Training in progress, step 600, checkpoint
Browse files- checkpoint-600/README.md +202 -0
- checkpoint-600/adapter_config.json +34 -0
- checkpoint-600/adapter_model.safetensors +3 -0
- checkpoint-600/added_tokens.json +13 -0
- checkpoint-600/global_step600/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-600/global_step600/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-600/global_step600/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-600/global_step600/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-600/global_step600/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-600/global_step600/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-600/global_step600/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-600/global_step600/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-600/global_step600/mp_rank_00_model_states.pt +3 -0
- checkpoint-600/latest +1 -0
- checkpoint-600/rng_state_0.pth +3 -0
- checkpoint-600/rng_state_1.pth +3 -0
- checkpoint-600/rng_state_2.pth +3 -0
- checkpoint-600/rng_state_3.pth +3 -0
- checkpoint-600/rng_state_4.pth +3 -0
- checkpoint-600/rng_state_5.pth +3 -0
- checkpoint-600/rng_state_6.pth +3 -0
- checkpoint-600/rng_state_7.pth +3 -0
- checkpoint-600/scheduler.pt +3 -0
- checkpoint-600/special_tokens_map.json +30 -0
- checkpoint-600/tokenizer.json +0 -0
- checkpoint-600/tokenizer.model +3 -0
- checkpoint-600/tokenizer_config.json +133 -0
- checkpoint-600/trainer_state.json +1125 -0
- checkpoint-600/training_args.bin +3 -0
- checkpoint-600/zero_to_fp32.py +674 -0
checkpoint-600/README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: microsoft/Phi-3-mini-4k-instruct
|
| 3 |
+
library_name: peft
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.14.0
|
checkpoint-600/adapter_config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"eva_config": null,
|
| 7 |
+
"exclude_modules": null,
|
| 8 |
+
"fan_in_fan_out": false,
|
| 9 |
+
"inference_mode": true,
|
| 10 |
+
"init_lora_weights": true,
|
| 11 |
+
"layer_replication": null,
|
| 12 |
+
"layers_pattern": null,
|
| 13 |
+
"layers_to_transform": null,
|
| 14 |
+
"loftq_config": {},
|
| 15 |
+
"lora_alpha": 16,
|
| 16 |
+
"lora_bias": false,
|
| 17 |
+
"lora_dropout": 0.0,
|
| 18 |
+
"megatron_config": null,
|
| 19 |
+
"megatron_core": "megatron.core",
|
| 20 |
+
"modules_to_save": null,
|
| 21 |
+
"peft_type": "LORA",
|
| 22 |
+
"r": 8,
|
| 23 |
+
"rank_pattern": {},
|
| 24 |
+
"revision": null,
|
| 25 |
+
"target_modules": [
|
| 26 |
+
"qkv_proj",
|
| 27 |
+
"gate_up_proj",
|
| 28 |
+
"o_proj",
|
| 29 |
+
"down_proj"
|
| 30 |
+
],
|
| 31 |
+
"task_type": "CAUSAL_LM",
|
| 32 |
+
"use_dora": false,
|
| 33 |
+
"use_rslora": false
|
| 34 |
+
}
|
checkpoint-600/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7ebed5a6e0e4120e359607874dba662f9213b8c5471c19eb810814b2e5768cc0
|
| 3 |
+
size 25200088
|
checkpoint-600/added_tokens.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<|assistant|>": 32001,
|
| 3 |
+
"<|endoftext|>": 32000,
|
| 4 |
+
"<|end|>": 32007,
|
| 5 |
+
"<|placeholder1|>": 32002,
|
| 6 |
+
"<|placeholder2|>": 32003,
|
| 7 |
+
"<|placeholder3|>": 32004,
|
| 8 |
+
"<|placeholder4|>": 32005,
|
| 9 |
+
"<|placeholder5|>": 32008,
|
| 10 |
+
"<|placeholder6|>": 32009,
|
| 11 |
+
"<|system|>": 32006,
|
| 12 |
+
"<|user|>": 32010
|
| 13 |
+
}
|
checkpoint-600/global_step600/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:deb7547998da927dd1c98c208e6838f32881b1fe7be5b3ef9c00e80fb5bceaaa
|
| 3 |
+
size 18881328
|
checkpoint-600/global_step600/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a7ae58d98ac7c8e0107e1a91d1f9a0b27d38831b3b718492f59d1effb6059a8e
|
| 3 |
+
size 18881328
|
checkpoint-600/global_step600/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5ff58431171e6c219b46d20203ec7c433144161c9a45b94ea7413c7386ff1b09
|
| 3 |
+
size 18881328
|
checkpoint-600/global_step600/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:41d9a8b073398745290fd9533e158574171de881350b1fb6dc0bf6b695100e02
|
| 3 |
+
size 18881392
|
checkpoint-600/global_step600/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:88efbc5bfb6ea9cd46be4a8478ecd21e6811adc1d6167d4b581032ce43815f59
|
| 3 |
+
size 18881392
|
checkpoint-600/global_step600/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:46fe747e314b7d6a275655a049e952d2825a8194995193a3f2e6214cc0364518
|
| 3 |
+
size 18881392
|
checkpoint-600/global_step600/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bb16ee1df573366db9a3ef2f2c35f504029d798336a59db645e5743af1e4e271
|
| 3 |
+
size 18881392
|
checkpoint-600/global_step600/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dad64c20fe214640c981464f4f4b853097572e2a62029699193d19fb7a01658c
|
| 3 |
+
size 18881392
|
checkpoint-600/global_step600/mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4666c787c8a0a1e8bf0a870665b77b80a70a1972f3e9f182faaf125349cf1448
|
| 3 |
+
size 25379244
|
checkpoint-600/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step600
|
checkpoint-600/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a1bec598899f9d59e70c1b4705ce420a1e0a670957b6c8153a589880068ae5a4
|
| 3 |
+
size 15984
|
checkpoint-600/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c60d2348aae518f4c44693db9c9b4b3a3299c556e7f0a86c188b2e4c3e364a7c
|
| 3 |
+
size 15984
|
checkpoint-600/rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ffe5a79d3bcb4ce033de360bc765e616316e3562aba25887cd85c4adbb935abf
|
| 3 |
+
size 15984
|
checkpoint-600/rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a9a9d1f6e22677721841890e6a27855857e6840137650d609eb8e4ac13b71d29
|
| 3 |
+
size 15984
|
checkpoint-600/rng_state_4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bcac4ff84388a6a4fe3bcae6207c68b2ee5528fb3b6de8cc3588fe1975462aa5
|
| 3 |
+
size 15984
|
checkpoint-600/rng_state_5.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:33fce3cdf5c1b8a8a291e0c73b384e3ad5252640e21e942b44b26b8b0928ffa9
|
| 3 |
+
size 15984
|
checkpoint-600/rng_state_6.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:919e675f3bcaf4f3c8ba35cd8debf85aec3bbc3c8e5019b74431e0a314e4d37a
|
| 3 |
+
size 15984
|
checkpoint-600/rng_state_7.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8bf6479ce82b88efc6a72a8ee512162b3d0ecab972817296d38ab9c448bb8d96
|
| 3 |
+
size 15984
|
checkpoint-600/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a0f69c8f42aeef567739a2ab3bf6d82981f954280a1b6bb6b93d2acf96999ac5
|
| 3 |
+
size 1064
|
checkpoint-600/special_tokens_map.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|end|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "<|endoftext|>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"unk_token": {
|
| 24 |
+
"content": "<unk>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
}
|
| 30 |
+
}
|
checkpoint-600/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-600/tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
| 3 |
+
size 499723
|
checkpoint-600/tokenizer_config.json
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": null,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": true,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": false
|
| 29 |
+
},
|
| 30 |
+
"32000": {
|
| 31 |
+
"content": "<|endoftext|>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"32001": {
|
| 39 |
+
"content": "<|assistant|>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": true,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
},
|
| 46 |
+
"32002": {
|
| 47 |
+
"content": "<|placeholder1|>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": true,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": true
|
| 53 |
+
},
|
| 54 |
+
"32003": {
|
| 55 |
+
"content": "<|placeholder2|>",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"rstrip": true,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": true
|
| 61 |
+
},
|
| 62 |
+
"32004": {
|
| 63 |
+
"content": "<|placeholder3|>",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": false,
|
| 66 |
+
"rstrip": true,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": true
|
| 69 |
+
},
|
| 70 |
+
"32005": {
|
| 71 |
+
"content": "<|placeholder4|>",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": false,
|
| 74 |
+
"rstrip": true,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": true
|
| 77 |
+
},
|
| 78 |
+
"32006": {
|
| 79 |
+
"content": "<|system|>",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": false,
|
| 82 |
+
"rstrip": true,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": true
|
| 85 |
+
},
|
| 86 |
+
"32007": {
|
| 87 |
+
"content": "<|end|>",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": false,
|
| 90 |
+
"rstrip": false,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": true
|
| 93 |
+
},
|
| 94 |
+
"32008": {
|
| 95 |
+
"content": "<|placeholder5|>",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": false,
|
| 98 |
+
"rstrip": true,
|
| 99 |
+
"single_word": false,
|
| 100 |
+
"special": true
|
| 101 |
+
},
|
| 102 |
+
"32009": {
|
| 103 |
+
"content": "<|placeholder6|>",
|
| 104 |
+
"lstrip": false,
|
| 105 |
+
"normalized": false,
|
| 106 |
+
"rstrip": true,
|
| 107 |
+
"single_word": false,
|
| 108 |
+
"special": true
|
| 109 |
+
},
|
| 110 |
+
"32010": {
|
| 111 |
+
"content": "<|user|>",
|
| 112 |
+
"lstrip": false,
|
| 113 |
+
"normalized": false,
|
| 114 |
+
"rstrip": true,
|
| 115 |
+
"single_word": false,
|
| 116 |
+
"special": true
|
| 117 |
+
}
|
| 118 |
+
},
|
| 119 |
+
