pritamdeb68 commited on
Commit
6b748a6
·
verified ·
1 Parent(s): 0d24b4c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +125 -81
README.md CHANGED
@@ -1,11 +1,23 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
 
 
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
11
 
@@ -13,187 +25,219 @@ tags: []
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
 
 
 
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
 
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
 
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
81
 
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
96
 
97
- #### Speeds, Sizes, Times [optional]
 
 
 
 
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
 
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
 
 
 
112
 
113
- [More Information Needed]
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
  #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
124
 
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
 
 
 
 
130
 
131
- #### Summary
132
 
133
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
 
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
 
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
  #### Hardware
164
 
165
- [More Information Needed]
166
 
167
  #### Software
168
 
169
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - AI text detection
5
+ - human vs AI classification
6
+ - BERT fine-tuning
7
+ - Human vs AI text classification
8
+ - text-detection
9
+ license: mit
10
+ language:
11
+ - en
12
+ metrics:
13
+ - accuracy
14
+ base_model:
15
+ - google-bert/bert-base-uncased
16
  ---
17
+ # Model Card for BERT AI Detector
18
+
19
 
 
20
 
 
21
 
22
 
23
 
 
25
 
26
  ### Model Description
27
 
28
+ This model is a fine-tuned BERT designed to classify text as either AI-generated or human-written. The model was trained on data from the [Kaggle LLM Detect competition](https://www.kaggle.com/competitions/llm-detect-ai-generated-text/data) using variable-length text inputs ranging from 5 to 100 words. The fine-tuned model achieves high accuracy in identifying the source of the text, making it a valuable tool for detecting AI-generated content.
29
+
30
+
31
+
32
+
33
+
34
 
 
35
 
 
 
 
 
 
 
 
36
 
 
37
 
 
38
 
39
+
40
+ - **Developed by:** Pritam
41
+ - **Language(s) (NLP):** English
42
+ - **License:** Apache 2.0
43
+ - **Finetuned from model:** BERT (base-uncased)
44
+
45
+ ### Model Sources
46
+
47
+ - **Repository:** [Hugging Face Model Card](https://huggingface.co/pritam2014/BERTAIDetector)
48
+ - **Demo:** [Streamlit Interface](https://huggingface.co/spaces/pritam2014/BERTAIDetector)
49
+
50
 
51
  ## Uses
52
 
53
+
54
 
55
  ### Direct Use
56
 
57
+ The model is intended for use in detecting whether text is AI-generated or human-written. Users can input text snippets into the demo or directly integrate the model into their applications for automated content classification.
58
+
59
 
 
60
 
61
+ ### Downstream Use
62
 
63
+ Potential downstream uses include:
64
 
65
+ - Moderating AI-generated content in online platforms.
66
+ - Academic and journalistic content verification.
67
+ - Detecting plagiarism or misuse of AI writing tools.
68
 
69
  ### Out-of-Scope Use
70
 
71
+ The model is not suitable for:
72
 
73
+ - Detecting deeply paraphrased AI-generated text.
74
+ - Analysis of languages other than English.
75
+ - Scenarios where fairness and bias considerations are critical, as those have not been explicitly addressed.
76
 
77
  ## Bias, Risks, and Limitations
78
 
 
79
 
80
+
81
+
82
 
83
  ### Recommendations
84
 
85
+ Users should be aware that:
86
 
87
+ - The model may not perform well on text heavily modified from AI-generated content.
88
+ - It may produce false positives or false negatives due to the inherent limitations of the dataset or model architecture.
89
 
90
  ## How to Get Started with the Model
91
 
92
+ Use the following code snippet to load the model:
93
+
94
+ ```python
95
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
96
 
97
+ tokenizer = AutoTokenizer.from_pretrained("pritamdeb68/BERTAIDetector")
98
+ model = AutoModelForSequenceClassification.from_pretrained("pritamdeb68/BERTAIDetector")
99
+
100
+ text = "Your text here"
101
+ inputs = tokenizer(text, return_tensors="pt")
102
+ outputs = model(**inputs)
103
+ predictions = outputs.logits.argmax(dim=1).item()
104
+ print("AI-generated" if predictions == 1 else "Human-written")
105
+ ```
106
 
107
  ## Training Details
108
 
109
  ### Training Data
110
 
111
+ The training dataset was sourced from the [Kaggle LLM Detect competition](https://www.kaggle.com/competitions/llm-detect-ai-generated-text/data). The data includes examples of both AI-generated and human-written text, spanning various input lengths (5-100 words).
112
+
113
 
 
114
 
115
  ### Training Procedure
116
 
117
+ #### Preprocessing
118
 
 
119
 
 
120
 
121
 
 
122
 
123
+ - Text was tokenized using BERT's tokenizer.
124
+ - Input lengths ranged between 5 and 100 words, padded or truncated as necessary.
125
 
126
+ #### Training Hyperparameters
127
+
128
+ - **Batch Size:** 300
129
+ - **Optimizer:** AdamW
130
+ - **Learning Rate:** 1e-5
131
+ - **Epochs:** 1
132
 
133
+ #### Speeds, Sizes, Times
134
 
135
+ - **Training Time:** 1 hour 10 minutes
136
+ - **Hardware Used:** GPU (Kaggle T4 x 2)
137
+ - **Loss:** 0.12 on train data
138
 
139
  ## Evaluation
140
 
141
+
142
 
143
  ### Testing Data, Factors & Metrics
144
 
145
  #### Testing Data
146
 
147
+ Validation data from the Kaggle competition was used for evaluation.
148
+
149
+
150
+
151
+
152
 
 
153
 
 
154
 
 
155
 
 
156
 
157
  #### Metrics
158
 
159
+ - **Accuracy:** 96.65% on validation data.
160
+
161
 
 
162
 
163
  ### Results
164
 
165
+ The model achieved high accuracy and low validation loss, demonstrating its effectiveness for the task of AI text detection.
166
+
167
+
168
+
169
+
170
 
 
171
 
172
 
173
 
 
174
 
 
175
 
 
176
 
177
  ## Environmental Impact
178
 
179
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute):
180
+
181
+
182
 
183
+ - **Hardware Type:** Kaggle T4 (x2) GPU
184
+ - **Training Duration:** 1 hour 10 minutes
185
+ - **Compute Region:** Not specified
186
 
 
 
 
 
 
187
 
188
+
189
+ ## Technical Specifications
190
 
191
  ### Model Architecture and Objective
192
 
193
+ - **Model Architecture:** BERT (base-uncased) fine-tuned for text classification.
194
+ - **Objective:** Binary classification of text into AI-generated or human-written categories.
195
 
196
  ### Compute Infrastructure
197
 
198
+
199
 
200
  #### Hardware
201
 
202
+ - **Type:** Kaggle T4(x2) GPU
203
 
204
  #### Software
205
 
206
+ - **Framework:** PyTorch with Transformers library
207
+
208
+
209
+
210
+
211
+
212
+
213
+
214
+
215
+
216
+
217
+
218
+
219
 
 
220
 
 
221
 
 
222
 
 
223
 
 
224
 
 
225
 
 
226
 
 
227
 
 
228
 
 
229
 
 
230
 
 
231
 
232
+ ## Citation
233
 
234
+ If you use this model, please cite the repository:
235
 
236
+ ```
237
+ @inproceedings{pritam2024bertaidetector,
238
+ title={BERT AI Detector},
239
+ author={Pritam},
240
+ year={2024},
241
+ url={https://huggingface.co/pritam2014/BERTAIDetector}
242
+ }
243
+ ```