prithivMLmods commited on
Commit
414871a
·
verified ·
1 Parent(s): 7386de3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +142 -1
README.md CHANGED
@@ -2,4 +2,145 @@
2
  license: apache-2.0
3
  base_model:
4
  - inclusionAI/ZwZ-8B
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
  base_model:
4
  - inclusionAI/ZwZ-8B
5
+ datasets:
6
+ - inclusionAI/ZwZ-RL-VQA
7
+ - inclusionAI/ZoomBench
8
+ language:
9
+ - en
10
+ pipeline_tag: image-text-to-text
11
+ library_name: transformers
12
+ tags:
13
+ - text-generation-inference
14
+ - F8_E4M3
15
+ - fp8
16
+ - vllm
17
+ - llm-compressor
18
+ ---
19
+
20
+ ![1](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/cJvpKspuxHdZNnkURe5jC.png)
21
+
22
+ # **ZwZ-8B-FP8**
23
+
24
+ > **ZwZ-8B-FP8** is an FP8-compressed evolution built on top of **inclusionAI/ZwZ-8B**. This variant leverages **BF16 · FP8 (F8_E4M3)** precision formats to significantly reduce memory footprint and improve inference efficiency while preserving the fine-grained multimodal perception strengths of the original architecture.
25
+ > The result is a highly efficient 8B vision-language model optimized for real-time, single-pass visual reasoning with enhanced hardware efficiency.
26
+
27
+ > [!important]
28
+ > FP8 (8-bit floating point) weight and activation quantization using hardware acceleration on GPUs – [FP8 W8A8](https://docs.vllm.ai/en/stable/features/quantization/fp8/). Quantization W8A8 FP8-dynamic recipe – [examples](https://github.com/vllm-project/llm-compressor/tree/main/examples/quantization_w8a8_fp8).
29
+
30
+ ## About the Base Model
31
+
32
+ **ZwZ-8B** from inclusionAI is an 8B-parameter fine-grained multimodal perception vision-language model built upon Qwen3-VL-8B. It is trained using innovative **Region-to-Image Distillation (R2I)** combined with reinforcement learning to achieve state-of-the-art visual understanding in a single forward pass.
33
+
34
+ Unlike traditional VLMs that require inference-time zooming, cropping, or tool calling, ZwZ internalizes region-level perception directly into full-image reasoning.
35
+
36
+ ### Key Innovations of ZwZ-8B
37
+
38
+ * **Region-to-Image Distillation (R2I)**:
39
+ Teacher models such as Qwen3-VL-235B and GLM-4.5V generate high-fidelity VQA supervision on micro-cropped image regions with precise bounding boxes. This region-grounded supervision is distilled back into full-image context, allowing the student model to internalize fine-grained perception.
40
+
41
+ * **Single-Pass Fine-Grained Understanding**:
42
+ Eliminates multi-step inference pipelines involving zooming, cropping, or external tool calls.
43
+
44
+ * **Strong Micro-Perception Capabilities**:
45
+
46
+ * OCR and small-text detection
47
+ * Object counting
48
+ * Color and material attribute recognition
49
+ * Structural analysis
50
+ * Symbol and icon detection in dense scenes
51
+
52
+ * **Out-of-Distribution Generalization**:
53
+ Demonstrates strong performance on:
54
+
55
+ * Visual reasoning benchmarks
56
+ * GUI agent tasks
57
+ * AIGC detection
58
+ * Complex real-world scenes
59
+
60
+ * **Edge-Optimized Deployment**:
61
+ Enables real-time robotics and mobile vision applications without multi-stage inference overhead.
62
+
63
+ ZwZ is part of a broader model family spanning 4B, 7B, and 8B scales.
64
+
65
+ ## What FP8 Adds
66
+
67
+ The **ZwZ-8B-FP8** variant introduces:
68
+
69
+ * **BF16 · FP8 (F8_E4M3) Compression**: Transformer Engine–based quantization reduces VRAM usage while maintaining strong perception fidelity.
70
+ * **Higher Throughput**: Improved tokens per second and image processing speed.
71
+ * **Lower Memory Footprint**: Better deployment feasibility on Hopper-class and compatible GPUs.
72
+ * **Production-Friendly Efficiency**: Ideal for real-time multimodal systems requiring compact yet powerful perception models.
73
+
74
+ ## Quick Start with Transformers
75
+
76
+ ```python
77
+ from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
78
+ from qwen_vl_utils import process_vision_info
79
+ import torch
80
+
81
+ # Load the FP8-compressed ZwZ-8B model
82
+ model = Qwen3VLForConditionalGeneration.from_pretrained(
83
+ "prithivMLmods/ZwZ-8B-FP8",
84
+ torch_dtype="auto",
85
+ device_map="auto"
86
+ )
87
+
88
+ processor = AutoProcessor.from_pretrained(
89
+ "prithivMLmods/ZwZ-8B-FP8"
90
+ )
91
+
92
+ messages = [
93
+ {
94
+ "role": "user",
95
+ "content": [
96
+ {
97
+ "type": "image",
98
+ "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
99
+ },
100
+ {"type": "text", "text": "Analyze the fine-grained details in this image."},
101
+ ],
102
+ }
103
+ ]
104
+
105
+ text = processor.apply_chat_template(
106
+ messages, tokenize=False, add_generation_prompt=True
107
+ )
108
+
109
+ image_inputs, video_inputs = process_vision_info(messages)
110
+
111
+ inputs = processor(
112
+ text=[text],
113
+ images=image_inputs,
114
+ videos=video_inputs,
115
+ padding=True,
116
+ return_tensors="pt",
117
+ ).to("cuda")
118
+
119
+ generated_ids = model.generate(**inputs, max_new_tokens=256)
120
+
121
+ generated_ids_trimmed = [
122
+ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
123
+ ]
124
+
125
+ output_text = processor.batch_decode(
126
+ generated_ids_trimmed,
127
+ skip_special_tokens=True,
128
+ clean_up_tokenization_spaces=False
129
+ )
130
+
131
+ print(output_text)
132
+ ```
133
+
134
+ ## Intended Use
135
+
136
+ * Real-time multimodal perception systems
137
+ * Robotics and embodied AI
138
+ * GUI agents
139
+ * OCR-heavy and structured visual environments
140
+ * Edge deployment scenarios requiring single-pass inference
141
+
142
+ ## Limitations & Risks
143
+
144
+ * FP8 requires compatible GPU architectures for optimal acceleration.
145
+ * While compression maintains strong fidelity, extremely fine-grained edge cases may show minor precision differences compared to full BF16.
146
+ * Users are responsible for ethical and lawful deployment.