new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

RoboRefer: Towards Spatial Referring with Reasoning in Vision-Language Models for Robotics

Spatial referring is a fundamental capability of embodied robots to interact with the 3D physical world. However, even with the powerful pretrained vision language models (VLMs), recent approaches are still not qualified to accurately understand the complex 3D scenes and dynamically reason about the instruction-indicated locations for interaction. To this end, we propose RoboRefer, a 3D-aware VLM that can first achieve precise spatial understanding by integrating a disentangled but dedicated depth encoder via supervised fine-tuning (SFT). Moreover, RoboRefer advances generalized multi-step spatial reasoning via reinforcement fine-tuning (RFT), with metric-sensitive process reward functions tailored for spatial referring tasks. To support SFT and RFT training, we introduce RefSpatial, a large-scale dataset of 20M QA pairs (2x prior), covering 31 spatial relations (vs. 15 prior) and supporting complex reasoning processes (up to 5 steps). In addition, we introduce RefSpatial-Bench, a challenging benchmark filling the gap in evaluating spatial referring with multi-step reasoning. Experiments show that SFT-trained RoboRefer achieves state-of-the-art spatial understanding, with an average success rate of 89.6%. RFT-trained RoboRefer further outperforms all other baselines by a large margin, even surpassing Gemini-2.5-Pro by 17.4% in average accuracy on RefSpatial-Bench. Notably, RoboRefer can be integrated with various control policies to execute long-horizon, dynamic tasks across diverse robots (e,g., UR5, G1 humanoid) in cluttered real-world scenes.

RoboTracer: Mastering Spatial Trace with Reasoning in Vision-Language Models for Robotics

Spatial tracing, as a fundamental embodied interaction ability for robots, is inherently challenging as it requires multi-step metric-grounded reasoning compounded with complex spatial referring and real-world metric measurement. However, existing methods struggle with this compositional task. To this end, we propose RoboTracer, a 3D-aware VLM that first achieves both 3D spatial referring and measuring via a universal spatial encoder and a regression-supervised decoder to enhance scale awareness during supervised fine-tuning (SFT). Moreover, RoboTracer advances multi-step metric-grounded reasoning via reinforcement fine-tuning (RFT) with metric-sensitive process rewards, supervising key intermediate perceptual cues to accurately generate spatial traces. To support SFT and RFT training, we introduce TraceSpatial, a large-scale dataset of 30M QA pairs, spanning outdoor/indoor/tabletop scenes and supporting complex reasoning processes (up to 9 steps). We further present TraceSpatial-Bench, a challenging benchmark filling the gap to evaluate spatial tracing. Experimental results show that RoboTracer surpasses baselines in spatial understanding, measuring, and referring, with an average success rate of 79.1%, and also achieves SOTA performance on TraceSpatial-Bench by a large margin, exceeding Gemini-2.5-Pro by 36% accuracy. Notably, RoboTracer can be integrated with various control policies to execute long-horizon, dynamic tasks across diverse robots (UR5, G1 humanoid) in cluttered real-world scenes.

Detect Anything via Next Point Prediction

Object detection has long been dominated by traditional coordinate regression-based models, such as YOLO, DETR, and Grounding DINO. Although recent efforts have attempted to leverage MLLMs to tackle this task, they face challenges like low recall rate, duplicate predictions, coordinate misalignment, etc. In this work, we bridge this gap and propose Rex-Omni, a 3B-scale MLLM that achieves state-of-the-art object perception performance. On benchmarks like COCO and LVIS, Rex-Omni attains performance comparable to or exceeding regression-based models (e.g., DINO, Grounding DINO) in a zero-shot setting. This is enabled by three key designs: 1) Task Formulation: we use special tokens to represent quantized coordinates from 0 to 999, reducing the model's learning difficulty and improving token efficiency for coordinate prediction; 2) Data Engines: we construct multiple data engines to generate high-quality grounding, referring, and pointing data, providing semantically rich supervision for training; \3) Training Pipelines: we employ a two-stage training process, combining supervised fine-tuning on 22 million data with GRPO-based reinforcement post-training. This RL post-training leverages geometry-aware rewards to effectively bridge the discrete-to-continuous coordinate prediction gap, improve box accuracy, and mitigate undesirable behaviors like duplicate predictions that stem from the teacher-guided nature of the initial SFT stage. Beyond conventional detection, Rex-Omni's inherent language understanding enables versatile capabilities such as object referring, pointing, visual prompting, GUI grounding, spatial referring, OCR and key-pointing, all systematically evaluated on dedicated benchmarks. We believe that Rex-Omni paves the way for more versatile and language-aware visual perception systems.