"bos_token": "<s>",
|
| 120 |
+
"chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
|
| 121 |
+
"clean_up_tokenization_spaces": false,
|
| 122 |
+
"eos_token": "<|end|>",
|
| 123 |
+
"extra_special_tokens": {},
|
| 124 |
+
"legacy": false,
|
| 125 |
+
"model_max_length": 4096,
|
| 126 |
+
"pad_token": "<|endoftext|>",
|
| 127 |
+
"padding_side": "right",
|
| 128 |
+
"sp_model_kwargs": {},
|
| 129 |
+
"split_special_tokens": false,
|
| 130 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 131 |
+
"unk_token": "<unk>",
|
| 132 |
+
"use_default_system_prompt": false
|
| 133 |
+
}
|
checkpoint-600/trainer_state.json
ADDED
|
@@ -0,0 +1,1125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.5156854318865493,
|
| 5 |
+
"eval_steps": 50,
|
| 6 |
+
"global_step": 600,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.008594757198109154,
|
| 13 |
+
"grad_norm": 0.06708361208438873,
|
| 14 |
+
"learning_rate": 4.999451708687114e-06,
|
| 15 |
+
"logits/chosen": 14.524938583374023,
|
| 16 |
+
"logits/rejected": 14.82593822479248,
|
| 17 |
+
"logps/chosen": -0.31433865427970886,
|
| 18 |
+
"logps/rejected": -0.32406437397003174,
|
| 19 |
+
"loss": 0.9442,
|
| 20 |
+
"rewards/accuracies": 0.4124999940395355,
|
| 21 |
+
"rewards/chosen": -0.4715079367160797,
|
| 22 |
+
"rewards/margins": 0.014588532969355583,
|
| 23 |
+
"rewards/rejected": -0.48609647154808044,
|
| 24 |
+
"step": 10
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 0.017189514396218308,
|
| 28 |
+
"grad_norm": 0.056814808398485184,
|
| 29 |
+
"learning_rate": 4.997807075247147e-06,
|
| 30 |
+
"logits/chosen": 14.309213638305664,
|
| 31 |
+
"logits/rejected": 14.978128433227539,
|
| 32 |
+
"logps/chosen": -0.31283506751060486,
|
| 33 |
+
"logps/rejected": -0.3911947011947632,
|
| 34 |
+
"loss": 0.928,
|
| 35 |
+
"rewards/accuracies": 0.550000011920929,
|
| 36 |
+
"rewards/chosen": -0.46925264596939087,
|
| 37 |
+
"rewards/margins": 0.1175394207239151,
|
| 38 |
+
"rewards/rejected": -0.5867919921875,
|
| 39 |
+
"step": 20
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"epoch": 0.02578427159432746,
|
| 43 |
+
"grad_norm": 0.061199307441711426,
|
| 44 |
+
"learning_rate": 4.9950668210706795e-06,
|
| 45 |
+
"logits/chosen": 14.68384075164795,
|
| 46 |
+
"logits/rejected": 15.338122367858887,
|
| 47 |
+
"logps/chosen": -0.3007296621799469,
|
| 48 |
+
"logps/rejected": -0.3204456865787506,
|
| 49 |
+
"loss": 0.9439,
|
| 50 |
+
"rewards/accuracies": 0.4375,
|
| 51 |
+
"rewards/chosen": -0.45109447836875916,
|
| 52 |
+
"rewards/margins": 0.029573997482657433,
|
| 53 |
+
"rewards/rejected": -0.48066848516464233,
|
| 54 |
+
"step": 30
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"epoch": 0.034379028792436615,
|
| 58 |
+
"grad_norm": 0.08423774689435959,
|
| 59 |
+
"learning_rate": 4.9912321481237616e-06,
|
| 60 |
+
"logits/chosen": 14.39265251159668,
|
| 61 |
+
"logits/rejected": 15.059102058410645,
|
| 62 |
+
"logps/chosen": -0.28216058015823364,
|
| 63 |
+
"logps/rejected": -0.33495840430259705,
|
| 64 |
+
"loss": 0.9184,
|
| 65 |
+
"rewards/accuracies": 0.4124999940395355,
|
| 66 |
+
"rewards/chosen": -0.42324090003967285,
|
| 67 |
+
"rewards/margins": 0.07919676601886749,
|
| 68 |
+
"rewards/rejected": -0.5024376511573792,
|
| 69 |
+
"step": 40
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"epoch": 0.042973785990545764,
|
| 73 |
+
"grad_norm": 0.06052614375948906,
|
| 74 |
+
"learning_rate": 4.986304738420684e-06,
|
| 75 |
+
"logits/chosen": 14.383735656738281,
|
| 76 |
+
"logits/rejected": 15.029413223266602,
|
| 77 |
+
"logps/chosen": -0.27970507740974426,
|
| 78 |
+
"logps/rejected": -0.33213528990745544,
|
| 79 |
+
"loss": 0.9317,
|
| 80 |
+
"rewards/accuracies": 0.5249999761581421,
|
| 81 |
+
"rewards/chosen": -0.4195576310157776,
|
| 82 |
+
"rewards/margins": 0.07864536345005035,
|
| 83 |
+
"rewards/rejected": -0.49820294976234436,
|
| 84 |
+
"step": 50
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"epoch": 0.042973785990545764,
|
| 88 |
+
"eval_logits/chosen": 14.424538612365723,
|
| 89 |
+
"eval_logits/rejected": 15.006633758544922,
|
| 90 |
+
"eval_logps/chosen": -0.2923925220966339,
|
| 91 |
+
"eval_logps/rejected": -0.3531996011734009,
|
| 92 |
+
"eval_loss": 0.9324354529380798,
|
| 93 |
+
"eval_rewards/accuracies": 0.5052631497383118,
|
| 94 |
+
"eval_rewards/chosen": -0.43858882784843445,
|
| 95 |
+
"eval_rewards/margins": 0.09121060371398926,
|
| 96 |
+
"eval_rewards/rejected": -0.5297994017601013,
|
| 97 |
+
"eval_runtime": 26.3759,
|
| 98 |
+
"eval_samples_per_second": 28.549,
|
| 99 |
+
"eval_steps_per_second": 3.602,
|
| 100 |
+
"step": 50
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.05156854318865492,
|
| 104 |
+
"grad_norm": 0.06899414211511612,
|
| 105 |
+
"learning_rate": 4.980286753286196e-06,
|
| 106 |
+
"logits/chosen": 14.888933181762695,
|
| 107 |
+
"logits/rejected": 15.33955192565918,
|
| 108 |
+
"logps/chosen": -0.2886829972267151,
|
| 109 |
+
"logps/rejected": -0.34016504883766174,
|
| 110 |
+
"loss": 0.9323,
|
| 111 |
+
"rewards/accuracies": 0.5,
|
| 112 |
+
"rewards/chosen": -0.43302449584007263,
|
| 113 |
+
"rewards/margins": 0.07722309231758118,
|
| 114 |
+
"rewards/rejected": -0.5102475881576538,
|
| 115 |
+
"step": 60
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"epoch": 0.060163300386764075,
|
| 119 |
+
"grad_norm": 0.06679105013608932,
|
| 120 |
+
"learning_rate": 4.973180832407471e-06,
|
| 121 |
+
"logits/chosen": 14.721624374389648,
|
| 122 |
+
"logits/rejected": 15.614666938781738,
|
| 123 |
+
"logps/chosen": -0.29435139894485474,
|
| 124 |
+
"logps/rejected": -0.38699784874916077,
|
| 125 |
+
"loss": 0.9172,
|
| 126 |
+
"rewards/accuracies": 0.48750001192092896,
|
| 127 |
+
"rewards/chosen": -0.4415270686149597,
|
| 128 |
+
"rewards/margins": 0.13896968960762024,
|
| 129 |
+
"rewards/rejected": -0.5804967880249023,
|
| 130 |
+
"step": 70
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"epoch": 0.06875805758487323,
|
| 134 |
+
"grad_norm": 0.07169903814792633,
|
| 135 |
+
"learning_rate": 4.964990092676263e-06,
|
| 136 |
+
"logits/chosen": 13.848808288574219,
|
| 137 |
+
"logits/rejected": 14.609800338745117,
|
| 138 |
+
"logps/chosen": -0.26156893372535706,
|
| 139 |
+
"logps/rejected": -0.33030644059181213,
|
| 140 |
+
