philipp-zettl commited on
Commit
82eb7f4
·
verified ·
1 Parent(s): f360c26

End of training script.

Browse files
README.md ADDED
@@ -0,0 +1,423 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:294252
9
+ - loss:ContrastiveLoss
10
+ base_model: sentence-transformers/clip-ViT-B-32
11
+ widget:
12
+ - source_sentence: Ranger's Guile
13
+ sentences:
14
+ - https://cards.scryfall.io/normal/front/0/1/01388e24-d66f-40a8-af41-0f84dd8ed3fe.jpg?1562781768
15
+ - https://cards.scryfall.io/normal/front/2/0/20995638-e217-49f1-bccc-d1a344694fd8.jpg?1592711262
16
+ - https://cards.scryfall.io/normal/front/1/3/13680953-cf05-4e38-a3cf-22900c02fab7.jpg?1706240764
17
+ - source_sentence: '{2}, {T}: Choose one that hasn''t been chosen —
18
+
19
+ • This artifact deals 2 damage to target creature.
20
+
21
+ • Tap target creature.
22
+
23
+ • Sacrifice this artifact. You gain 3 life.'
24
+ sentences:
25
+ - Haunted Ridge
26
+ - https://cards.scryfall.io/normal/front/1/e/1ebb7ade-ebbb-49fb-b64f-fa247f9a9af6.jpg?1562544721
27
+ - Three Bowls of Porridge
28
+ - source_sentence: Soratami Mindsweeper
29
+ sentences:
30
+ - https://cards.scryfall.io/normal/front/c/1/c13eacff-0fd1-4e2e-8213-5bf5fff973c8.jpg?1593095724
31
+ - https://cards.scryfall.io/normal/front/6/7/67f55ef7-8479-4d56-9801-cb4fd5526e73.jpg?1675644776
32
+ - https://cards.scryfall.io/normal/front/0/e/0ef3b83a-777c-45b6-97a1-25be237df79b.jpg?1561932561
33
+ - source_sentence: 'Flying
34
+
35
+ Ward—Sacrifice a creature.
36
+
37
+ Whenever a creature dies, target opponent loses 2 life and you gain 2 life.'
38
+ sentences:
39
+ - https://cards.scryfall.io/normal/front/e/4/e4c7919a-de62-46df-a937-593647473ef5.jpg?1654567436
40
+ - https://cards.scryfall.io/normal/front/9/7/9712ecaa-4059-44ba-98b7-07bfe7411b5b.jpg?1562447340
41
+ - https://cards.scryfall.io/normal/front/0/7/078933b3-6d82-45f2-94e8-addf54cf1704.jpg?1706241798
42
+ - source_sentence: Glimpse of Freedom
43
+ sentences:
44
+ - https://cards.scryfall.io/normal/front/c/1/c1e9c025-1cdb-4da8-8d28-14ad5efb512d.jpg?1581479361
45
+ - https://cards.scryfall.io/normal/front/0/7/0770eb6a-4f01-4677-a401-14c1b30692c9.jpg?1673306796
46
+ - https://cards.scryfall.io/normal/front/3/3/333039ef-b328-4082-85ae-162caed5612e.jpg?1738358111
47
+ pipeline_tag: sentence-similarity
48
+ library_name: sentence-transformers
49
+ ---
50
+
51
+ # SentenceTransformer based on sentence-transformers/clip-ViT-B-32
52
+
53
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/clip-ViT-B-32](https://huggingface.co/sentence-transformers/clip-ViT-B-32). It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
54
+
55
+ ## Model Details
56
+
57
+ ### Model Description
58
+ - **Model Type:** Sentence Transformer
59
+ - **Base model:** [sentence-transformers/clip-ViT-B-32](https://huggingface.co/sentence-transformers/clip-ViT-B-32) <!-- at revision 327ab6726d33c0e22f920c83f2ff9e4bd38ca37f -->
60
+ - **Maximum Sequence Length:** 77 tokens
61
+ - **Output Dimensionality:** None dimensions
62
+ - **Similarity Function:** Cosine Similarity
63
+ <!-- - **Training Dataset:** Unknown -->
64
+ <!-- - **Language:** Unknown -->
65
+ <!-- - **License:** Unknown -->
66
+
67
+ ### Model Sources
68
+
69
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
70
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
71
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
72
+
73
+ ### Full Model Architecture
74
+
75
+ ```
76
+ SentenceTransformer(
77
+ (0): CLIPModel()
78
+ )
79
+ ```
80
+
81
+ ## Usage
