new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

CAT: Curvature-Adaptive Transformers for Geometry-Aware Learning

Transformers achieve strong performance across diverse domains but implicitly assume Euclidean geometry in their attention mechanisms, limiting their effectiveness on data with non-Euclidean structure. While recent extensions to hyperbolic and spherical spaces show promise for hierarchical and cyclical patterns, respectively, they require committing to a single geometry a priori, reducing flexibility when data exhibits mixed geometric properties. We introduce the Curvature-Adaptive Transformer (CAT), a novel architecture that dynamically learns per-token routing across three geometric attention branches through a lightweight, differentiable gating mechanism. Unlike fixed-geometry approaches, CAT enables adaptive geometric specialization, routing tokens to the appropriate curvature based on their local relational structure. The routing network provides interpretable curvature preferences while each branch employs geometry-specific operations optimized for its respective manifold. On knowledge graph completion benchmarks (FB15k-237, WN18RR), CAT achieves approximately 10% improvements in MRR and Hits@10 over fixed-geometry baselines with minimal overhead (5% parameter increase, comparable inference time). These results demonstrate that learned geometric adaptation outperforms any single fixed geometry for complex relational reasoning, establishing CAT as a scalable and interpretable foundation for mixture-of-geometry architectures across language, vision, and multimodal domains.

  • 3 authors
·
Oct 1, 2025

HRTFformer: A Spatially-Aware Transformer for Personalized HRTF Upsampling in Immersive Audio Rendering

Personalized Head-Related Transfer Functions (HRTFs) are starting to be introduced in many commercial immersive audio applications and are crucial for realistic spatial audio rendering. However, one of the main hesitations regarding their introduction is that creating personalized HRTFs is impractical at scale due to the complexities of the HRTF measurement process. To mitigate this drawback, HRTF spatial upsampling has been proposed with the aim of reducing measurements required. While prior work has seen success with different machine learning (ML) approaches, these models often struggle with long-range spatial consistency and generalization at high upsampling factors. In this paper, we propose a novel transformer-based architecture for HRTF upsampling, leveraging the attention mechanism to better capture spatial correlations across the HRTF sphere. Working in the spherical harmonic (SH) domain, our model learns to reconstruct high-resolution HRTFs from sparse input measurements with significantly improved accuracy. To enhance spatial coherence, we introduce a neighbor dissimilarity loss that promotes magnitude smoothness, yielding more realistic upsampling. We evaluate our method using both perceptual localization models and objective spectral distortion metrics. Experiments show that our model surpasses leading methods by a substantial margin in generating realistic, high-fidelity HRTFs.

  • 7 authors
·
Oct 2, 2025

ConDaFormer: Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding

Transformers have been recently explored for 3D point cloud understanding with impressive progress achieved. A large number of points, over 0.1 million, make the global self-attention infeasible for point cloud data. Thus, most methods propose to apply the transformer in a local region, e.g., spherical or cubic window. However, it still contains a large number of Query-Key pairs, which requires high computational costs. In addition, previous methods usually learn the query, key, and value using a linear projection without modeling the local 3D geometric structure. In this paper, we attempt to reduce the costs and model the local geometry prior by developing a new transformer block, named ConDaFormer. Technically, ConDaFormer disassembles the cubic window into three orthogonal 2D planes, leading to fewer points when modeling the attention in a similar range. The disassembling operation is beneficial to enlarging the range of attention without increasing the computational complexity, but ignores some contexts. To provide a remedy, we develop a local structure enhancement strategy that introduces a depth-wise convolution before and after the attention. This scheme can also capture the local geometric information. Taking advantage of these designs, ConDaFormer captures both long-range contextual information and local priors. The effectiveness is demonstrated by experimental results on several 3D point cloud understanding benchmarks. Code is available at https://github.com/LHDuan/ConDaFormer .

  • 6 authors
·
Dec 18, 2023