pradhyumna2000's picture
Upload EVA Llama 4 Scout Financial LoRA adapters
d24cdea verified
---
license: llama3.1
base_model: meta-llama/Llama-4-Scout-17B-16E-Instruct
tags:
- finance
- lending
- credit-analysis
- lora
- mlx
- llama-4
language:
- en
pipeline_tag: text-generation
---
# EVA Financial AI - Llama 4 Scout LoRA Adapters
Fine-tuned LoRA adapters for commercial lending, credit analysis, and financial intelligence.
## Model Details
- **Base Model**: meta-llama/Llama-4-Scout-17B-16E-Instruct (MoE architecture)
- **Training Framework**: MLX (Apple Silicon optimized)
- **Quantization**: 4-bit
- **LoRA Rank**: Default
- **Training Data**: 42,505 examples from financial documents
## Training Data Sources
- Credit risk analysis documents
- Underwriting guidelines
- Loan product specifications
- Financial terminology definitions
- Equipment finance documentation
- Real estate lending guidelines
- SBA loan guidelines
- DSCR loan specifications
## Performance
| Metric | Value |
|--------|-------|
| Initial Val Loss | 2.905 |
| Final Val Loss | ~1.0 |
| Training Iterations | 2000 |
| Trainable Parameters | 91.75M (0.085%) |
## Usage with MLX
```python
from mlx_lm import load, generate
# Load base model with adapters
model, tokenizer = load(
"mlx-community/meta-llama-Llama-4-Scout-17B-16E-4bit",
adapter_path="evafiai/eva-llama4-scout-financial-lora"
)
# Generate
prompt = "What is a DSCR loan and what are typical requirements?"
response = generate(model, tokenizer, prompt=prompt, max_tokens=500)
print(response)
```
## Usage with Transformers + PEFT
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
device_map="auto",
torch_dtype="auto"
)
# Load LoRA adapters
model = PeftModel.from_pretrained(base_model, "evafiai/eva-llama4-scout-financial-lora")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-4-Scout-17B-16E-Instruct")
# Generate
inputs = tokenizer("What is DSCR?", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(outputs[0]))
```
## Capabilities
- **Credit Analysis**: Evaluate creditworthiness, FICO scores, tradelines
- **Loan Matching**: Match borrowers to appropriate lenders and products
- **DSCR Calculations**: Debt Service Coverage Ratio analysis
- **Underwriting**: Guidelines interpretation and documentation requirements
- **Financial Terminology**: Definitions and explanations of industry terms
## Limitations
- Optimized for commercial lending scenarios
- Best used with relevant context/RAG for specific lender products
- May require domain-specific prompting for best results
## License
This model inherits the Llama 3.1 Community License from the base model.
## Citation
```
@misc{eva-financial-ai-2024,
title={EVA Financial AI - Llama 4 Scout LoRA Adapters},
author={EVA Financial AI},
year={2024},
publisher={Hugging Face},
url={https://huggingface.co/evafiai/eva-llama4-scout-financial-lora}
}
```