82
+
83
+ ### Direct Usage (Sentence Transformers)
84
+
85
+ First install the Sentence Transformers library:
86
+
87
+ ```bash
88
+ pip install -U sentence-transformers
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+ ```python
93
+ from sentence_transformers import SentenceTransformer
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SentenceTransformer("philipp-zettl/MTGEmb-small")
97
+ # Run inference
98
+ sentences = [
99
+ 'Glimpse of Freedom',
100
+ 'https://cards.scryfall.io/normal/front/c/1/c1e9c025-1cdb-4da8-8d28-14ad5efb512d.jpg?1581479361',
101
+ 'https://cards.scryfall.io/normal/front/3/3/333039ef-b328-4082-85ae-162caed5612e.jpg?1738358111',
102
+ ]
103
+ embeddings = model.encode(sentences)
104
+ print(embeddings.shape)
105
+ # [3, 1024]
106
+
107
+ # Get the similarity scores for the embeddings
108
+ similarities = model.similarity(embeddings, embeddings)
109
+ print(similarities)
110
+ # tensor([[1.0000, 0.7515, 0.7515],
111
+ # [0.7515, 1.0000, 1.0000],
112
+ # [0.7515, 1.0000, 1.0000]])
113
+ ```
114
+
115
+ <!--
116
+ ### Direct Usage (Transformers)
117
+
118
+ <details><summary>Click to see the direct usage in Transformers</summary>
119
+
120
+ </details>
121
+ -->
122
+
123
+ <!--
124
+ ### Downstream Usage (Sentence Transformers)
125
+
126
+ You can finetune this model on your own dataset.
127
+
128
+ <details><summary>Click to expand</summary>
129
+
130
+ </details>
131
+ -->
132
+
133
+ <!--
134
+ ### Out-of-Scope Use
135
+
136
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
137
+ -->
138
+
139
+ <!--
140
+ ## Bias, Risks and Limitations
141
+
142
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
143
+ -->
144
+
145
+ <!--
146
+ ### Recommendations
147
+
148
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
149
+ -->
150
+
151
+ ## Training Details
152
+
153
+ ### Training Dataset
154
+
155
+ #### Unnamed Dataset
156
+
157
+ * Size: 294,252 training samples
158
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
159
+ * Approximate statistics based on the first 1000 samples:
160
+ | | sentence_0 | sentence_1 | label |
161
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
162
+ | type | string | string | int |
163
+ | details | <ul><li>min: 3 tokens</li><li>mean: 25.44 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 54.71 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>0: ~38.90%</li><li>1: ~61.10%</li></ul> |
164
+ * Samples:
165
+ | sentence_0 | sentence_1 | label |
166
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:---------------|
167
+ | <code>Flying<br>Ascend (If you control ten or more permanents, you get the city's blessing for the rest of the game.)<br>At the beginning of your upkeep, if you have the city's blessing, reveal the top card of your library and put it into your hand. Each opponent loses X life and you gain X life, where X is that card's mana value.</code> | <code>Twilight Prophet</code> | <code>1</code> |
168
+ | <code>Target creature gains deathtouch until end of turn and must be blocked this turn if able.<br>Flashback {G} (You may cast this card from your graveyard for its flashback cost. Then exile it.)</code> | <code>https://cards.scryfall.io/normal/front/f/2/f2c97632-3cf1-4b79-9d18-d8991654dcca.jpg?1562796910</code> | <code>0</code> |
169
+ | <code>Pay 1 life, Sacrifice another creature: Create a Treasure token. (It's an artifact with "{T}, Sacrifice this token: Add one mana of any color.")</code> | <code>https://cards.scryfall.io/normal/front/7/7/77c0929f-bee6-416d-8571-6540ae4f6e4f.jpg?1562879392</code> | <code>0</code> |
170
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
171
+ ```json
172
+ {
173
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
174
+ "margin": 0.5,
175
+ "size_average": true
176
+ }
177
+ ```
178
+
179
+ ### Training Hyperparameters
180
+ #### Non-Default Hyperparameters
181
+
182
+ - `per_device_train_batch_size`: 56
183
+ - `per_device_eval_batch_size`: 56
184
+ - `num_train_epochs`: 5
185
+ - `multi_dataset_batch_sampler`: round_robin
186
+
187
+ #### All Hyperparameters
188
+ <details><summary>Click to expand</summary>
189
+
190
+ - `overwrite_output_dir`: False
191
+ - `do_predict`: False
192
+ - `eval_strategy`: no
193
+ - `prediction_loss_only`: True
194
+ - `per_device_train_batch_size`: 56
195
+ - `per_device_eval_batch_size`: 56
196
+ - `per_gpu_train_batch_size`: None
197
+ - `per_gpu_eval_batch_size`: None
198
+ - `gradient_accumulation_steps`: 1
199
+ - `eval_accumulation_steps`: None
200
+ - `torch_empty_cache_steps`: None
201
+ - `learning_rate`: 5e-05
202
+ - `weight_decay`: 0.0
203
+ - `adam_beta1`: 0.9
204
+ - `adam_beta2`: 0.999
205
+ - `adam_epsilon`: 1e-08
206
+ - `max_grad_norm`: 1
207
+ - `num_train_epochs`: 5
208
+ - `max_steps`: -1
209
+ - `lr_scheduler_type`: linear
210
+ - `lr_scheduler_kwargs`: {}
211
+ - `warmup_ratio`: 0.0
212
+ - `warmup_steps`: 0
213
+ - `log_level`: passive
214
+ - `log_level_replica`: warning
215
+ - `log_on_each_node`: True
216
+ - `logging_nan_inf_filter`: True
217
+ - `save_safetensors`: True
218
+ - `save_on_each_node`: False
219
+ - `save_only_model`: False
220
+ - `restore_callback_states_from_checkpoint`: False
221
+ - `no_cuda`: False
222
+ - `use_cpu`: False
223
+ - `use_mps_device`: False
224
+ - `seed`: 42
225
+ - `data_seed`: None
226
+ - `jit_mode_eval`: False
227
+ - `use_ipex`: False
228
+ - `bf16`: False
229
+ - `fp16`: False
230
+ - `fp16_opt_level`: O1
231
+ - `half_precision_backend`: auto
232
+ - `bf16_full_eval`: False
233
+ - `fp16_full_eval`: False
234
+ - `tf32`: None
235
+ - `local_rank`: 0
236
+ - `ddp_backend`: None
237
+ - `tpu_num_cores`: None
238
+ - `tpu_metrics_debug`: False
239
+ - `debug`: []
240
+ - `dataloader_drop_last`: False
241
+ - `dataloader_num_workers`: 0
242
+ - `dataloader_prefetch_factor`: None
243
+ - `past_index`: -1
244
+ - `disable_tqdm`: False
245
+ - `remove_unused_columns`: True
246
+ - `label_names`: None
247
+ - `load_best_model_at_end`: False
248
+ - `ignore_data_skip`: False
249
+ - `fsdp`: []
250
+ - `fsdp_min_num_params`: 0
251
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
252
+ - `fsdp_transformer_layer_cls_to_wrap`: None
253
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
254
+ - `deepspeed`: None
255
+ - `label_smoothing_factor`: 0.0
256
+ - `optim`: adamw_torch
257
+ - `optim_args`: None
258
+ - `adafactor`: False
259
+ - `group_by_length`: False
260
+ - `length_column_name`: length
261
+ - `ddp_find_unused_parameters`: None
262
+ - `ddp_bucket_cap_mb`: None
263
+ - `ddp_broadcast_buffers`: False
264
+ - `dataloader_pin_memory`: True
265
+ - `dataloader_persistent_workers`: False
266
+ - `skip_memory_metrics`: True
267
+ - `use_legacy_prediction_loop`: False
268
+ - `push_to_hub`: False
269
+ - `resume_from_checkpoint`: None
270
+ - `hub_model_id`: None
271
+ - `hub_strategy`: every_save
272
+ - `hub_private_repo`: None
273
+ - `hub_always_push`: False
274
+ - `gradient_checkpointing`: False
275
+ - `gradient_checkpointing_kwargs`: None
