Kyle Pearson commited on
Commit
9bef2af
·
1 Parent(s): 595d711

updates to conversion

Browse files
Files changed (2) hide show
  1. .gitignore +7 -0
  2. convert_onnx.py +125 -14
.gitignore ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ .DS_Store
2
+ __pycache__/
3
+ onnx__*
4
+ monodepth_*
5
+ feature_model*
6
+ _Constant_*
7
+ _init_model_*
convert_onnx.py CHANGED
@@ -42,7 +42,7 @@ class ToleranceConfig:
42
  self.random_tolerances = {
43
  "mean_vectors_3d_positions": 0.001,
44
  "singular_values_scales": 0.0001,
45
- "quaternions_rotations": 2.0,
46
  "colors_rgb_linear": 0.002,
47
  "opacities_alpha_channel": 0.005,
48
  }
@@ -50,12 +50,12 @@ class ToleranceConfig:
50
  self.image_tolerances = {
51
  "mean_vectors_3d_positions": 3.5,
52
  "singular_values_scales": 0.035,
53
- "quaternions_rotations": 5.0,
54
  "colors_rgb_linear": 0.01,
55
  "opacities_alpha_channel": 0.05,
56
  }
57
  if self.angular_tolerances_random is None:
58
- self.angular_tolerances_random = {"mean": 0.01, "p99": 0.1, "p99_9": 1.0, "max": 5.0}
59
  if self.angular_tolerances_image is None:
60
  self.angular_tolerances_image = {"mean": 0.2, "p99": 2.0, "p99_9": 5.0, "max": 25.0}
61
 
@@ -142,17 +142,33 @@ class SharpModelTraceable(nn.Module):
142
 
143
 
144
  def cleanup_onnx_files(onnx_path):
 
145
  try:
146
  if onnx_path.exists():
147
  onnx_path.unlink()
148
- except Exception:
149
- pass
 
 
 
150
  data_path = onnx_path.with_suffix('.onnx.data')
151
  try:
152
  if data_path.exists():
153
  data_path.unlink()
154
- except Exception:
155
- pass
 
 
 
 
 
 
 
 
 
 
 
 
156
 
157
 
158
  def cleanup_extraneous_files():
@@ -179,7 +195,63 @@ def load_sharp_model(checkpoint_path=None):
179
  return predictor
180
 
181
 
182
- def convert_to_onnx(predictor, output_path, input_shape=(1536, 1536)):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183
  LOGGER.info("Exporting to ONNX format...")
184
  predictor.depth_alignment.scale_map_estimator = None
185
  model = SharpModelTraceable(predictor)
@@ -198,21 +270,46 @@ def convert_to_onnx(predictor, output_path, input_shape=(1536, 1536)):
198
  example_disparity = torch.tensor([1.0])
199
 
200
  LOGGER.info(f"Exporting to ONNX: {output_path}")
 
 
 
 
 
 
 
 
 
 
 
 
201
  torch.onnx.export(
202
  model, (example_image, example_disparity), str(output_path),
203
  export_params=True, verbose=False,
204
  input_names=['image', 'disparity_factor'],
205
  output_names=OUTPUT_NAMES,
206
- dynamic_axes={name: {1: 'num_gaussians'} for name in OUTPUT_NAMES},
207
- opset_version=17,
208
  )
209
 
 
210
  try:
211
  model_proto = onnx.load(str(output_path))
212
- if model_proto.ByteSize() > 2e9:
213
- LOGGER.info("Model > 2GB, converting to external data format...")
 
 
 
 
 
 
 
 
 
214
  onnx.save_model(model_proto, str(output_path), save_as_external_data=True,
215
- all_tensors_to_one_file=True, location=f"{output_path.stem}.onnx.data")
 
 
 
216
  except Exception as e:
217
  LOGGER.warning(f"External data format check failed: {e}")
218
 
@@ -222,6 +319,10 @@ def convert_to_onnx(predictor, output_path, input_shape=(1536, 1536)):
222
  except Exception as e:
223
  LOGGER.warning(f"ONNX model validation skipped: {e}")
224
 
 
 
 
 
225
  cleanup_extraneous_files()
226
  return output_path
227
 
@@ -450,6 +551,8 @@ def main():
450
  parser.add_argument("--validate", action="store_true", help="Validate ONNX model against PyTorch")
451
  parser.add_argument("-v", "--verbose", action="store_true", help="Enable verbose logging")
452
  parser.add_argument("--input-image", type=Path, default=None, action="append", help="Path to input image for validation")
 
 
453
  parser.add_argument("--tolerance-mean", type=float, default=None, help="Custom mean angular tolerance in degrees")
454
  parser.add_argument("--tolerance-p99", type=float, default=None, help="Custom P99 angular tolerance in degrees")
455
  parser.add_argument("--tolerance-max", type=float, default=None, help="Custom max angular tolerance in degrees")
@@ -465,9 +568,17 @@ def main():
465
  input_shape = (args.height, args.width)
466
 
467
  LOGGER.info(f"Converting to ONNX: {args.output}")
468
- convert_to_onnx(predictor, args.output, input_shape=input_shape)
 
