|
|
--- |
|
|
license: llama3.1 |
|
|
base_model: meta-llama/Llama-4-Scout-17B-16E-Instruct |
|
|
tags: |
|
|
- finance |
|
|
- lending |
|
|
- credit-analysis |
|
|
- lora |
|
|
- mlx |
|
|
- llama-4 |
|
|
language: |
|
|
- en |
|
|
pipeline_tag: text-generation |
|
|
--- |
|
|
|
|
|
# EVA Financial AI - Llama 4 Scout LoRA Adapters |
|
|
|
|
|
Fine-tuned LoRA adapters for commercial lending, credit analysis, and financial intelligence. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
- **Base Model**: meta-llama/Llama-4-Scout-17B-16E-Instruct (MoE architecture) |
|
|
- **Training Framework**: MLX (Apple Silicon optimized) |
|
|
- **Quantization**: 4-bit |
|
|
- **LoRA Rank**: Default |
|
|
- **Training Data**: 42,505 examples from financial documents |
|
|
|
|
|
## Training Data Sources |
|
|
|
|
|
- Credit risk analysis documents |
|
|
- Underwriting guidelines |
|
|
- Loan product specifications |
|
|
- Financial terminology definitions |
|
|
- Equipment finance documentation |
|
|
- Real estate lending guidelines |
|
|
- SBA loan guidelines |
|
|
- DSCR loan specifications |
|
|
|
|
|
## Performance |
|
|
|
|
|
| Metric | Value | |
|
|
|--------|-------| |
|
|
| Initial Val Loss | 2.905 | |
|
|
| Final Val Loss | ~1.0 | |
|
|
| Training Iterations | 2000 | |
|
|
| Trainable Parameters | 91.75M (0.085%) | |
|
|
|
|
|
## Usage with MLX |
|
|
|
|
|
```python |
|
|
from mlx_lm import load, generate |
|
|
|
|
|
# Load base model with adapters |
|
|
model, tokenizer = load( |
|
|
"mlx-community/meta-llama-Llama-4-Scout-17B-16E-4bit", |
|
|
adapter_path="evafiai/eva-llama4-scout-financial-lora" |
|
|
) |
|
|
|
|
|
# Generate |
|
|
prompt = "What is a DSCR loan and what are typical requirements?" |
|
|
response = generate(model, tokenizer, prompt=prompt, max_tokens=500) |
|
|
print(response) |
|
|
``` |
|
|
|
|
|
## Usage with Transformers + PEFT |
|
|
|
|
|
```python |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
from peft import PeftModel |
|
|
|
|
|
# Load base model |
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
|
"meta-llama/Llama-4-Scout-17B-16E-Instruct", |
|
|
device_map="auto", |
|
|
torch_dtype="auto" |
|
|
) |
|
|
|
|
|
# Load LoRA adapters |
|
|
model = PeftModel.from_pretrained(base_model, "evafiai/eva-llama4-scout-financial-lora") |
|
|
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-4-Scout-17B-16E-Instruct") |
|
|
|
|
|
# Generate |
|
|
inputs = tokenizer("What is DSCR?", return_tensors="pt") |
|
|
outputs = model.generate(**inputs, max_new_tokens=200) |
|
|
print(tokenizer.decode(outputs[0])) |
|
|
``` |
|
|
|
|
|
## Capabilities |
|
|
|
|
|
- **Credit Analysis**: Evaluate creditworthiness, FICO scores, tradelines |
|
|
- **Loan Matching**: Match borrowers to appropriate lenders and products |
|
|
- **DSCR Calculations**: Debt Service Coverage Ratio analysis |
|
|
- **Underwriting**: Guidelines interpretation and documentation requirements |
|
|
- **Financial Terminology**: Definitions and explanations of industry terms |
|
|
|
|
|
## Limitations |
|
|
|
|
|
- Optimized for commercial lending scenarios |
|
|
- Best used with relevant context/RAG for specific lender products |
|
|
- May require domain-specific prompting for best results |
|
|
|
|
|
## License |
|
|
|
|
|
This model inherits the Llama 3.1 Community License from the base model. |
|
|
|
|
|
## Citation |
|
|
|
|
|
``` |
|
|
@misc{eva-financial-ai-2024, |
|
|
title={EVA Financial AI - Llama 4 Scout LoRA Adapters}, |
|
|
author={EVA Financial AI}, |
|
|
year={2024}, |
|
|
publisher={Hugging Face}, |
|
|
url={https://huggingface.co/evafiai/eva-llama4-scout-financial-lora} |
|
|
} |
|
|
``` |
|
|
|