276
+ - `include_inputs_for_metrics`: False
277
+ - `include_for_metrics`: []
278
+ - `eval_do_concat_batches`: True
279
+ - `fp16_backend`: auto
280
+ - `push_to_hub_model_id`: None
281
+ - `push_to_hub_organization`: None
282
+ - `mp_parameters`:
283
+ - `auto_find_batch_size`: False
284
+ - `full_determinism`: False
285
+ - `torchdynamo`: None
286
+ - `ray_scope`: last
287
+ - `ddp_timeout`: 1800
288
+ - `torch_compile`: False
289
+ - `torch_compile_backend`: None
290
+ - `torch_compile_mode`: None
291
+ - `dispatch_batches`: None
292
+ - `split_batches`: None
293
+ - `include_tokens_per_second`: False
294
+ - `include_num_input_tokens_seen`: False
295
+ - `neftune_noise_alpha`: None
296
+ - `optim_target_modules`: None
297
+ - `batch_eval_metrics`: False
298
+ - `eval_on_start`: False
299
+ - `use_liger_kernel`: False
300
+ - `eval_use_gather_object`: False
301
+ - `average_tokens_across_devices`: False
302
+ - `prompts`: None
303
+ - `batch_sampler`: batch_sampler
304
+ - `multi_dataset_batch_sampler`: round_robin
305
+ - `router_mapping`: {}
306
+ - `learning_rate_mapping`: {}
307
+
308
+ </details>
309
+
310
+ ### Training Logs
311
+ | Epoch | Step | Training Loss |
312
+ |:------:|:-----:|:-------------:|
313
+ | 0.0951 | 500 | 0.0269 |
314
+ | 0.1903 | 1000 | 0.0253 |
315
+ | 0.2854 | 1500 | 0.0253 |
316
+ | 0.3806 | 2000 | 0.0252 |
317
+ | 0.4757 | 2500 | 0.0252 |
318
+ | 0.5709 | 3000 | 0.0253 |
319
+ | 0.6660 | 3500 | 0.0252 |
320
+ | 0.7612 | 4000 | 0.0251 |
321
+ | 0.8563 | 4500 | 0.0251 |
322
+ | 0.9515 | 5000 | 0.0251 |
323
+ | 1.0466 | 5500 | 0.0251 |
324
+ | 1.1418 | 6000 | 0.0251 |
325
+ | 1.2369 | 6500 | 0.0252 |
326
+ | 1.3321 | 7000 | 0.0251 |
327
+ | 1.4272 | 7500 | 0.0252 |
328
+ | 1.5224 | 8000 | 0.0252 |
329
+ | 1.6175 | 8500 | 0.0251 |
330
+ | 1.7127 | 9000 | 0.0249 |
331
+ | 1.8078 | 9500 | 0.0252 |
332
+ | 1.9029 | 10000 | 0.025 |
333
+ | 1.9981 | 10500 | 0.0252 |
334
+ | 2.0932 | 11000 | 0.0251 |
335
+ | 2.1884 | 11500 | 0.0251 |
336
+ | 2.2835 | 12000 | 0.0252 |
337
+ | 2.3787 | 12500 | 0.0252 |
338
+ | 2.4738 | 13000 | 0.0251 |
339
+ | 2.5690 | 13500 | 0.025 |
340
+ | 2.6641 | 14000 | 0.025 |
341
+ | 2.7593 | 14500 | 0.0251 |
342
+ | 2.8544 | 15000 | 0.0251 |
343
+ | 2.9496 | 15500 | 0.0251 |
344
+ | 3.0447 | 16000 | 0.0251 |
345
+ | 3.1399 | 16500 | 0.0252 |
346
+ | 3.2350 | 17000 | 0.0251 |
347
+ | 3.3302 | 17500 | 0.025 |
348
+ | 3.4253 | 18000 | 0.0252 |
349
+ | 3.5205 | 18500 | 0.0251 |
350
+ | 3.6156 | 19000 | 0.025 |
351
+ | 3.7108 | 19500 | 0.0251 |
352
+ | 3.8059 | 20000 | 0.0252 |
353
+ | 3.9010 | 20500 | 0.025 |
354
+ | 3.9962 | 21000 | 0.025 |
355
+ | 4.0913 | 21500 | 0.0251 |
356
+ | 4.1865 | 22000 | 0.0251 |
357
+ | 4.2816 | 22500 | 0.025 |
358
+ | 4.3768 | 23000 | 0.025 |
359
+ | 4.4719 | 23500 | 0.025 |
360
+ | 4.5671 | 24000 | 0.0252 |
361
+ | 4.6622 | 24500 | 0.025 |
362
+ | 4.7574 | 25000 | 0.0252 |
363
+ | 4.8525 | 25500 | 0.025 |
364
+ | 4.9477 | 26000 | 0.025 |
365
+
366
+
367
+ ### Framework Versions
368
+ - Python: 3.13.7
369
+ - Sentence Transformers: 5.1.2
370
+ - Transformers: 4.49.0
371
+ - PyTorch: 2.8.0+cu128
372
+ - Accelerate: 1.10.1
373
+ - Datasets: 4.1.1
374
+ - Tokenizers: 0.21.4
375
+
376
+ ## Citation
377
+
378
+ ### BibTeX
379
+
380
+ #### Sentence Transformers
381
+ ```bibtex
382
+ @inproceedings{reimers-2019-sentence-bert,
383
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
384
+ author = "Reimers, Nils and Gurevych, Iryna",
385
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