"loss": 0.9245,
|
| 141 |
+
"rewards/accuracies": 0.48750001192092896,
|
| 142 |
+
"rewards/chosen": -0.3923533856868744,
|
| 143 |
+
"rewards/margins": 0.10310628265142441,
|
| 144 |
+
"rewards/rejected": -0.495459645986557,
|
| 145 |
+
"step": 80
|
| 146 |
+
},
|
| 147 |
+
{
|
| 148 |
+
"epoch": 0.07735281478298238,
|
| 149 |
+
"grad_norm": 0.06593246012926102,
|
| 150 |
+
"learning_rate": 4.9557181268217225e-06,
|
| 151 |
+
"logits/chosen": 14.603567123413086,
|
| 152 |
+
"logits/rejected": 14.994171142578125,
|
| 153 |
+
"logps/chosen": -0.3191321790218353,
|
| 154 |
+
"logps/rejected": -0.3477073311805725,
|
| 155 |
+
"loss": 0.9359,
|
| 156 |
+
"rewards/accuracies": 0.5,
|
| 157 |
+
"rewards/chosen": -0.4786983132362366,
|
| 158 |
+
"rewards/margins": 0.042862698435783386,
|
| 159 |
+
"rewards/rejected": -0.5215609669685364,
|
| 160 |
+
"step": 90
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"epoch": 0.08594757198109153,
|
| 164 |
+
"grad_norm": 0.0718066617846489,
|
| 165 |
+
"learning_rate": 4.9453690018345144e-06,
|
| 166 |
+
"logits/chosen": 13.928094863891602,
|
| 167 |
+
"logits/rejected": 14.792709350585938,
|
| 168 |
+
"logps/chosen": -0.24115696549415588,
|
| 169 |
+
"logps/rejected": -0.3537539839744568,
|
| 170 |
+
"loss": 0.9066,
|
| 171 |
+
"rewards/accuracies": 0.5874999761581421,
|
| 172 |
+
"rewards/chosen": -0.3617354929447174,
|
| 173 |
+
"rewards/margins": 0.16889554262161255,
|
| 174 |
+
"rewards/rejected": -0.5306310653686523,
|
| 175 |
+
"step": 100
|
| 176 |
+
},
|
| 177 |
+
{
|
| 178 |
+
"epoch": 0.08594757198109153,
|
| 179 |
+
"eval_logits/chosen": 14.40036392211914,
|
| 180 |
+
"eval_logits/rejected": 14.97786808013916,
|
| 181 |
+
"eval_logps/chosen": -0.2777771055698395,
|
| 182 |
+
"eval_logps/rejected": -0.3516874611377716,
|
| 183 |
+
"eval_loss": 0.9236211180686951,
|
| 184 |
+
"eval_rewards/accuracies": 0.5052631497383118,
|
| 185 |
+
"eval_rewards/chosen": -0.4166657328605652,
|
| 186 |
+
"eval_rewards/margins": 0.11086549609899521,
|
| 187 |
+
"eval_rewards/rejected": -0.5275312066078186,
|
| 188 |
+
"eval_runtime": 25.8056,
|
| 189 |
+
"eval_samples_per_second": 29.18,
|
| 190 |
+
"eval_steps_per_second": 3.681,
|
| 191 |
+
"step": 100
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 0.09454232917920069,
|
| 195 |
+
"grad_norm": 0.06681054830551147,
|
| 196 |
+
"learning_rate": 4.933947257182901e-06,
|
| 197 |
+
"logits/chosen": 14.76116943359375,
|
| 198 |
+
"logits/rejected": 15.001077651977539,
|
| 199 |
+
"logps/chosen": -0.297056645154953,
|
| 200 |
+
"logps/rejected": -0.3221590518951416,
|
| 201 |
+
"loss": 0.929,
|
| 202 |
+
"rewards/accuracies": 0.44999998807907104,
|
| 203 |
+
"rewards/chosen": -0.4455850124359131,
|
| 204 |
+
"rewards/margins": 0.03765357658267021,
|
| 205 |
+
"rewards/rejected": -0.4832385182380676,
|
| 206 |
+
"step": 110
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 0.10313708637730984,
|
| 210 |
+
"grad_norm": 0.10024584829807281,
|
| 211 |
+
"learning_rate": 4.921457902821578e-06,
|
| 212 |
+
"logits/chosen": 14.405306816101074,
|
| 213 |
+
"logits/rejected": 15.084524154663086,
|
| 214 |
+