IDEA-Research IDEA-Research
·
Oct 14, 2025 3

Hybrid Global-Local Representation with Augmented Spatial Guidance for Zero-Shot Referring Image Segmentation

Recent advances in zero-shot referring image segmentation (RIS), driven by models such as the Segment Anything Model (SAM) and CLIP, have made substantial progress in aligning visual and textual information. Despite these successes, the extraction of precise and high-quality mask region representations remains a critical challenge, limiting the full potential of RIS tasks. In this paper, we introduce a training-free, hybrid global-local feature extraction approach that integrates detailed mask-specific features with contextual information from the surrounding area, enhancing mask region representation. To further strengthen alignment between mask regions and referring expressions, we propose a spatial guidance augmentation strategy that improves spatial coherence, which is essential for accurately localizing described areas. By incorporating multiple spatial cues, this approach facilitates more robust and precise referring segmentation. Extensive experiments on standard RIS benchmarks demonstrate that our method significantly outperforms existing zero-shot RIS models, achieving substantial performance gains. We believe our approach advances RIS tasks and establishes a versatile framework for region-text alignment, offering broader implications for cross-modal understanding and interaction. Code is available at https://github.com/fhgyuanshen/HybridGL .

  • 2 authors
·
Mar 31, 2025

ReSurgSAM2: Referring Segment Anything in Surgical Video via Credible Long-term Tracking

Surgical scene segmentation is critical in computer-assisted surgery and is vital for enhancing surgical quality and patient outcomes. Recently, referring surgical segmentation is emerging, given its advantage of providing surgeons with an interactive experience to segment the target object. However, existing methods are limited by low efficiency and short-term tracking, hindering their applicability in complex real-world surgical scenarios. In this paper, we introduce ReSurgSAM2, a two-stage surgical referring segmentation framework that leverages Segment Anything Model 2 to perform text-referred target detection, followed by tracking with reliable initial frame identification and diversity-driven long-term memory. For the detection stage, we propose a cross-modal spatial-temporal Mamba to generate precise detection and segmentation results. Based on these results, our credible initial frame selection strategy identifies the reliable frame for the subsequent tracking. Upon selecting the initial frame, our method transitions to the tracking stage, where it incorporates a diversity-driven memory mechanism that maintains a credible and diverse memory bank, ensuring consistent long-term tracking. Extensive experiments demonstrate that ReSurgSAM2 achieves substantial improvements in accuracy and efficiency compared to existing methods, operating in real-time at 61.2 FPS. Our code and datasets will be available at https://github.com/jinlab-imvr/ReSurgSAM2.

  • 7 authors
·
May 13, 2025 2

AeroReformer: Aerial Referring Transformer for UAV-based Referring Image Segmentation

As a novel and challenging task, referring segmentation combines computer vision and natural language processing to localize and segment objects based on textual descriptions. While referring image segmentation (RIS) has been extensively studied in natural images, little attention has been given to aerial imagery, particularly from unmanned aerial vehicles (UAVs). The unique challenges of UAV imagery, including complex spatial scales, occlusions, and varying object orientations, render existing RIS approaches ineffective. A key limitation has been the lack of UAV-specific datasets, as manually annotating pixel-level masks and generating textual descriptions is labour-intensive and time-consuming. To address this gap, we design an automatic labelling pipeline that leverages pre-existing UAV segmentation datasets and Multimodal Large Language Models (MLLM) for generating textual descriptions. Furthermore, we propose Aerial Referring Transformer (AeroReformer), a novel framework for UAV referring image segmentation (UAV-RIS), featuring a Vision-Language Cross-Attention Module (VLCAM) for effective cross-modal understanding and a Rotation-Aware Multi-Scale Fusion (RAMSF) decoder to enhance segmentation accuracy in aerial scenes. Extensive experiments on two newly developed datasets demonstrate the superiority of AeroReformer over existing methods, establishing a new benchmark for UAV-RIS. The datasets and code will be publicly available at: https://github.com/lironui/AeroReformer.

  • 2 authors
·
Feb 23, 2025

Generalized Referring Expression Segmentation on Aerial Photos

Referring expression segmentation is a fundamental task in computer vision that integrates natural language understanding with precise visual localization of target regions. Considering aerial imagery (e.g., modern aerial photos collected through drones, historical photos from aerial archives, high-resolution satellite imagery, etc.) presents unique challenges because spatial resolution varies widely across datasets, the use of color is not consistent, targets often shrink to only a few pixels, and scenes contain very high object densities and objects with partial occlusions. This work presents Aerial-D, a new large-scale referring expression segmentation dataset for aerial imagery, comprising 37,288 images with 1,522,523 referring expressions that cover 259,709 annotated targets, spanning across individual object instances, groups of instances, and semantic regions covering 21 distinct classes that range from vehicles and infrastructure to land coverage types. The dataset was constructed through a fully automatic pipeline that combines systematic rule-based expression generation with a Large Language Model (LLM) enhancement procedure that enriched both the linguistic variety and the focus on visual details within the referring expressions. Filters were additionally used to simulate historic imaging conditions for each scene. We adopted the RSRefSeg architecture, and trained models on Aerial-D together with prior aerial datasets, yielding unified instance and semantic segmentation from text for both modern and historical images. Results show that the combined training achieves competitive performance on contemporary benchmarks, while maintaining strong accuracy under monochrome, sepia, and grainy degradations that appear in archival aerial photography. The dataset, trained models, and complete software pipeline are publicly available at https://luispl77.github.io/aerial-d .

inesc-id INESC-ID Lisboa
·
Dec 8, 2025

GeoRef: Referring Expressions in Geometry via Task Formulation, Synthetic Supervision, and Reinforced MLLM-based Solutions

AI-driven geometric problem solving is a complex vision-language task that requires accurate diagram interpretation, mathematical reasoning, and robust cross-modal grounding. A foundational yet underexplored capability for this task is the ability to identify and interpret geometric elements based on natural language queries. To address this, we introduce the task of Referring Expression Comprehension (REC) for geometric problems, which evaluates whether models can localize points, shapes, and spatial relations in diagrams in response to textual prompts. We present GeoRef, a benchmark dataset constructed from existing geometric problem corpora, featuring diverse, high-quality annotations and queries. Due to the lack of annotated data for this task, we generate a large-scale synthetic training dataset using a structured geometric formal language, enabling broad coverage of geometric concepts and facilitating model adaptation. We explore two fine-tuning approaches: Supervised Fine-Tuning (SFT) and Group Relative Policy Optimization (GRPO). Our results show that GRPO significantly outperforms SFT by better aligning model behavior with task-specific rewards. Furthermore, we propose a verify-and-regenerate mechanism that detects incorrect predictions and re-infers answers using contextual reasoning history, further boosting accuracy. Notably, even state-of-the-art Multimodal Large Language Models (MLLMs) struggle with this task, underscoring the necessity of explicitly evaluating and strengthening geometric grounding as a prerequisite for robust geometric problem solving. Moreover, models trained on GeoRef demonstrate measurable improvements on downstream geometric reasoning tasks, highlighting the broader value of REC as a foundation for multimodal mathematical understanding.

  • 9 authors
·
Sep 25, 2025

Strefer: Empowering Video LLMs with Space-Time Referring and Reasoning via Synthetic Instruction Data

Next-generation AI companions must go beyond general video understanding to resolve spatial and temporal references in dynamic, real-world environments. Existing Video Large Language Models (Video LLMs), while capable of coarse-level comprehension, struggle with fine-grained, spatiotemporal reasoning, especially when user queries rely on time-based event references for temporal anchoring, or gestural cues for spatial anchoring to clarify object references and positions. To bridge this critical gap, we introduce Strefer, a synthetic instruction data generation framework designed to equip Video LLMs with spatiotemporal referring and reasoning capabilities. Strefer produces diverse instruction-tuning data using a data engine that pseudo-annotates temporally dense, fine-grained video metadata, capturing rich spatial and temporal information in a structured manner, including subjects, objects, their locations as masklets, and their action descriptions and timelines. Our approach enhances the ability of Video LLMs to interpret spatial and temporal references, fostering more versatile, space-time-aware reasoning essential for real-world AI companions. Without using proprietary models, costly human annotation, or the need to annotate large volumes of new videos, experimental evaluations show that models trained with data produced by Strefer outperform baselines on tasks requiring spatial and temporal disambiguation. Additionally, these models exhibit enhanced space-time-aware reasoning, establishing a new foundation for perceptually grounded, instruction-tuned Video LLMs.

  • 7 authors
·
Sep 3, 2025

VideoRefer Suite: Advancing Spatial-Temporal Object Understanding with Video LLM

Video Large Language Models (Video LLMs) have recently exhibited remarkable capabilities in general video understanding. However, they mainly focus on holistic comprehension and struggle with capturing fine-grained spatial and temporal details. Besides, the lack of high-quality object-level video instruction data and a comprehensive benchmark further hinders their advancements. To tackle these challenges, we introduce the VideoRefer Suite to empower Video LLM for finer-level spatial-temporal video understanding, i.e., enabling perception and reasoning on any objects throughout the video. Specially, we thoroughly develop VideoRefer Suite across three essential aspects: dataset, model, and benchmark. Firstly, we introduce a multi-agent data engine to meticulously curate a large-scale, high-quality object-level video instruction dataset, termed VideoRefer-700K. Next, we present the VideoRefer model, which equips a versatile spatial-temporal object encoder to capture precise regional and sequential representations. Finally, we meticulously create a VideoRefer-Bench to comprehensively assess the spatial-temporal understanding capability of a Video LLM, evaluating it across various aspects. Extensive experiments and analyses demonstrate that our VideoRefer model not only achieves promising performance on video referring benchmarks but also facilitates general video understanding capabilities.

  • 12 authors
·
Dec 31, 2024 2

UniRef++: Segment Every Reference Object in Spatial and Temporal Spaces

The reference-based object segmentation tasks, namely referring image segmentation (RIS), few-shot image segmentation (FSS), referring video object segmentation (RVOS), and video object segmentation (VOS), aim to segment a specific object by utilizing either language or annotated masks as references. Despite significant progress in each respective field, current methods are task-specifically designed and developed in different directions, which hinders the activation of multi-task capabilities for these tasks. In this work, we end the current fragmented situation and propose UniRef++ to unify the four reference-based object segmentation tasks with a single architecture. At the heart of our approach is the proposed UniFusion module which performs multiway-fusion for handling different tasks with respect to their specified references. And a unified Transformer architecture is then adopted for achieving instance-level segmentation. With the unified designs, UniRef++ can be jointly trained on a broad range of benchmarks and can flexibly complete multiple tasks at run-time by specifying the corresponding references. We evaluate our unified models on various benchmarks. Extensive experimental results indicate that our proposed UniRef++ achieves state-of-the-art performance on RIS and RVOS, and performs competitively on FSS and VOS with a parameter-shared network. Moreover, we showcase that the proposed UniFusion module could be easily incorporated into the current advanced foundation model SAM and obtain satisfactory results with parameter-efficient finetuning. Codes and models are available at https://github.com/FoundationVision/UniRef.

  • 6 authors
·
Dec 25, 2023 1

Referring Atomic Video Action Recognition

We introduce a new task called Referring Atomic Video Action Recognition (RAVAR), aimed at identifying atomic actions of a particular person based on a textual description and the video data of this person. This task differs from traditional action recognition and localization, where predictions are delivered for all present individuals. In contrast, we focus on recognizing the correct atomic action of a specific individual, guided by text. To explore this task, we present the RefAVA dataset, containing 36,630 instances with manually annotated textual descriptions of the individuals. To establish a strong initial benchmark, we implement and validate baselines from various domains, e.g., atomic action localization, video question answering, and text-video retrieval. Since these existing methods underperform on RAVAR, we introduce RefAtomNet -- a novel cross-stream attention-driven method specialized for the unique challenges of RAVAR: the need to interpret a textual referring expression for the targeted individual, utilize this reference to guide the spatial localization and harvest the prediction of the atomic actions for the referring person. The key ingredients are: (1) a multi-stream architecture that connects video, text, and a new location-semantic stream, and (2) cross-stream agent attention fusion and agent token fusion which amplify the most relevant information across these streams and consistently surpasses standard attention-based fusion on RAVAR. Extensive experiments demonstrate the effectiveness of RefAtomNet and its building blocks for recognizing the action of the described individual. The dataset and code will be made publicly available at https://github.com/KPeng9510/RAVAR.

  • 11 authors
·
Jul 1, 2024

Long-RVOS: A Comprehensive Benchmark for Long-term Referring Video Object Segmentation

Referring video object segmentation (RVOS) aims to identify, track and segment the objects in a video based on language descriptions, which has received great attention in recent years. However, existing datasets remain focus on short video clips within several seconds, with salient objects visible in most frames. To advance the task towards more practical scenarios, we introduce Long-RVOS, a large-scale benchmark for long-term referring video object segmentation. Long-RVOS contains 2,000+ videos of an average duration exceeding 60 seconds, covering a variety of objects that undergo occlusion, disappearance-reappearance and shot changing. The objects are manually annotated with three different types of descriptions to individually evaluate the understanding of static attributes, motion patterns and spatiotemporal relationships. Moreover, unlike previous benchmarks that rely solely on the per-frame spatial evaluation, we introduce two new metrics to assess the temporal and spatiotemporal consistency. We benchmark 6 state-of-the-art methods on Long-RVOS. The results show that current approaches struggle severely with the long-video challenges. To address this, we further propose ReferMo, a promising baseline method that integrates motion information to expand the temporal receptive field, and employs a local-to-global architecture to capture both short-term dynamics and long-term dependencies. Despite simplicity, ReferMo achieves significant improvements over current methods in long-term scenarios. We hope that Long-RVOS and our baseline can drive future RVOS research towards tackling more realistic and long-form videos.

  • 7 authors
·
May 19, 2025

Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decode

Reference Expression Segmentation (RES) aims to segment image regions specified by referring expressions and has become popular with the rise of multimodal large models (MLLMs). While MLLMs excel in semantic understanding, their token-generation paradigm struggles with pixel-level dense prediction. Existing RES methods either couple MLLMs with the parameter-heavy Segment Anything Model (SAM) with 632M network parameters or adopt SAM-free lightweight pipelines that sacrifice accuracy. To address the trade-off between performance and cost, we specifically propose MLLMSeg, a novel framework that fully exploits the inherent visual detail features encoded in the MLLM vision encoder without introducing an extra visual encoder. Besides, we propose a detail-enhanced and semantic-consistent feature fusion module (DSFF) that fully integrates the detail-related visual feature with the semantic-related feature output by the large language model (LLM) of MLLM. Finally, we establish a light-weight mask decoder with only 34M network parameters that optimally leverages detailed spatial features from the visual encoder and semantic features from the LLM to achieve precise mask prediction. Extensive experiments demonstrate that our method generally surpasses both SAM-based and SAM-free competitors, striking a better balance between performance and cost. Code is available at https://github.com/jcwang0602/MLLMSeg.

  • 5 authors
·
Aug 6, 2025 2

Segment Everything Everywhere All at Once

In this work, we present SEEM, a promptable and interactive model for segmenting everything everywhere all at once in an image, as shown in Fig.1. In SEEM, we propose a novel decoding mechanism that enables diverse prompting for all types of segmentation tasks, aiming at a universal segmentation interface that behaves like large language models (LLMs). More specifically, SEEM is designed with four desiderata: i) Versatility. We introduce a new visual prompt to unify different spatial queries including points, boxes, scribbles and masks, which can further generalize to a different referring image; ii) Compositionality. We learn a joint visual-semantic space between text and visual prompts, which facilitates the dynamic composition of two prompt types required for various segmentation tasks; iii) Interactivity. We further incorporate learnable memory prompts into the decoder to retain segmentation history through mask-guided cross-attention from decoder to image features; and iv) Semantic-awareness. We use a text encoder to encode text queries and mask labels into the same semantic space for open-vocabulary segmentation. We conduct a comprehensive empirical study to validate the effectiveness of SEEM across diverse segmentation tasks. Notably, our single SEEM model achieves competitive performance across interactive segmentation, generic segmentation, referring segmentation, and video object segmentation on 9 datasets with minimum 1/100 supervision. Furthermore, SEEM showcases a remarkable capacity for generalization to novel prompts or their combinations, rendering it a readily universal image segmentation interface.

  • 9 authors
·
Apr 13, 2023

GeoChat: Grounded Large Vision-Language Model for Remote Sensing

Recent advancements in Large Vision-Language Models (VLMs) have shown great promise in natural image domains, allowing users to hold a dialogue about given visual content. However, such general-domain VLMs perform poorly for Remote Sensing (RS) scenarios, leading to inaccurate or fabricated information when presented with RS domain-specific queries. Such a behavior emerges due to the unique challenges introduced by RS imagery. For example, to handle high-resolution RS imagery with diverse scale changes across categories and many small objects, region-level reasoning is necessary alongside holistic scene interpretation. Furthermore, the lack of domain-specific multimodal instruction following data as well as strong backbone models for RS make it hard for the models to align their behavior with user queries. To address these limitations, we propose GeoChat - the first versatile remote sensing VLM that offers multitask conversational capabilities with high-resolution RS images. Specifically, GeoChat can not only answer image-level queries but also accepts region inputs to hold region-specific dialogue. Furthermore, it can visually ground objects in its responses by referring to their spatial coordinates. To address the lack of domain-specific datasets, we generate a novel RS multimodal instruction-following dataset by extending image-text pairs from existing diverse RS datasets. We establish a comprehensive benchmark for RS multitask conversations and compare with a number of baseline methods. GeoChat demonstrates robust zero-shot performance on various RS tasks, e.g., image and region captioning, visual question answering, scene classification, visually grounded conversations and referring detection. Our code is available at https://github.com/mbzuai-oryx/geochat.