386
+ month = "11",
387
+ year = "2019",
388
+ publisher = "Association for Computational Linguistics",
389
+ url = "https://arxiv.org/abs/1908.10084",
390
+ }
391
+ ```
392
+
393
+ #### ContrastiveLoss
394
+ ```bibtex
395
+ @inproceedings{hadsell2006dimensionality,
396
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
397
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
398
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
399
+ year={2006},
400
+ volume={2},
401
+ number={},
402
+ pages={1735-1742},
403
+ doi={10.1109/CVPR.2006.100}
404
+ }
405
+ ```
406
+
407
+ <!--
408
+ ## Glossary
409
+
410
+ *Clearly define terms in order to be accessible across audiences.*
411
+ -->
412
+
413
+ <!--
414
+ ## Model Card Authors
415
+
416
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
417
+ -->
418
+
419
+ <!--
420
+ ## Model Card Contact
421
+
422
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
423
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/phil/.cache/huggingface/hub/models--sentence-transformers--clip-ViT-B-32/snapshots/327ab6726d33c0e22f920c83f2ff9e4bd38ca37f/0_CLIPModel",
3
+ "architectures": [
4
+ "CLIPModel"
5
+ ],
6
+ "initializer_factor": 1.0,
7
+ "logit_scale_init_value": 2.6592,
8
+ "model_type": "clip",
9
+ "projection_dim": 512,
10
+ "text_config": {
11
+ "bos_token_id": 0,
12
+ "dropout": 0.0,
13
+ "eos_token_id": 2,
14
+ "gradient_checkpointing": false,
15
+ "model_type": "clip_text_model",
16
+ "torch_dtype": "float32"
17
+ },
18
+ "torch_dtype": "float32",
19
+ "transformers_version": "4.49.0",
20
+ "vision_config": {
21
+ "dropout": 0.0,
22
+ "gradient_checkpointing": false,
23
+ "model_type": "clip_vision_model",
24
+ "torch_dtype": "float32"
25
+ }
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "5.1.2",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.8.0+cu128"
6
+ },
7
+ "model_type": "SentenceTransformer",
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:341fc80e886d58cc50059de8b9b063bd1b9a39dc246dd10f13db826617cc9d66
3
+ size 605156676
modules.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.CLIPModel"
7
+ }
8
+ ]
preprocessor_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": {
3
+ "height": 224,
4
+ "width": 224
5
+ },
6
+ "do_center_crop": true,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_rescale": true,
10
+ "do_resize": true,
11
+ "image_mean": [
12
+ 0.48145466,
13
+ 0.4578275,
14
+ 0.40821073
15
+ ],
16
+ "image_processor_type": "CLIPImageProcessor",
17
+ "image_std": [
18
+ 0.26862954,
19
+ 0.26130258,
20
+ 0.27577711
21
+ ],
22
+ "processor_class": "CLIPProcessor",
23
+ "resample": 3,
24
+ "rescale_factor": 0.00392156862745098,
25
+ "size": {
26
+ "shortest_edge": 224
27
+ }
28
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|endoftext|>",
17
+ "unk_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "49406": {
5
+ "content": "<|startoftext|>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "49407": {
13
+ "content": "<|endoftext|>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ }
20
+ },
21
+ "bos_token": "<|startoftext|>",
22
+ "clean_up_tokenization_spaces": false,
23
+ "do_lower_case": true,
24
+ "eos_token": "<|endoftext|>",
25
+ "errors": "replace",
26
+ "extra_special_tokens": {},
27
+ "model_max_length": 77,
28
+ "pad_token": "<|endoftext|>",
29
+ "processor_class": "CLIPProcessor",
30
+ "tokenizer_class": "CLIPTokenizer",
31
+ "unk_token": "<|endoftext|>"
32
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff