--- license: apple-amlr library_name: ml-sharp pipeline_tag: image-to-3d base_model: apple/Sharp tags: - onnx - monocular-view-synthesis - gaussian-splatting - quantization - fp16 --- # Sharp Monocular View Synthesis in Less Than a Second (ONNX Edition) [![Project Page](https://img.shields.io/badge/Project-Page-green)](https://apple.github.io/ml-sharp/) [![arXiv](https://img.shields.io/badge/arXiv-2512.10685-b31b1b.svg)](https://arxiv.org/abs/2512.10685) This software project is a communnity contribution and not affiliated with the original the research paper: > _Sharp Monocular View Synthesis in Less Than a Second_ by _Lars Mescheder, Wei Dong, Shiwei Li, Xuyang Bai, Marcel Santos, Peiyun Hu, Bruno Lecouat, Mingmin Zhen, Amaël Delaunoy, Tian Fang, Yanghai Tsin, Stephan Richter and Vladlen Koltun_. > We present SHARP, an approach to photorealistic view synthesis from a single image. Given a single photograph, SHARP regresses the parameters of a 3D Gaussian representation of the depicted scene. This is done in less than a second on a standard GPU via a single feedforward pass through a neural network. The 3D Gaussian representation produced by SHARP can then be rendered in real time, yielding high-resolution photorealistic images for nearby views. The representation is metric, with absolute scale, supporting metric camera movements. #### This release includes fully validated **ONNX** versions of SHARP (FP32 and FP16), optimized for cross-platform inference on Windows, Linux, and macOS. ![](viewer.gif) Rendered using [Splat Viewer](https://huggingface.co/spaces/pearsonkyle/Gaussian-Splat-Viewer) ## Getting started ### 🚀 Run Inference Use the provided [inference_onnx.py](inference_onnx.py) script to run SHARP inference: ```bash # Run inference with FP16 model (faster, smaller) python inference_onnx.py -m sharp_fp16.onnx -i test.png -o test.ply -d 0.5 ``` **CLI Options:** - `-m, --model`: Path to ONNX model file - `-i, --input`: Path to input image (PNG, JPEG, etc.) - `-o, --output`: Path for output PLY file - `-d, --decimate`: Decimation ratio 0.0-1.0 (default: 1.0 = keep all) - `--disparity-factor`: Depth scale factor (default: 1.0) - `--depth-scale`: Depth exaggeration factor (default: 1.0) **Features:** - Cross-platform ONNX Runtime inference (CPU/GPU) - Automatic image preprocessing and resizing - Gaussian decimation for reduced file sizes - PLY output compatible with all major 3D Gaussian viewers ## Model Input and Output ### 📥 Input The ONNX model accepts two inputs: - **`image`**: A 3-channel RGB image in `float32` format with shape `(1, 3, H, W)`. - Values expected in range `[0, 1]` (normalized RGB). - Recommended resolution: `1536×1536` (matches training size). - Aspect ratio preserved; input resized internally if needed. - **`disparity_factor`**: A scalar tensor of shape `(1,)` representing the ratio `focal_length / image_width`. - Use `1.0` for standard cameras (e.g., typical smartphone or DSLR). - Adjust to control depth scale: higher values = closer objects, lower values = farther scenes. ### 📤 Output The model outputs five tensors representing a 3D Gaussian splat representation: | Output | Shape | Description | |--------|-------|-------------| | `mean_vectors_3d_positions` | `(1, N, 3)` | 3D positions in Normalized Device Coordinates (NDC) — x, y, z. | | `singular_values_scales` | `(1, N, 3)` | Scale parameters along each principal axis (width, height, depth). | | `quaternions_rotations` | `(1, N, 4)` | Unit quaternions `[w, x, y, z]` encoding orientation of each Gaussian. | | `colors_rgb_linear` | `(1, N, 3)` | Linear RGB color values in range `[0, 1]` (no gamma correction). | | `opacities_alpha_channel` | `(1, N)` | Opacity (alpha) values per Gaussian, in range `[0, 1]`. | The total number of Gaussians `N` is approximately 1,179,648 for the default model. ## Model Conversion To convert SHARP from PyTorch to ONNX, use the provided conversion script: ```bash # Convert to FP32 ONNX (higher precision) python convert_onnx.py -o sharp.onnx --validate # Convert to FP16 ONNX (faster inference, smaller model) python convert_onnx.py -o sharp_fp16.onnx -q fp16 --validate ``` **Conversion Options:** - `-c, --checkpoint`: Path to PyTorch checkpoint (downloads from Apple if not provided) - `-o, --output`: Output ONNX model path - `-q, --quantize`: Quantization type (`fp16` for half-precision) - `--validate`: Validate converted model against PyTorch reference - `--input-image`: Path to test image for validation **Requirements:** - PyTorch and ml-sharp source code (automatically downloaded) - ONNX and ONNX Runtime for validation ## Citation If you find this work useful, please cite the original paper: ```bibtex @inproceedings{Sharp2025:arxiv, title = {Sharp Monocular View Synthesis in Less Than a Second}, author = {Lars Mescheder and Wei Dong and Shiwei Li and Xuyang Bai and Marcel Santos and Peiyun Hu and Bruno Lecouat and Mingmin Zhen and Ama\"{e}l Delaunoy and Tian Fang and Yanghai Tsin and Stephan R. Richter and Vladlen Koltun}, journal = {arXiv preprint arXiv:2512.10685}, year = {2025}, url = {https://arxiv.org/abs/2512.10685}, } ```