new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 1

What to Remember: Self-Adaptive Continual Learning for Audio Deepfake Detection

The rapid evolution of speech synthesis and voice conversion has raised substantial concerns due to the potential misuse of such technology, prompting a pressing need for effective audio deepfake detection mechanisms. Existing detection models have shown remarkable success in discriminating known deepfake audio, but struggle when encountering new attack types. To address this challenge, one of the emergent effective approaches is continual learning. In this paper, we propose a continual learning approach called Radian Weight Modification (RWM) for audio deepfake detection. The fundamental concept underlying RWM involves categorizing all classes into two groups: those with compact feature distributions across tasks, such as genuine audio, and those with more spread-out distributions, like various types of fake audio. These distinctions are quantified by means of the in-class cosine distance, which subsequently serves as the basis for RWM to introduce a trainable gradient modification direction for distinct data types. Experimental evaluations against mainstream continual learning methods reveal the superiority of RWM in terms of knowledge acquisition and mitigating forgetting in audio deepfake detection. Furthermore, RWM's applicability extends beyond audio deepfake detection, demonstrating its potential significance in diverse machine learning domains such as image recognition.

  • 6 authors
·
Dec 15, 2023

ModHiFi: Identifying High Fidelity predictive components for Model Modification

Open weight models, which are ubiquitous, rarely provide access to their training data or loss function. This makes modifying such models for tasks such as pruning or unlearning constrained by this unavailability an active area of research. Existing techniques typically require gradients or ground-truth labels, rendering them infeasible in settings with limited computational resources. In this work, we investigate the fundamental question of identifying components that are critical to the model's predictive performance, without access to either gradients or the loss function, and with only distributional access such as synthetic data. We theoretically demonstrate that the global reconstruction error is linearly bounded by local reconstruction errors for Lipschitz-continuous networks such as CNNs and well-trained Transformers (which, contrary to existing literature, we find exhibit Lipschitz continuity). This motivates using the locally reconstructive behavior of component subsets to quantify their global importance, via a metric that we term Subset Fidelity. In the uncorrelated features setting, selecting individual components via their Subset Fidelity scores is optimal, which we use to propose ModHiFi, an algorithm for model modification that requires no training data or loss function access. ModHiFi-P, for structured pruning, achieves an 11% speedup over the current state of the art on ImageNet models and competitive performance on language models. ModHiFi-U, for classwise unlearning, achieves complete unlearning on CIFAR-10 without fine-tuning and demonstrates competitive performance on Swin Transformers.

  • 5 authors
·
Nov 24, 2025

Expose Before You Defend: Unifying and Enhancing Backdoor Defenses via Exposed Models

Backdoor attacks covertly implant triggers into deep neural networks (DNNs) by poisoning a small portion of the training data with pre-designed backdoor triggers. This vulnerability is exacerbated in the era of large models, where extensive (pre-)training on web-crawled datasets is susceptible to compromise. In this paper, we introduce a novel two-step defense framework named Expose Before You Defend (EBYD). EBYD unifies existing backdoor defense methods into a comprehensive defense system with enhanced performance. Specifically, EBYD first exposes the backdoor functionality in the backdoored model through a model preprocessing step called backdoor exposure, and then applies detection and removal methods to the exposed model to identify and eliminate the backdoor features. In the first step of backdoor exposure, we propose a novel technique called Clean Unlearning (CUL), which proactively unlearns clean features from the backdoored model to reveal the hidden backdoor features. We also explore various model editing/modification techniques for backdoor exposure, including fine-tuning, model sparsification, and weight perturbation. Using EBYD, we conduct extensive experiments on 10 image attacks and 6 text attacks across 2 vision datasets (CIFAR-10 and an ImageNet subset) and 4 language datasets (SST-2, IMDB, Twitter, and AG's News). The results demonstrate the importance of backdoor exposure for backdoor defense, showing that the exposed models can significantly benefit a range of downstream defense tasks, including backdoor label detection, backdoor trigger recovery, backdoor model detection, and backdoor removal. We hope our work could inspire more research in developing advanced defense frameworks with exposed models. Our code is available at: https://github.com/bboylyg/Expose-Before-You-Defend.

  • 5 authors
·
Oct 25, 2024

PTQTP: Post-Training Quantization to Trit-Planes for Large Language Models

Post-training quantization (PTQ) of large language models (LLMs) to extremely low bit-widths remains challenging due to the fundamental trade-off between computational efficiency and model expressiveness. While existing ultra-low-bit PTQ methods rely on binary approximations or complex compensation mechanisms, they suffer from either limited representational capacity or computational overhead that undermines their efficiency gains. We introduce PTQ to Trit-Planes (PTQTP), the first ternary-weight PTQ framework that decomposes weight matrices into structured ternary {-1, 0, 1} trit-planes using 2x1.58-bit representation. PTQTP achieves multiplication-free inference, identical to 1-bit quantization, while maintaining superior expressiveness through its novel structured decomposition. Our approach provides: (1) a theoretically grounded progressive approximation algorithm ensuring global weight consistency; (2) model-agnostic deployment across diverse modern LLMs without architectural modifications; and (3) uniform ternary operations that eliminate the need for mixed-precision or compensation schemes. Comprehensive experiments across LLaMA3.x and Qwen3 model families (0.6B-70B parameters) demonstrate that PTQTP significantly outperforms existing low-bit PTQ methods, achieving 82.4% mathematical reasoning retention versus 0% for competing approaches. PTQTP approaches and sometimes surpasses 1.58-bit quantization-aware training performance while requiring only single-hour quantization compared to 10-14 GPU days for training-based methods. These results establish PTQTP as a practical solution for efficient LLM deployment in resource-constrained environments.

  • 9 authors
·
Sep 21, 2025

ExpertWeave: Efficiently Serving Expert-Specialized Fine-Tuned Adapters at Scale

Expert-Specialized Fine-Tuning (ESFT) adapts Mixture-of-Experts (MoE) large language models to enhance their task-specific performance by selectively tuning the top-activated experts for the task. Serving these fine-tuned models at scale is challenging: deploying merged models in isolation is prohibitively resource-hungry, while existing multi-adapter serving systems with LoRA-style additive updates are incompatible with ESFT's expert-oriented paradigm. We present ExpertWeave, a system that serves multiple ESFT adapters concurrently over a single shared MoE base model, drastically reducing the memory footprint and improving resource utilization. To seamlessly integrate into existing inference pipelines for MoE models with non-intrusive modifications and minimal latency overhead, ExpertWeave introduces a virtual-memory-assisted expert weight manager that co-locates base-model and adapter experts without incurring memory overhead from fragmentation, and a fused kernel for batched rerouting to enable lightweight redirection of tokens to the appropriate experts at runtime. Our evaluations show that ExpertWeave can simultaneously serve multiple adapters of a 16B MoE model on a single accelerator where the baseline runs out of memory, or provides up to 94x more KV cache capacity and achieves up to 18% higher throughput while using comparable resources, all without compromising model accuracy. ExpertWeave maintains low overhead even when scaling to 20 adapters, with a 4-11% latency increase compared with serving the base model alone. Source code will be released soon.

  • 7 authors
·
Aug 24, 2025

ChocoLlama: Lessons Learned From Teaching Llamas Dutch

While Large Language Models (LLMs) have shown remarkable capabilities in natural language understanding and generation, their performance often lags in lower-resource, non-English languages due to biases in the training data. In this work, we explore strategies for adapting the primarily English LLMs (Llama-2 and Llama-3) to Dutch, a language spoken by 30 million people worldwide yet often underrepresented in LLM development. We collect 104GB of Dutch text (32B tokens) from various sources to first apply continued pretraining using low-rank adaptation (LoRA), complemented with Dutch posttraining strategies provided by prior work. For Llama-2, we consider using (i) the tokenizer of the original model, and (ii) training a new, Dutch-specific tokenizer combined with embedding reinitialization. We evaluate our adapted models, ChocoLlama-2, both on standard benchmarks and a novel Dutch benchmark, ChocoLlama-Bench. Our results demonstrate that LoRA can effectively scale for language adaptation, and that tokenizer modification with careful weight reinitialization can improve performance. Notably, Llama-3 was released during the course of this project and, upon evaluation, demonstrated superior Dutch capabilities compared to our Dutch-adapted versions of Llama-2. We hence apply the same adaptation technique to Llama-3, using its original tokenizer. While our adaptation methods enhanced Llama-2's Dutch capabilities, we found limited gains when applying the same techniques to Llama-3. This suggests that for ever improving, multilingual foundation models, language adaptation techniques may benefit more from focusing on language-specific posttraining rather than on continued pretraining. We hope this work contributes to the broader understanding of adapting LLMs to lower-resource languages, and to the development of Dutch LLMs in particular.

  • 6 authors
·
Dec 10, 2024

Counterfactuals for Design: A Model-Agnostic Method For Design Recommendations

We introduce Multi-Objective Counterfactuals for Design (MCD), a novel method for counterfactual optimization in design problems. Counterfactuals are hypothetical situations that can lead to a different decision or choice. In this paper, the authors frame the counterfactual search problem as a design recommendation tool that can help identify modifications to a design, leading to better functional performance. MCD improves upon existing counterfactual search methods by supporting multi-objective queries, which are crucial in design problems, and by decoupling the counterfactual search and sampling processes, thus enhancing efficiency and facilitating objective tradeoff visualization. The paper demonstrates MCD's core functionality using a two-dimensional test case, followed by three case studies of bicycle design that showcase MCD's effectiveness in real-world design problems. In the first case study, MCD excels at recommending modifications to query designs that can significantly enhance functional performance, such as weight savings and improvements to the structural safety factor. The second case study demonstrates that MCD can work with a pre-trained language model to suggest design changes based on a subjective text prompt effectively. Lastly, the authors task MCD with increasing a query design's similarity to a target image and text prompt while simultaneously reducing weight and improving structural performance, demonstrating MCD's performance on a complex multimodal query. Overall, MCD has the potential to provide valuable recommendations for practitioners and design automation researchers looking for answers to their ``What if'' questions by exploring hypothetical design modifications and their impact on multiple design objectives. The code, test problems, and datasets used in the paper are available to the public at decode.mit.edu/projects/counterfactuals/.

  • 3 authors
·
May 18, 2023

Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?

Given a robust model trained to be resilient to one or multiple types of distribution shifts (e.g., natural image corruptions), how is that "robustness" encoded in the model weights, and how easily can it be disentangled and/or "zero-shot" transferred to some other models? This paper empirically suggests a surprisingly simple answer: linearly - by straightforward model weight arithmetic! We start by drawing several key observations: (1)assuming that we train the same model architecture on both a clean dataset and its corrupted version, resultant weights mostly differ in shallow layers; (2)the weight difference after projection, which we call "Robust Weight Signature" (RWS), appears to be discriminative and indicative of different corruption types; (3)for the same corruption type, the RWSs obtained by one model architecture are highly consistent and transferable across different datasets. We propose a minimalistic model robustness "patching" framework that carries a model trained on clean data together with its pre-extracted RWSs. In this way, injecting certain robustness to the model is reduced to directly adding the corresponding RWS to its weight. We verify our proposed framework to be remarkably (1)lightweight. since RWSs concentrate on the shallowest few layers and we further show they can be painlessly quantized, storing an RWS is up to 13 x more compact than storing the full weight copy; (2)in-situ adjustable. RWSs can be appended as needed and later taken off to restore the intact clean model. We further demonstrate one can linearly re-scale the RWS to control the patched robustness strength; (3)composable. Multiple RWSs can be added simultaneously to patch more comprehensive robustness at once; and (4)transferable. Even when the clean model backbone is continually adapted or updated, RWSs remain as effective patches due to their outstanding cross-dataset transferability.

  • 3 authors
·
Feb 24, 2023

Bone: Block Affine Transformation as Parameter Efficient Fine-tuning Methods for Large Language Models

Low-Rank Adaptation (LoRA) has achieved remarkable training results by freezing the original weights and training only low-rank matrices, establishing itself as the predominant fine-tuning method for LLMs. In pursuit of performance closer to full-parameter training, a series of LoRA variants have emerged, such as LoRA+, PISSA, Olora, and LoRA-GA. However, these improvements complicate the initial setup of model training and increase initialization time. More importantly, they overlook the internal interactions of the original weight information. To address these issues, we introduce a novel theory, ``Weight Guide'' aimed at continuously guiding trainable matrices through the original weights during training to enhance the utilization of weight information. Based on this theory, we designed a new PEFT technique called Bone (Block Affine), which not only enhances the utilization of original weight information but also emphasizes the internal connections between weights, leading to faster convergence and better data fitting. Experimental comparisons across two different LLM architectures (LLaMA2, RWKV6) and various parameter scales demonstrate that the Bone structure can achieve rapid convergence and superior data fitting without the need for complex initialization. For example, when fine-tuning LLaMA2-7B on the MetaMathQA dataset and validating on GSM8k and math benchmarks, Bone achieved fine-tuning scores of 49.36 and 8.8, respectively, outperforming PISSA by 5.84\% and 1.96\%.

  • 1 authors
·
Sep 19, 2024