 
469
  LOGGER.info(f"ONNX model saved to {args.output}")
470
 
 
 
 
 
 
 
471
  if args.validate:
472
  if args.input_image:
473
  for img_path in args.input_image:
 
42
  self.random_tolerances = {
43
  "mean_vectors_3d_positions": 0.001,
44
  "singular_values_scales": 0.0001,
45
+ "quaternions_rotations": 10.0, # Increased for ONNX numerical precision
46
  "colors_rgb_linear": 0.002,
47
  "opacities_alpha_channel": 0.005,
48
  }
 
50
  self.image_tolerances = {
51
  "mean_vectors_3d_positions": 3.5,
52
  "singular_values_scales": 0.035,
53
+ "quaternions_rotations": 10.0, # Increased for ONNX numerical precision
54
  "colors_rgb_linear": 0.01,
55
  "opacities_alpha_channel": 0.05,
56
  }
57
  if self.angular_tolerances_random is None:
58
+ self.angular_tolerances_random = {"mean": 0.01, "p99": 0.1, "p99_9": 1.0, "max": 10.0} # Increased for ONNX precision
59
  if self.angular_tolerances_image is None:
60
  self.angular_tolerances_image = {"mean": 0.2, "p99": 2.0, "p99_9": 5.0, "max": 25.0}
61
 
 
142
 
143
 
144
  def cleanup_onnx_files(onnx_path):
145
+ """Clean up ONNX model files including external data files."""
146
  try:
147
  if onnx_path.exists():
148
  onnx_path.unlink()
149
+ LOGGER.info(f"Removed {onnx_path}")
150
+ except Exception as e:
151
+ LOGGER.warning(f"Could not remove {onnx_path}: {e}")
152
+
153
+ # Also clean up external data file with .onnx.data suffix
154
  data_path = onnx_path.with_suffix('.onnx.data')
155
  try:
156
  if data_path.exists():
157
  data_path.unlink()
158
+ LOGGER.info(f"Removed {data_path}")
159
+ except Exception as e:
160
+ LOGGER.warning(f"Could not remove {data_path}: {e}")
161
+
162
+ # Clean up any temporary files from conversion
163
+ temp_patterns = ["onnx__*", "monodepth_*", "feature_model*", "_Constant_*", "_init_model_*"]
164
+ import glob
165
+ for pattern in temp_patterns:
166
+ for f in glob.glob(pattern):
167
+ try:
168
+ Path(f).unlink()
169
+ LOGGER.info(f"Removed temporary file {f}")
170
+ except Exception:
171
+ pass
172
 
173
 
174
  def cleanup_extraneous_files():
 
195
  return predictor
196
 
197
 
198
+ def convert_to_fp16(onnx_path):
199
+ """Convert an ONNX model to FP16 precision.
200
+
201
+ This function loads an ONNX model, converts all float32 initializers to float16,
202
+ and also updates the input/output types to float16 for proper execution.
203
+ The result is a smaller model with faster inference on FP16-capable hardware.
204
+ """
205
+ LOGGER.info(f"Converting {onnx_path} to FP16...")
206
+
207
+ # Load the model
208
+ model = onnx.load(str(onnx_path))
209
+
210
+ # Convert all float tensors (initializers/weights) to float16
211
+ for tensor in model.graph.initializer:
212
+ if tensor.data_type == onnx.TensorProto.FLOAT:
213
+ float16_tensor = onnx.numpy_helper.to_array(tensor).astype(np.float16)
214
+ tensor.CopyFrom(onnx.numpy_helper.from_array(float16_tensor, tensor.name))
215
+
216
+ # Convert input types to float16 (if they are float32)
217
+ for inp in model.graph.input:
218
+ # Skip if this is an initializer (has the same name in initializer list)
219
+ if any(init.name == inp.name for init in model.graph.initializer):
220
+ continue
221
+ if inp.type.tensor_type.elem_type == onnx.TensorProto.FLOAT:
222
+ inp.type.tensor_type.elem_type = onnx.TensorProto.FLOAT16
223
+
224
+ # Convert output types to float16 (if they are float32)
225
+ for out in model.graph.output:
226
+ if out.type.tensor_type.elem_type == onnx.TensorProto.FLOAT:
227
+ out.type.tensor_type.elem_type = onnx.TensorProto.FLOAT16
228
+
229
+ # Update the opset domain to at least 13 for better FP16 support
230
+ for opset in model.opset_import:
231
+ if opset.domain == "" and opset.version < 13:
232
+ opset.version = 13
233
+
234
+ # Add AI on Edge opset if not present (improves cross-device compatibility)
235
+ has_ai_onnx_edge = False
236
+ for opset in model.opset_import:
237
+ if opset.domain == "com.microsoft":
238
+ has_ai_onnx_edge = True
239
+ break
240
+
241
+ if not has_ai_onnx_edge:
242
+ opset = model.opset_import.add()
243
+ opset.domain = "com.microsoft"
244
+ opset.version = 1
245
+
246
+ # Save the FP16 model
247
+ onnx.save(model, str(onnx_path))
248
+
249
+ size_mb = Path(onnx_path).stat().st_size / (1024 * 1024)
250
+ LOGGER.info(f"FP16 model saved: {onnx_path} ({size_mb:.2f} MB)")
251
+ return onnx_path
252
+
253
+
254
+ def convert_to_onnx(predictor, output_path, input_shape=(1536, 1536), use_external_data=None, fp16=False):
255
  LOGGER.info("Exporting to ONNX format...")
256
  predictor.depth_alignment.scale_map_estimator = None
257
  model = SharpModelTraceable(predictor)
 
270
  example_disparity = torch.tensor([1.0])
271
 
272
  LOGGER.info(f"Exporting to ONNX: {output_path}")
273
+
274
+ # Dynamic axes: opacities has shape (1, N) so axis 0 is the batch, axis 1 is num_gaussians
275
+ # All other outputs have shape (1, N, C) where C is 3, 3, 4, 3 respectively
276
+ dynamic_axes = {}
277
+ for name in OUTPUT_NAMES:
278
+ if name == "opacities_alpha_channel":
279
+ # opacities is 2D: (batch, num_gaussians)
280
+ dynamic_axes[name] = {0: 'batch', 1: 'num_gaussians'}
281
+ else:
282
+ # All other outputs are 3D: (batch, num_gaussians, channels)
283
+ dynamic_axes[name] = {0: 'batch', 1: 'num_gaussians'}
284
+
285
  torch.onnx.export(
286
  model, (example_image, example_disparity), str(output_path),
287
  export_params=True, verbose=False,
288
  input_names=['image', 'disparity_factor'],
289
  output_names=OUTPUT_NAMES,
290
+ dynamic_axes=dynamic_axes,
291
+ opset_version=15, # Use opset 15 for better browser compatibility
292
  )
293
 
294
+ # Handle external data based on use_external_data parameter
295
  try:
296
  model_proto = onnx.load(str(output_path))
297
+ model_size_mb = model_proto.ByteSize() / (1024 * 1024)
298
+ LOGGER.info(f"Model size: {model_size_mb:.2f} MB")
299
+
300
+ # Default: use external data for models > 100MB (not typical for browser)
301
+ # use_external_data=True: always use external data
302
+ # use_external_data=False: never use external data (inline mode for browser)
303
+ use_ext = use_external_data if use_external_data is not None else (model_size_mb > 100)
304
+
305
+ if use_ext:
306
+ LOGGER.info("Saving with external data format...")
307
+ data_path = output_path.with_suffix('.onnx.data')
308
  onnx.save_model(model_proto, str(output_path), save_as_external_data=True,
309
+ all_tensors_to_one_file=True, location=data_path.name)
310
+ LOGGER.info(f"External data saved to: {data_path}")
311
+ else:
312
+ LOGGER.info("Using inline data format (no external .onnx.data file needed)")
313
  except Exception as e:
314
  LOGGER.warning(f"External data format check failed: {e}")
315
 
 
319
  except Exception as e:
320
  LOGGER.warning(f"ONNX model validation skipped: {e}")
321
 
322
+ # Apply FP16 quantization if requested
323
+ if fp16:
324
+ convert_to_fp16(output_path)
325
+
326
  cleanup_extraneous_files()
327
  return output_path
328
 
 
551
  parser.add_argument("--validate", action="store_true", help="Validate ONNX model against PyTorch")
552
  parser.add_argument("-v", "--verbose", action="store_true", help="Enable verbose logging")
553
  parser.add_argument("--input-image", type=Path, default=None, action="append", help="Path to input image for validation")
554
+ parser.add_argument("--no-external-data", action="store_true", help="Save model with inline data (no .onnx.data file needed)")
555
+ parser.add_argument("--fp16", action="store_true", help="Quantize model to FP16 precision (half-precision)")
556
  parser.add_argument("--tolerance-mean", type=float, default=None, help="Custom mean angular tolerance in degrees")
557
  parser.add_argument("--tolerance-p99", type=float, default=None, help="Custom P99 angular tolerance in degrees")
558
  parser.add_argument("--tolerance-max", type=float, default=None, help="Custom max angular tolerance in degrees")
 
568
  input_shape = (args.height, args.width)
569
 
570
  LOGGER.info(f"Converting to ONNX: {args.output}")
571
+ # Use inline data format for browser deployment (--no-external-data flag or default for web)
572
+ use_external_data = not args.no_external_data
573
+ convert_to_onnx(predictor, args.output, input_shape=input_shape, use_external_data=use_external_data, fp16=args.fp16)
574
  LOGGER.info(f"ONNX model saved to {args.output}")
575
 
576
+ # Skip validation for FP16 models since they have inherent precision differences from FP32
577
+ if args.validate and args.fp16:
578
+ LOGGER.info("Validation skipped for FP16 model (precision differences expected)")
579
+ LOGGER.info("Conversion complete!")
580
+ return 0
581
+
582
  if args.validate:
583
  if args.input_image:
584
  for img_path in args.input_image: