|
|
--- |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
- dense |
|
|
- generated_from_trainer |
|
|
- dataset_size:149460 |
|
|
- loss:ContrastiveLoss |
|
|
base_model: sentence-transformers/clip-ViT-B-32 |
|
|
widget: |
|
|
- source_sentence: Meltdown |
|
|
sentences: |
|
|
- Ancient Imperiosaur |
|
|
- https://cards.scryfall.io/normal/front/1/9/192ccc7f-ffb1-4f78-8cf0-a220df612be7.jpg?1682536817 |
|
|
- https://cards.scryfall.io/normal/front/5/6/56301392-3496-48d0-8d91-6b82e1164c98.jpg?1721427942 |
|
|
- source_sentence: Etali, Primal Storm |
|
|
sentences: |
|
|
- https://cards.scryfall.io/normal/front/4/8/4874388e-0227-4b89-a986-d86c14482c81.jpg?1594065427 |
|
|
- Battle of Wits |
|
|
- https://cards.scryfall.io/normal/front/1/d/1d3d8bb4-0430-45bb-930d-5d6db6521945.jpg?1587309687 |
|
|
- source_sentence: Chrome Prowler |
|
|
sentences: |
|
|
- https://cards.scryfall.io/normal/front/a/2/a263f594-621e-46af-8561-f7eee565a19a.jpg?1562643297 |
|
|
- https://cards.scryfall.io/normal/front/3/d/3dff363d-7e9f-4764-a9ee-ec2f23239df6.jpg?1562907900 |
|
|
- https://cards.scryfall.io/normal/front/2/1/21121857-85b8-4ba8-9363-beafdb1005c2.jpg?1730486782 |
|
|
- source_sentence: Beastbreaker of Bala Ged |
|
|
sentences: |
|
|
- https://cards.scryfall.io/normal/front/2/8/287ca034-9cea-4b84-98ba-76c24f038edb.jpg?1599709496 |
|
|
- https://cards.scryfall.io/normal/front/5/4/547f2641-bcd6-4536-ba5a-f46170dd2803.jpg?1573513110 |
|
|
- https://cards.scryfall.io/normal/front/4/c/4c29f6a1-42a5-433f-9c09-c160b096f8e1.jpg?1562542378 |
|
|
- source_sentence: Against All Odds |
|
|
sentences: |
|
|
- https://cards.scryfall.io/normal/front/4/a/4ab2f81a-fcbe-44d1-8281-04dd78bb9ea3.jpg?1593274931 |
|
|
- https://cards.scryfall.io/normal/front/3/c/3cd8dd4e-6892-49d7-8fae-97d04f9f6c84.jpg?1675956885 |
|
|
- Sheltering Prayers |
|
|
pipeline_tag: sentence-similarity |
|
|
library_name: sentence-transformers |
|
|
--- |
|
|
|
|
|
# SentenceTransformer based on sentence-transformers/clip-ViT-B-32 |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/clip-ViT-B-32](https://huggingface.co/sentence-transformers/clip-ViT-B-32). It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base model:** [sentence-transformers/clip-ViT-B-32](https://huggingface.co/sentence-transformers/clip-ViT-B-32) <!-- at revision 327ab6726d33c0e22f920c83f2ff9e4bd38ca37f --> |
|
|
- **Maximum Sequence Length:** 77 tokens |
|
|
- **Output Dimensionality:** None dimensions |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
<!-- - **Training Dataset:** Unknown --> |
|
|
<!-- - **Language:** Unknown --> |
|
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): CLIPModel() |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("philipp-zettl/MTGEmb-small") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'Against All Odds', |
|
|
'https://cards.scryfall.io/normal/front/3/c/3cd8dd4e-6892-49d7-8fae-97d04f9f6c84.jpg?1675956885', |
|
|
'https://cards.scryfall.io/normal/front/4/a/4ab2f81a-fcbe-44d1-8281-04dd78bb9ea3.jpg?1593274931', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 1024] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities) |
|
|
# tensor([[1.0000, 0.9248, 0.6695], |
|
|
# [0.9248, 1.0000, 0.6947], |
|
|
# [0.6695, 0.6947, 1.0000]]) |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Dataset |
|
|
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 149,460 training samples |
|
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | sentence_0 | sentence_1 | label | |
|
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| |
|
|
| type | string | string | int | |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 17.16 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 54.64 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>0: ~57.60%</li><li>1: ~42.40%</li></ul> | |
|
|
* Samples: |
|
|
| sentence_0 | sentence_1 | label | |
|
|
|:----------------------------------|:------------------------------------------------------------------------------------------------------------|:---------------| |
|
|
| <code>Comparative Analysis</code> | <code>https://cards.scryfall.io/normal/front/d/d/dd83129b-7e8c-4cc5-a7b3-e0ae221d7ad4.jpg?1562939549</code> | <code>1</code> | |
|
|
| <code>Breathkeeper Seraph</code> | <code>https://cards.scryfall.io/normal/front/1/b/1bdd3ecb-8c11-4a4c-a503-bc29f79a9dcb.jpg?1682204691</code> | <code>0</code> | |
|
|
| <code>Wei Infantry</code> | <code>https://cards.scryfall.io/normal/front/7/2/72c6465f-3144-4faf-b248-a9fb941dc002.jpg?1562257016</code> | <code>1</code> | |
|
|
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", |
|
|
"margin": 0.5, |
|
|
"size_average": true |
|
|
} |
|
|
``` |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `per_device_train_batch_size`: 64 |
|
|
- `per_device_eval_batch_size`: 64 |
|
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: no |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 64 |
|
|
- `per_device_eval_batch_size`: 64 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 1 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `torch_empty_cache_steps`: None |
|
|
- `learning_rate`: 5e-05 |
|
|
- `weight_decay`: 0.0 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.999 |
|
|
- `adam_epsilon`: 1e-08 |
|
|
- `max_grad_norm`: 1 |
|
|
- `num_train_epochs`: 3 |
|
|
- `max_steps`: -1 |
|
|
- `lr_scheduler_type`: linear |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.0 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: True |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `use_ipex`: False |
|
|
- `bf16`: False |
|
|
- `fp16`: False |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: None |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: False |
|
|
- `dataloader_num_workers`: 0 |
|
|
- `dataloader_prefetch_factor`: None |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: False |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.0 |
|
|
- `optim`: adamw_torch |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `ddp_find_unused_parameters`: None |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: False |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: False |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: None |
|
|
- `hub_strategy`: every_save |
|
|
- `hub_private_repo`: None |
|
|
- `hub_always_push`: False |
|
|
- `gradient_checkpointing`: False |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `include_for_metrics`: [] |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `dispatch_batches`: None |
|
|
- `split_batches`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: False |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `eval_on_start`: False |
|
|
- `use_liger_kernel`: False |
|
|
- `eval_use_gather_object`: False |
|
|
- `average_tokens_across_devices`: False |
|
|
- `prompts`: None |
|
|
- `batch_sampler`: batch_sampler |
|
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
- `router_mapping`: {} |
|
|
- `learning_rate_mapping`: {} |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
| Epoch | Step | Training Loss | |
|
|
|:------:|:----:|:-------------:| |
|
|
| 0.2140 | 500 | 0.0342 | |
|
|
| 0.4281 | 1000 | 0.0311 | |
|
|
| 0.6421 | 1500 | 0.0306 | |
|
|
| 0.8562 | 2000 | 0.0302 | |
|
|
| 1.0702 | 2500 | 0.0287 | |
|
|
| 1.2842 | 3000 | 0.0262 | |
|
|
| 1.4983 | 3500 | 0.025 | |
|
|
| 1.7123 | 4000 | 0.0236 | |
|
|
| 1.9264 | 4500 | 0.022 | |
|
|
| 2.1404 | 5000 | 0.016 | |
|
|
| 2.3545 | 5500 | 0.0128 | |
|
|
| 2.5685 | 6000 | 0.0119 | |
|
|
| 2.7825 | 6500 | 0.0108 | |
|
|
| 2.9966 | 7000 | 0.0103 | |
|
|
|
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.13.7 |
|
|
- Sentence Transformers: 5.1.2 |
|
|
- Transformers: 4.49.0 |
|
|
- PyTorch: 2.8.0+cu128 |
|
|
- Accelerate: 1.10.1 |
|
|
- Datasets: 4.1.1 |
|
|
- Tokenizers: 0.21.4 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
#### ContrastiveLoss |
|
|
```bibtex |
|
|
@inproceedings{hadsell2006dimensionality, |
|
|
author={Hadsell, R. and Chopra, S. and LeCun, Y.}, |
|
|
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, |
|
|
title={Dimensionality Reduction by Learning an Invariant Mapping}, |
|
|
year={2006}, |
|
|
volume={2}, |
|
|
number={}, |
|
|
pages={1735-1742}, |
|
|
doi={10.1109/CVPR.2006.100} |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |