. Conclusion: We proposed an effective method for patient and medical concept representation learning. The resulting representation can map relevant concepts together and also improves predictive modeling performance. 4 authors · Feb 11, 2016
- To Interpolate or not to Interpolate: PRF, Dense and Sparse Retrievers Current pre-trained language model approaches to information retrieval can be broadly divided into two categories: sparse retrievers (to which belong also non-neural approaches such as bag-of-words methods, e.g., BM25) and dense retrievers. Each of these categories appears to capture different characteristics of relevance. Previous work has investigated how relevance signals from sparse retrievers could be combined with those from dense retrievers via interpolation. Such interpolation would generally lead to higher retrieval effectiveness. In this paper we consider the problem of combining the relevance signals from sparse and dense retrievers in the context of Pseudo Relevance Feedback (PRF). This context poses two key challenges: (1) When should interpolation occur: before, after, or both before and after the PRF process? (2) Which sparse representation should be considered: a zero-shot bag-of-words model (BM25), or a learnt sparse representation? To answer these questions we perform a thorough empirical evaluation considering an effective and scalable neural PRF approach (Vector-PRF), three effective dense retrievers (ANCE, TCTv2, DistillBERT), and one state-of-the-art learnt sparse retriever (uniCOIL). The empirical findings from our experiments suggest that, regardless of sparse representation and dense retriever, interpolation both before and after PRF achieves the highest effectiveness across most datasets and metrics. 7 authors · Apr 30, 2022
- A Named Entity Based Approach to Model Recipes Traditional cooking recipes follow a structure which can be modelled very well if the rules and semantics of the different sections of the recipe text are analyzed and represented accurately. We propose a structure that can accurately represent the recipe as well as a pipeline to infer the best representation of the recipe in this uniform structure. The Ingredients section in a recipe typically lists down the ingredients required and corresponding attributes such as quantity, temperature, and processing state. This can be modelled by defining these attributes and their values. The physical entities which make up a recipe can be broadly classified into utensils, ingredients and their combinations that are related by cooking techniques. The instruction section lists down a series of events in which a cooking technique or process is applied upon these utensils and ingredients. We model these relationships in the form of tuples. Thus, using a combination of these methods we model cooking recipe in the dataset RecipeDB to show the efficacy of our method. This mined information model can have several applications which include translating recipes between languages, determining similarity between recipes, generation of novel recipes and estimation of the nutritional profile of recipes. For the purpose of recognition of ingredient attributes, we train the Named Entity Relationship (NER) models and analyze the inferences with the help of K-Means clustering. Our model presented with an F1 score of 0.95 across all datasets. We use a similar NER tagging model for labelling cooking techniques (F1 score = 0.88) and utensils (F1 score = 0.90) within the instructions section. Finally, we determine the temporal sequence of relationships between ingredients, utensils and cooking techniques for modeling the instruction steps. 3 authors · Apr 25, 2020
2 MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms We introduce a large-scale dataset of math word problems and an interpretable neural math problem solver that learns to map problems to operation programs. Due to annotation challenges, current datasets in this domain have been either relatively small in scale or did not offer precise operational annotations over diverse problem types. We introduce a new representation language to model precise operation programs corresponding to each math problem that aim to improve both the performance and the interpretability of the learned models. Using this representation language, our new dataset, MathQA, significantly enhances the AQuA dataset with fully-specified operational programs. We additionally introduce a neural sequence-to-program model enhanced with automatic problem categorization. Our experiments show improvements over competitive baselines in our MathQA as well as the AQuA dataset. The results are still significantly lower than human performance indicating that the dataset poses new challenges for future research. Our dataset is available at: https://math-qa.github.io/math-QA/ 6 authors · May 30, 2019
- Improving Document Representations by Generating Pseudo Query Embeddings for Dense Retrieval Recently, the retrieval models based on dense representations have been gradually applied in the first stage of the document retrieval tasks, showing better performance than traditional sparse vector space models. To obtain high efficiency, the basic structure of these models is Bi-encoder in most cases. However, this simple structure may cause serious information loss during the encoding of documents since the queries are agnostic. To address this problem, we design a method to mimic the queries on each of the documents by an iterative clustering process and represent the documents by multiple pseudo queries (i.e., the cluster centroids). To boost the retrieval process using approximate nearest neighbor search library, we also optimize the matching function with a two-step score calculation procedure. Experimental results on several popular ranking and QA datasets show that our model can achieve state-of-the-art results. 6 authors · May 8, 2021
2 Towards Long-Context Time Series Foundation Models Time series foundation models have shown impressive performance on a variety of tasks, across a wide range of domains, even in zero-shot settings. However, most of these models are designed to handle short univariate time series as an input. This limits their practical use, especially in domains such as healthcare with copious amounts of long and multivariate data with strong temporal and intra-variate dependencies. Our study bridges this gap by cataloging and systematically comparing various context expansion techniques from both language and time series domains, and introducing a novel compressive memory mechanism to allow encoder-only TSFMs to effectively model intra-variate dependencies. We demonstrate the benefits of our approach by imbuing MOMENT, a recent family of multi-task time series foundation models, with the multivariate context. 5 authors · Sep 20, 2024
3 Kairos: Towards Adaptive and Generalizable Time Series Foundation Models Time series foundation models (TSFMs) have emerged as a powerful paradigm for time series analysis, driven by large-scale pretraining on diverse data corpora. However, time series inherently exhibit heterogeneous information density over time, influenced by system states and signal complexity, presenting significant modeling challenges especially in a zero-shot scenario. Current TSFMs rely on non-adaptive processing pipelines that fail to capture this dynamic nature. For example, common tokenization strategies such as fixed-size patching enforce rigid observational granularity, limiting their ability to adapt to varying information densities. Similarly, conventional positional encodings impose a uniform temporal scale, making it difficult to model diverse periodicities and trends across series. To overcome these limitations, we propose Kairos, a flexible TSFM framework that integrates a dynamic patching tokenizer and an instance-adaptive positional embedding. Kairos adaptively selects tokenization granularity and tailors positional encodings to the unique characteristics of each time series instance. Trained on a large-scale Predictability-Stratified Time Series (PreSTS) corpus comprising over 300 billion time points and adopting a multi-patch prediction strategy in the inference stage, Kairos achieves superior performance with much fewer parameters on two common zero-shot benchmarks, GIFT-Eval and the Time-Series-Library benchmark, consistently outperforming established methods across diverse tasks. The project page is at https://foundation-model-research.github.io/Kairos . 7 authors · Sep 30
- How Far Can Cantonese NLP Go? Benchmarking Cantonese Capabilities of Large Language Models The rapid evolution of large language models (LLMs) has transformed the competitive landscape in natural language processing (NLP), particularly for English and other data-rich languages. However, underrepresented languages like Cantonese, spoken by over 85 million people, face significant development gaps, which is particularly concerning given the economic significance of the Guangdong-Hong Kong-Macau Greater Bay Area, and in substantial Cantonese-speaking populations in places like Singapore and North America. Despite its wide use, Cantonese has scant representation in NLP research, especially compared to other languages from similarly developed regions. To bridge these gaps, we outline current Cantonese NLP methods and introduce new benchmarks designed to evaluate LLM performance in factual generation, mathematical logic, complex reasoning, and general knowledge in Cantonese, which aim to advance open-source Cantonese LLM technology. We also propose future research directions and recommended models to enhance Cantonese LLM development. 8 authors · Aug 29, 2024
- Fruit recognition from images using deep learning In this paper we introduce a new, high-quality, dataset of images containing fruits. We also present the results of some numerical experiment for training a neural network to detect fruits. We discuss the reason why we chose to use fruits in this project by proposing a few applications that could use this kind of neural network. 2 authors · Dec 2, 2017
- Data and its (dis)contents: A survey of dataset development and use in machine learning research Datasets have played a foundational role in the advancement of machine learning research. They form the basis for the models we design and deploy, as well as our primary medium for benchmarking and evaluation. Furthermore, the ways in which we collect, construct and share these datasets inform the kinds of problems the field pursues and the methods explored in algorithm development. However, recent work from a breadth of perspectives has revealed the limitations of predominant practices in dataset collection and use. In this paper, we survey the many concerns raised about the way we collect and use data in machine learning and advocate that a more cautious and thorough understanding of data is necessary to address several of the practical and ethical issues of the field. 5 authors · Dec 9, 2020
14 Datasets: A Community Library for Natural Language Processing The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets. Hugging Face · Sep 6, 2021
- Learning High-Quality and General-Purpose Phrase Representations Phrase representations play an important role in data science and natural language processing, benefiting various tasks like Entity Alignment, Record Linkage, Fuzzy Joins, and Paraphrase Classification. The current state-of-the-art method involves fine-tuning pre-trained language models for phrasal embeddings using contrastive learning. However, we have identified areas for improvement. First, these pre-trained models tend to be unnecessarily complex and require to be pre-trained on a corpus with context sentences. Second, leveraging the phrase type and morphology gives phrase representations that are both more precise and more flexible. We propose an improved framework to learn phrase representations in a context-free fashion. The framework employs phrase type classification as an auxiliary task and incorporates character-level information more effectively into the phrase representation. Furthermore, we design three granularities of data augmentation to increase the diversity of training samples. Our experiments across a wide range of tasks show that our approach generates superior phrase embeddings compared to previous methods while requiring a smaller model size. The code is available at \faGithub~ https://github.com/tigerchen52/PEARL abstract 3 authors · Jan 18, 2024
- AutoChart: A Dataset for Chart-to-Text Generation Task The analytical description of charts is an exciting and important research area with many applications in academia and industry. Yet, this challenging task has received limited attention from the computational linguistics research community. This paper proposes AutoChart, a large dataset for the analytical description of charts, which aims to encourage more research into this important area. Specifically, we offer a novel framework that generates the charts and their analytical description automatically. We conducted extensive human and machine evaluations on the generated charts and descriptions and demonstrate that the generated texts are informative, coherent, and relevant to the corresponding charts. 5 authors · Aug 16, 2021
1 DeepJoin: Joinable Table Discovery with Pre-trained Language Models Due to the usefulness in data enrichment for data analysis tasks, joinable table discovery has become an important operation in data lake management. Existing approaches target equi-joins, the most common way of combining tables for creating a unified view, or semantic joins, which tolerate misspellings and different formats to deliver more join results. They are either exact solutions whose running time is linear in the sizes of query column and target table repository or approximate solutions lacking precision. In this paper, we propose Deepjoin, a deep learning model for accurate and efficient joinable table discovery. Our solution is an embedding-based retrieval, which employs a pre-trained language model (PLM) and is designed as one framework serving both equi- and semantic joins. We propose a set of contextualization options to transform column contents to a text sequence. The PLM reads the sequence and is fine-tuned to embed columns to vectors such that columns are expected to be joinable if they are close to each other in the vector space. Since the output of the PLM is fixed in length, the subsequent search procedure becomes independent of the column size. With a state-of-the-art approximate nearest neighbor search algorithm, the search time is logarithmic in the repository size. To train the model, we devise the techniques for preparing training data as well as data augmentation. The experiments on real datasets demonstrate that by training on a small subset of a corpus, Deepjoin generalizes to large datasets and its precision consistently outperforms other approximate solutions'. Deepjoin is even more accurate than an exact solution to semantic joins when evaluated with labels from experts. Moreover, when equipped with a GPU, Deepjoin is up to two orders of magnitude faster than existing solutions. 5 authors · Dec 14, 2022
- ManyTypes4Py: A Benchmark Python Dataset for Machine Learning-based Type Inference In this paper, we present ManyTypes4Py, a large Python dataset for machine learning (ML)-based type inference. The dataset contains a total of 5,382 Python projects with more than 869K type annotations. Duplicate source code files were removed to eliminate the negative effect of the duplication bias. To facilitate training and evaluation of ML models, the dataset was split into training, validation and test sets by files. To extract type information from abstract syntax trees (ASTs), a lightweight static analyzer pipeline is developed and accompanied with the dataset. Using this pipeline, the collected Python projects were analyzed and the results of the AST analysis were stored in JSON-formatted files. The ManyTypes4Py dataset is shared on zenodo and its tools are publicly available on GitHub. 3 authors · Apr 10, 2021
