|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
|
|
import torch
|
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
|
from transformers.models.qwen2 import Qwen2ForCausalLM
|
|
|
|
|
|
from .configuration_dots import DotsVisionConfig, DotsOCRConfig
|
|
|
from .modeling_dots_vision import DotsVisionTransformer
|
|
|
|
|
|
|
|
|
DOTS_VLM_MAX_IMAGES = 200
|
|
|
|
|
|
|
|
|
class DotsOCRForCausalLM(Qwen2ForCausalLM):
|
|
|
config_class = DotsOCRConfig
|
|
|
|
|
|
def __init__(self, config: DotsOCRConfig):
|
|
|
super().__init__(config)
|
|
|
|
|
|
if isinstance(self.config.vision_config, dict):
|
|
|
vision_config = DotsVisionConfig(**self.config.vision_config)
|
|
|
self.config.vision_config = vision_config
|
|
|
else:
|
|
|
vision_config = self.config.vision_config
|
|
|
|
|
|
self.vision_tower = DotsVisionTransformer(vision_config)
|
|
|
|
|
|
def prepare_inputs_embeds(
|
|
|
self,
|
|
|
input_ids: torch.LongTensor,
|
|
|
pixel_values: Optional[torch.FloatTensor] = None,
|
|
|
grid_thw: Optional[torch.FloatTensor] = None,
|
|
|
img_mask: Optional[torch.BoolTensor] = None,
|
|
|
) -> torch.Tensor:
|
|
|
inputs_embeds = self.get_input_embeddings()(input_ids)
|
|
|
|
|
|
if pixel_values is not None:
|
|
|
assert img_mask is not None
|
|
|
if grid_thw.shape[0] > DOTS_VLM_MAX_IMAGES:
|
|
|
print(
|
|
|
f"Num image exceeded: {grid_thw.shape[0]} > {DOTS_VLM_MAX_IMAGES}, which may cause FSDP hang"
|
|
|
)
|
|
|
|
|
|
vision_embeddings = self.vision_tower(pixel_values, grid_thw)
|
|
|
|
|
|
true_indices = torch.nonzero(img_mask).squeeze()
|
|
|
if len(true_indices) > vision_embeddings.size(0):
|
|
|
print(
|
|
|
f"img_mask sum > VE and will be truncated, mask.sum()={len(true_indices)} {vision_embeddings.size(0)=}"
|
|
|
)
|
|
|
true_indices = true_indices[: vision_embeddings.size(0)]
|
|
|
new_img_mask = torch.zeros_like(img_mask, device=img_mask.device)
|
|
|
new_img_mask[true_indices[:, 0], true_indices[:, 1]] = True
|
|
|
else:
|
|
|
new_img_mask = img_mask
|
|
|
|
|
|
assert (
|
|
|
vision_embeddings.size(0) == new_img_mask.sum()
|
|
|
), f"{vision_embeddings.size(0)=}, {new_img_mask.sum()=}"
|
|
|
|
|
|
inputs_embeds = inputs_embeds.masked_scatter(
|
|
|
new_img_mask.to(inputs_embeds.device).unsqueeze(-1).expand_as(inputs_embeds),
|
|
|
vision_embeddings.to(inputs_embeds.device).type(inputs_embeds.dtype),
|
|
|
)
|
|
|
|
|
|
return inputs_embeds
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
input_ids: torch.LongTensor,
|
|
|
pixel_values: Optional[torch.FloatTensor] = None,
|
|
|
image_grid_thw: Optional[torch.FloatTensor] = None,
|
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
|
labels: Optional[torch.LongTensor] = None,
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
return_dict: Optional[bool] = None,
|
|
|
use_cache: Optional[bool] = None,
|
|
|
logits_to_keep: int = 0,
|
|
|
**loss_kwargs,
|
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
assert len(input_ids) >= 1, f"empty input_ids {input_ids.shape=} will cause gradnorm nan"
|
|
|
if inputs_embeds is None:
|
|
|
img_mask = input_ids == self.config.image_token_id
|
|
|
inputs_embeds = self.prepare_inputs_embeds(input_ids, pixel_values, image_grid_thw, img_mask)
|
|
|
|
|
|
outputs = super().forward(
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
attention_mask=attention_mask,
|
|
|
position_ids=position_ids,
|
|
|
past_key_values=past_key_values,
|
|
|
labels=labels,
|
|
|
use_cache=use_cache if use_cache is not None else self.config.use_cache,
|
|
|
output_attentions=output_attentions,
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
|
|
logits_to_keep=logits_to_keep,
|
|
|
**loss_kwargs,
|
|
|
)
|
|
|
|
|
|
return outputs
|
|
|
|
|
|
def prepare_inputs_for_generation(
|
|
|
self,
|
|
|
input_ids,
|
|
|
past_key_values=None,
|
|
|
inputs_embeds=None,
|
|
|
pixel_values=None,
|
|
|
attention_mask=None,
|
|
|
cache_position=None,
|
|
|
num_logits_to_keep=None,
|
|
|
**kwargs,
|
|
|
):
|
|
|
model_inputs = super().prepare_inputs_for_generation(
|
|
|
input_ids,
|
|
|
past_key_values=past_key_values,
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
attention_mask=attention_mask,
|
|
|
cache_position=cache_position,
|
|
|
num_logits_to_keep=num_logits_to_keep,
|
|
|
**kwargs,
|
|
|
)
|
|
|
|
|
|
if cache_position[0] == 0:
|
|
|
model_inputs["pixel_values"] = pixel_values
|
|
|
|
|
|
return model_inputs
|
|
|
|