  • 6 authors
·
Nov 24, 2023

Robin3D: Improving 3D Large Language Model via Robust Instruction Tuning

Recent advancements in 3D Large Language Models (3DLLMs) have highlighted their potential in building general-purpose agents in the 3D real world, yet challenges remain due to the lack of high-quality robust instruction-following data, leading to limited discriminative power and generalization of 3DLLMs. In this paper, we introduce Robin3D, a powerful 3DLLM trained on large-scale instruction-following data generated by our novel data engine, Robust Instruction Generation (RIG) engine. RIG generates two key instruction data: 1) the Adversarial Instruction-following data, which features mixed negative and positive samples to enhance the model's discriminative understanding. 2) the Diverse Instruction-following data, which contains various instruction styles to enhance model's generalization. As a result, we construct 1 million instruction-following data, consisting of 344K Adversarial samples, 508K Diverse samples, and 165K benchmark training set samples. To better handle these complex instructions, Robin3D first incorporates Relation-Augmented Projector to enhance spatial understanding, and then strengthens the object referring and grounding ability through ID-Feature Bonding. Robin3D consistently outperforms previous methods across five widely-used 3D multimodal learning benchmarks, without the need for task-specific fine-tuning. Notably, we achieve a 7.8\% improvement in the grounding task (Multi3DRefer) and a 6.9\% improvement in the captioning task (Scan2Cap).

  • 5 authors
·
Sep 30, 2024 2

Learning Visual Grounding from Generative Vision and Language Model

Visual grounding tasks aim to localize image regions based on natural language references. In this work, we explore whether generative VLMs predominantly trained on image-text data could be leveraged to scale up the text annotation of visual grounding data. We find that grounding knowledge already exists in generative VLM and can be elicited by proper prompting. We thus prompt a VLM to generate object-level descriptions by feeding it object regions from existing object detection datasets. We further propose attribute modeling to explicitly capture the important object attributes, and spatial relation modeling to capture inter-object relationship, both of which are common linguistic pattern in referring expression. Our constructed dataset (500K images, 1M objects, 16M referring expressions) is one of the largest grounding datasets to date, and the first grounding dataset with purely model-generated queries and human-annotated objects. To verify the quality of this data, we conduct zero-shot transfer experiments to the popular RefCOCO benchmarks for both referring expression comprehension (REC) and segmentation (RES) tasks. On both tasks, our model significantly outperform the state-of-the-art approaches without using human annotated visual grounding data. Our results demonstrate the promise of generative VLM to scale up visual grounding in the real world. Code and models will be released.

  • 5 authors
·
Jul 18, 2024

MuSE-SVS: Multi-Singer Emotional Singing Voice Synthesizer that Controls Emotional Intensity

We propose a multi-singer emotional singing voice synthesizer, Muse-SVS, that expresses emotion at various intensity levels by controlling subtle changes in pitch, energy, and phoneme duration while accurately following the score. To control multiple style attributes while avoiding loss of fidelity and expressiveness due to interference between attributes, Muse-SVS represents all attributes and their relations together by a joint embedding in a unified embedding space. Muse-SVS can express emotional intensity levels not included in the training data through embedding interpolation and extrapolation. We also propose a statistical pitch predictor to express pitch variance according to emotional intensity, and a context-aware residual duration predictor to prevent the accumulation of variances in phoneme duration, which is crucial for synchronization with instrumental parts. In addition, we propose a novel ASPP-Transformer, which combines atrous spatial pyramid pooling (ASPP) and Transformer, to improve fidelity and expressiveness by referring to broad contexts. In experiments, Muse-SVS exhibited improved fidelity, expressiveness, and synchronization performance compared with baseline models. The visualization results show that Muse-SVS effectively express the variance in pitch, energy, and phoneme duration according to emotional intensity. To the best of our knowledge, Muse-SVS is the first neural SVS capable of controlling emotional intensity.