- COFO: COdeFOrces dataset for Program Classification, Recognition and Tagging In recent years, a lot of technological advances in computer science have aided software programmers to create innovative and real-time user-friendly software. With the creation of the software and the urging interest of people to learn to write software, there is a large collection of source codes that can be found on the web, also known as Big Code, which can be used as a source of data for driving the machine learning applications tending to solve certain software engineering problems. In this paper, we present COFO, a dataset consisting of 809 classes/problems with a total of 369K source codes written in C, C++, Java, and Python programming languages, along with other metadata such as code tags, problem specification, and input-output specifications. COFO has been scraped from the openly available Codeforces website using a selenium-beautifulsoup-python based scraper. We envision that this dataset can be useful for solving machine learning-based problems like program classification/recognition, tagging, predicting program properties, and code comprehension. 3 authors · Mar 23
- Generating Drug Repurposing Hypotheses through the Combination of Disease-Specific Hypergraphs The drug development pipeline for a new compound can last 10-20 years and cost over 10 billion. Drug repurposing offers a more time- and cost-effective alternative. Computational approaches based on biomedical knowledge graph representations have recently yielded new drug repurposing hypotheses. In this study, we present a novel, disease-specific hypergraph representation learning technique to derive contextual embeddings of biological pathways of various lengths but that all start at any given drug and all end at the disease of interest. Further, we extend this method to multi-disease hypergraphs. To determine the repurposing potential of each of the 1,522 drugs, we derive drug-specific distributions of cosine similarity values and ultimately consider the median for ranking. Cosine similarity values are computed between (1) all biological pathways starting at the considered drug and ending at the disease of interest and (2) all biological pathways starting at drugs currently prescribed against that disease and ending at the disease of interest. We illustrate our approach with Alzheimer's disease (AD) and two of its risk factors: hypertension (HTN) and type 2 diabetes (T2D). We compare each drug's rank across four hypergraph settings (single- or multi-disease): AD only, AD + HTN, AD + T2D, and AD + HTN + T2D. Notably, our framework led to the identification of two promising drugs whose repurposing potential was significantly higher in hypergraphs combining two diseases: dapagliflozin (antidiabetic; moved up, from top 32% to top 7%, across all considered drugs) and debrisoquine (antihypertensive; moved up, from top 76% to top 23%). Our approach serves as a hypothesis generation tool, to be paired with a validation pipeline relying on laboratory experiments and semi-automated parsing of the biomedical literature. 5 authors · Nov 16, 2023
- Interactive Text-to-SQL Generation via Editable Step-by-Step Explanations Relational databases play an important role in business, science, and more. However, many users cannot fully unleash the analytical power of relational databases, because they are not familiar with database languages such as SQL. Many techniques have been proposed to automatically generate SQL from natural language, but they suffer from two issues: (1) they still make many mistakes, particularly for complex queries, and (2) they do not provide a flexible way for non-expert users to validate and refine incorrect queries. To address these issues, we introduce a new interaction mechanism that allows users to directly edit a step-by-step explanation of a query to fix errors. Our experiments on multiple datasets, as well as a user study with 24 participants, demonstrate that our approach can achieve better performance than multiple SOTA approaches. Our code and datasets are available at https://github.com/magic-YuanTian/STEPS. 6 authors · May 12, 2023
1 Stock Portfolio Optimization Using a Deep Learning LSTM Model Predicting future stock prices and their movement patterns is a complex problem. Hence, building a portfolio of capital assets using the predicted prices to achieve the optimization between its return and risk is an even more difficult task. This work has carried out an analysis of the time series of the historical prices of the top five stocks from the nine different sectors of the Indian stock market from January 1, 2016, to December 31, 2020. Optimum portfolios are built for each of these sectors. For predicting future stock prices, a long-and-short-term memory (LSTM) model is also designed and fine-tuned. After five months of the portfolio construction, the actual and the predicted returns and risks of each portfolio are computed. The predicted and the actual returns of each portfolio are found to be high, indicating the high precision of the LSTM model. 3 authors · Nov 8, 2021
- MuLMS: A Multi-Layer Annotated Text Corpus for Information Extraction in the Materials Science Domain Keeping track of all relevant recent publications and experimental results for a research area is a challenging task. Prior work has demonstrated the efficacy of information extraction models in various scientific areas. Recently, several datasets have been released for the yet understudied materials science domain. However, these datasets focus on sub-problems such as parsing synthesis procedures or on sub-domains, e.g., solid oxide fuel cells. In this resource paper, we present MuLMS, a new dataset of 50 open-access articles, spanning seven sub-domains of materials science. The corpus has been annotated by domain experts with several layers ranging from named entities over relations to frame structures. We present competitive neural models for all tasks and demonstrate that multi-task training with existing related resources leads to benefits. 5 authors · Oct 24, 2023
- Learning Semantic Correspondences in Technical Documentation We consider the problem of translating high-level textual descriptions to formal representations in technical documentation as part of an effort to model the meaning of such documentation. We focus specifically on the problem of learning translational correspondences between text descriptions and grounded representations in the target documentation, such as formal representation of functions or code templates. Our approach exploits the parallel nature of such documentation, or the tight coupling between high-level text and the low-level representations we aim to learn. Data is collected by mining technical documents for such parallel text-representation pairs, which we use to train a simple semantic parsing model. We report new baseline results on sixteen novel datasets, including the standard library documentation for nine popular programming languages across seven natural languages, and a small collection of Unix utility manuals. 2 authors · May 13, 2017
- Improved Robustness for Deep Learning-based Segmentation of Multi-Center Myocardial Perfusion MRI Datasets Using Data Adaptive Uncertainty-guided Space-time Analysis Background. Fully automatic analysis of myocardial perfusion MRI datasets enables rapid and objective reporting of stress/rest studies in patients with suspected ischemic heart disease. Developing deep learning techniques that can analyze multi-center datasets despite limited training data and variations in software and hardware is an ongoing challenge. Methods. Datasets from 3 medical centers acquired at 3T (n = 150 subjects) were included: an internal dataset (inD; n = 95) and two external datasets (exDs; n = 55) used for evaluating the robustness of the trained deep neural network (DNN) models against differences in pulse sequence (exD-1) and scanner vendor (exD-2). A subset of inD (n = 85) was used for training/validation of a pool of DNNs for segmentation, all using the same spatiotemporal U-Net architecture and hyperparameters but with different parameter initializations. We employed a space-time sliding-patch analysis approach that automatically yields a pixel-wise "uncertainty map" as a byproduct of the segmentation process. In our approach, a given test case is segmented by all members of the DNN pool and the resulting uncertainty maps are leveraged to automatically select the "best" one among the pool of solutions. Results. The proposed DAUGS analysis approach performed similarly to the established approach on the internal dataset (p = n.s.) whereas it significantly outperformed on the external datasets (p < 0.005 for exD-1 and exD-2). Moreover, the number of image series with "failed" segmentation was significantly lower for the proposed vs. the established approach (4.3% vs. 17.1%, p < 0.0005). Conclusions. The proposed DAUGS analysis approach has the potential to improve the robustness of deep learning methods for segmentation of multi-center stress perfusion datasets with variations in the choice of pulse sequence, site location or scanner vendor. 11 authors · Aug 8, 2024
- Neural Databases In recent years, neural networks have shown impressive performance gains on long-standing AI problems, and in particular, answering queries from natural language text. These advances raise the question of whether they can be extended to a point where we can relax the fundamental assumption of database management, namely, that our data is represented as fields of a pre-defined schema. This paper presents a first step in answering that question. We describe NeuralDB, a database system with no pre-defined schema, in which updates and queries are given in natural language. We develop query processing techniques that build on the primitives offered by the state of the art Natural Language Processing methods. We begin by demonstrating that at the core, recent NLP transformers, powered by pre-trained language models, can answer select-project-join queries if they are given the exact set of relevant facts. However, they cannot scale to non-trivial databases and cannot perform aggregation queries. Based on these findings, we describe a NeuralDB architecture that runs multiple Neural SPJ operators in parallel, each with a set of database sentences that can produce one of the answers to the query. The result of these operators is fed to an aggregation operator if needed. We describe an algorithm that learns how to create the appropriate sets of facts to be fed into each of the Neural SPJ operators. Importantly, this algorithm can be trained by the Neural SPJ operator itself. We experimentally validate the accuracy of NeuralDB and its components, showing that we can answer queries over thousands of sentences with very high accuracy. 6 authors · Oct 14, 2020
1 How to Data in Datathons The rise of datathons, also known as data or data science hackathons, has provided a platform to collaborate, learn, and innovate in a short timeframe. Despite their significant potential benefits, organizations often struggle to effectively work with data due to a lack of clear guidelines and best practices for potential issues that might arise. Drawing on our own experiences and insights from organizing >80 datathon challenges with >60 partnership organizations since 2016, we provide guidelines and recommendations that serve as a resource for organizers to navigate the data-related complexities of datathons. We apply our proposed framework to 10 case studies. 10 authors · Sep 18, 2023
- A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature We present a corpus of 5,000 richly annotated abstracts of medical articles describing clinical randomized controlled trials. Annotations include demarcations of text spans that describe the Patient population enrolled, the Interventions studied and to what they were Compared, and the Outcomes measured (the `PICO' elements). These spans are further annotated at a more granular level, e.g., individual interventions within them are marked and mapped onto a structured medical vocabulary. We acquired annotations from a diverse set of workers with varying levels of expertise and cost. We describe our data collection process and the corpus itself in detail. We then outline a set of challenging NLP tasks that would aid searching of the medical literature and the practice of evidence-based medicine. 7 authors · Jun 11, 2018
- A Dataset of German Legal Documents for Named Entity Recognition We describe a dataset developed for Named Entity Recognition in German federal court decisions. It consists of approx. 67,000 sentences with over 2 million tokens. The resource contains 54,000 manually annotated entities, mapped to 19 fine-grained semantic classes: person, judge, lawyer, country, city, street, landscape, organization, company, institution, court, brand, law, ordinance, European legal norm, regulation, contract, court decision, and legal literature. The legal documents were, furthermore, automatically annotated with more than 35,000 TimeML-based time expressions. The dataset, which is available under a CC-BY 4.0 license in the CoNNL-2002 format, was developed for training an NER service for German legal documents in the EU project Lynx. 3 authors · Mar 29, 2020
1 Contrasting the efficiency of stock price prediction models using various types of LSTM models aided with sentiment analysis Our research aims to find the best model that uses companies projections and sector performances and how the given company fares accordingly to correctly predict equity share prices for both short and long term goals. 3 authors · Jul 15, 2023
- Detecting Dataset Drift and Non-IID Sampling via k-Nearest Neighbors We present a straightforward statistical test to detect certain violations of the assumption that the data are Independent and Identically Distributed (IID). The specific form of violation considered is common across real-world applications: whether the examples are ordered in the dataset such that almost adjacent examples tend to have more similar feature values (e.g. due to distributional drift, or attractive interactions between datapoints). Based on a k-Nearest Neighbors estimate, our approach can be used to audit any multivariate numeric data as well as other data types (image, text, audio, etc.) that can be numerically represented, perhaps with model embeddings. Compared with existing methods to detect drift or auto-correlation, our approach is both applicable to more types of data and also able to detect a wider variety of IID violations in practice. Code: https://github.com/cleanlab/cleanlab 3 authors · May 25, 2023
- A Dataset for N-ary Relation Extraction of Drug Combinations Combination therapies have become the standard of care for diseases such as cancer, tuberculosis, malaria and HIV. However, the combinatorial set of available multi-drug treatments creates a challenge in identifying effective combination therapies available in a situation. To assist medical professionals in identifying beneficial drug-combinations, we construct an expert-annotated dataset for extracting information about the efficacy of drug combinations from the scientific literature. Beyond its practical utility, the dataset also presents a unique NLP challenge, as the first relation extraction dataset consisting of variable-length relations. Furthermore, the relations in this dataset predominantly require language understanding beyond the sentence level, adding to the challenge of this task. We provide a promising baseline model and identify clear areas for further improvement. We release our dataset, code, and baseline models publicly to encourage the NLP community to participate in this task. 8 authors · May 4, 2022
- CRUSH4SQL: Collective Retrieval Using Schema Hallucination For Text2SQL Existing Text-to-SQL generators require the entire schema to be encoded with the user text. This is expensive or impractical for large databases with tens of thousands of columns. Standard dense retrieval techniques are inadequate for schema subsetting of a large structured database, where the correct semantics of retrieval demands that we rank sets of schema elements rather than individual elements. In response, we propose a two-stage process for effective coverage during retrieval. First, we instruct an LLM to hallucinate a minimal DB schema deemed adequate to answer the query. We use the hallucinated schema to retrieve a subset of the actual schema, by composing the results from multiple dense retrievals. Remarkably, hallucination x2013 generally considered a nuisance x2013 turns out to be actually useful as a bridging mechanism. Since no existing benchmarks exist for schema subsetting on large databases, we introduce three benchmarks. Two semi-synthetic datasets are derived from the union of schemas in two well-known datasets, SPIDER and BIRD, resulting in 4502 and 798 schema elements respectively. A real-life benchmark called SocialDB is sourced from an actual large data warehouse comprising 17844 schema elements. We show that our method1 leads to significantly higher recall than SOTA retrieval-based augmentation methods. 4 authors · Nov 2, 2023
- EDGAR-CORPUS: Billions of Tokens Make The World Go Round We release EDGAR-CORPUS, a novel corpus comprising annual reports from all the publicly traded companies in the US spanning a period of more than 25 years. To the best of our knowledge, EDGAR-CORPUS is the largest financial NLP corpus available to date. All the reports are downloaded, split into their corresponding items (sections), and provided in a clean, easy-to-use JSON format. We use EDGAR-CORPUS to train and release EDGAR-W2V, which are WORD2VEC embeddings for the financial domain. We employ these embeddings in a battery of financial NLP tasks and showcase their superiority over generic GloVe embeddings and other existing financial word embeddings. We also open-source EDGAR-CRAWLER, a toolkit that facilitates downloading and extracting future annual reports. 4 authors · Sep 29, 2021
- CLUENER2020: Fine-grained Named Entity Recognition Dataset and Benchmark for Chinese In this paper, we introduce the NER dataset from CLUE organization (CLUENER2020), a well-defined fine-grained dataset for named entity recognition in Chinese. CLUENER2020 contains 10 categories. Apart from common labels like person, organization, and location, it contains more diverse categories. It is more challenging than current other Chinese NER datasets and could better reflect real-world applications. For comparison, we implement several state-of-the-art baselines as sequence labeling tasks and report human performance, as well as its analysis. To facilitate future work on fine-grained NER for Chinese, we release our dataset, baselines, and leader-board. 10 authors · Jan 13, 2020
- DiaTrend: A dataset from advanced diabetes technology to enable development of novel analytic solutions Objective digital data is scarce yet needed in many domains to enable research that can transform the standard of healthcare. While data from consumer-grade wearables and smartphones is more accessible, there is critical need for similar data from clinical-grade devices used by patients with a diagnosed condition. The prevalence of wearable medical devices in the diabetes domain sets the stage for unique research and development within this field and beyond. However, the scarcity of open-source datasets presents a major barrier to progress. To facilitate broader research on diabetes-relevant problems and accelerate development of robust computational solutions, we provide the DiaTrend dataset. The DiaTrend dataset is composed of intensive longitudinal data from wearable medical devices, including a total of 27,561 days of continuous glucose monitor data and 8,220 days of insulin pump data from 54 patients with diabetes. This dataset is useful for developing novel analytic solutions that can reduce the disease burden for people living with diabetes and increase knowledge on chronic condition management in outpatient settings. 4 authors · Apr 3, 2023
- Sri Lanka Document Datasets: A Large-Scale, Multilingual Resource for Law, News, and Policy (v20251005) We present a collection of open, machine-readable document datasets covering parliamentary proceedings, legal judgments, government publications, news, and tourism statistics from Sri Lanka. As of v20251005, the collection currently comprises 215,670 documents (60.3 GB) across 13 datasets in Sinhala, Tamil, and English. The datasets are updated daily and mirrored on GitHub and Hugging Face. These resources aim to support research in computational linguistics, legal analytics, socio-political studies, and multilingual natural language processing. We describe the data sources, collection pipeline, formats, and potential use cases, while discussing licensing and ethical considerations. 1 authors · Oct 5
- Proximity Ascertainment Bias in Early Covid Case Locations A comparison of the distances to the Huanan Seafood Market of early Covid cases with known links to the market versus cases without known links shows results apparently incompatible with a location model lacking proximity ascertainment bias. The sign of the difference instead agrees with a model in which such ascertainment bias is large. In the presence of such bias inferences based on the clustering of case locations become unreliable. 1 authors · Jan 11, 2024
1 Stock Market Prediction using Natural Language Processing -- A Survey The stock market is a network which provides a platform for almost all major economic transactions. While investing in the stock market is a good idea, investing in individual stocks may not be, especially for the casual investor. Smart stock-picking requires in-depth research and plenty of dedication. Predicting this stock value offers enormous arbitrage profit opportunities. This attractiveness of finding a solution has prompted researchers to find a way past problems like volatility, seasonality, and dependence on time. This paper surveys recent literature in the domain of natural language processing and machine learning techniques used to predict stock market movements. The main contributions of this paper include the sophisticated categorizations of many recent articles and the illustration of the recent trends of research in stock market prediction and its related areas. 2 authors · Aug 26, 2022
- TorchXRayVision: A library of chest X-ray datasets and models TorchXRayVision is an open source software library for working with chest X-ray datasets and deep learning models. It provides a common interface and common pre-processing chain for a wide set of publicly available chest X-ray datasets. In addition, a number of classification and representation learning models with different architectures, trained on different data combinations, are available through the library to serve as baselines or feature extractors. 11 authors · Oct 31, 2021
- The History of Primordial Black Holes We overview the history of primordial black hole (PBH) research from the first papers around 50 years ago to the present epoch. The history may be divided into four periods, the dividing lines being marked by three key developments: inflation on the theoretical front and the detection of microlensing events by the MACHO project and gravitational waves by the LIGO/Virgo/KAGRA project on the observation front. However, they are also characterised by somewhat different focuses of research. The period 1967-1980 covered the groundbreaking work on PBH formation and evaporation. The period 1980-1996 mainly focussed on their formation, while the period 1996-2016 consolidated the work on formation but also collated the constraints on the PBH abundance. In the period 2016-2024 there was a shift of emphasis to the search for evidence for PBHs and - while opinions about the strength of the purported evidence vary - this has motivated more careful studies of some aspects of the subject. Certainly the soaring number of papers on PBHs in this last period indicates a growing interest in the topic. 2 authors · Jun 9, 2024
- Evaluation of Embeddings of Laboratory Test Codes for Patients at a Cancer Center Laboratory test results are an important and generally high dimensional component of a patient's Electronic Health Record (EHR). We train embedding representations (via Word2Vec and GloVe) for LOINC codes of laboratory tests from the EHRs of about 80,000 patients at a cancer center. To include information about lab test outcomes, we also train embeddings on the concatenation of a LOINC code with a symbol indicating normality or abnormality of the result. We observe several clinically meaningful similarities among LOINC embeddings trained over our data. For the embeddings of the concatenation of LOINCs with abnormality codes, we evaluate the performance for mortality prediction tasks and the ability to preserve ordinality properties: i.e. a lab test with normal outcome should be more similar to an abnormal one than to the a very abnormal one. 4 authors · Jul 22, 2019
1 Prediction of superconducting properties of materials based on machine learning models The application of superconducting materials is becoming more and more widespread. Traditionally, the discovery of new superconducting materials relies on the experience of experts and a large number of "trial and error" experiments, which not only increases the cost of experiments but also prolongs the period of discovering new superconducting materials. In recent years, machine learning has been increasingly applied to materials science. Based on this, this manuscript proposes the use of XGBoost model to identify superconductors; the first application of deep forest model to predict the critical temperature of superconductors; the first application of deep forest to predict the band gap of materials; and application of a new sub-network model to predict the Fermi energy level of materials. Compared with our known similar literature, all the above algorithms reach state-of-the-art. Finally, this manuscript uses the above models to search the COD public dataset and identify 50 candidate superconducting materials with possible critical temperature greater than 90 K. 4 authors · Nov 6, 2022