"logps/chosen": -0.2726767361164093,
|
| 215 |
+
"logps/rejected": -0.3543504774570465,
|
| 216 |
+
"loss": 0.9299,
|
| 217 |
+
"rewards/accuracies": 0.5874999761581421,
|
| 218 |
+
"rewards/chosen": -0.40901508927345276,
|
| 219 |
+
"rewards/margins": 0.12251058965921402,
|
| 220 |
+
"rewards/rejected": -0.531525731086731,
|
| 221 |
+
"step": 120
|
| 222 |
+
},
|
| 223 |
+
{
|
| 224 |
+
"epoch": 0.11173184357541899,
|
| 225 |
+
"grad_norm": 0.08629737794399261,
|
| 226 |
+
"learning_rate": 4.907906416994146e-06,
|
| 227 |
+
"logits/chosen": 14.073992729187012,
|
| 228 |
+
"logits/rejected": 14.882128715515137,
|
| 229 |
+
"logps/chosen": -0.2827032506465912,
|
| 230 |
+
"logps/rejected": -0.369393527507782,
|
| 231 |
+
"loss": 0.9109,
|
| 232 |
+
"rewards/accuracies": 0.5375000238418579,
|
| 233 |
+
"rewards/chosen": -0.42405492067337036,
|
| 234 |
+
"rewards/margins": 0.13003548979759216,
|
| 235 |
+
"rewards/rejected": -0.5540903806686401,
|
| 236 |
+
"step": 130
|
| 237 |
+
},
|
| 238 |
+
{
|
| 239 |
+
"epoch": 0.12032660077352815,
|
| 240 |
+
"grad_norm": 0.07973086833953857,
|
| 241 |
+
"learning_rate": 4.893298743830168e-06,
|
| 242 |
+
"logits/chosen": 13.96656322479248,
|
| 243 |
+
"logits/rejected": 14.639463424682617,
|
| 244 |
+
"logps/chosen": -0.28426361083984375,
|
| 245 |
+
"logps/rejected": -0.3899250030517578,
|
| 246 |
+
"loss": 0.9138,
|
| 247 |
+
"rewards/accuracies": 0.5625,
|
| 248 |
+
"rewards/chosen": -0.4263954162597656,
|
| 249 |
+
"rewards/margins": 0.1584920585155487,
|
| 250 |
+
"rewards/rejected": -0.5848874449729919,
|
| 251 |
+
"step": 140
|
| 252 |
+
},
|
| 253 |
+
{
|
| 254 |
+
"epoch": 0.1289213579716373,
|
| 255 |
+
"grad_norm": 0.08767445385456085,
|
| 256 |
+
"learning_rate": 4.8776412907378845e-06,
|
| 257 |
+
"logits/chosen": 13.705177307128906,
|
| 258 |
+
"logits/rejected": 14.19865608215332,
|
| 259 |
+
"logps/chosen": -0.26735779643058777,
|
| 260 |
+
"logps/rejected": -0.34726911783218384,
|
| 261 |
+
"loss": 0.9157,
|
| 262 |
+
"rewards/accuracies": 0.574999988079071,
|
| 263 |
+
"rewards/chosen": -0.40103667974472046,
|
| 264 |
+
"rewards/margins": 0.1198669821023941,
|
| 265 |
+
"rewards/rejected": -0.5209037065505981,
|
| 266 |
+
"step": 150
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"epoch": 0.1289213579716373,
|
| 270 |
+
"eval_logits/chosen": 13.20260238647461,
|
| 271 |
+
"eval_logits/rejected": 13.959339141845703,
|
| 272 |
+
"eval_logps/chosen": -0.27623170614242554,
|
| 273 |
+
"eval_logps/rejected": -0.3724917769432068,
|
| 274 |
+
"eval_loss": 0.909102737903595,
|
| 275 |
+
"eval_rewards/accuracies": 0.557894766330719,
|
| 276 |
+
"eval_rewards/chosen": -0.4143475592136383,
|
| 277 |
+
"eval_rewards/margins": 0.14439010620117188,
|
| 278 |
+
"eval_rewards/rejected": -0.5587376356124878,
|
| 279 |
+
"eval_runtime": 25.7839,
|
| 280 |
+
"eval_samples_per_second": 29.204,
|
| 281 |
+
"eval_steps_per_second": 3.684,
|
| 282 |
+
"step": 150
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.13751611516974646,
|
| 286 |
+
"grad_norm": 0.09749539196491241,
|
| 287 |
+
"learning_rate": 4.860940925593703e-06,
|
| 288 |
+
"logits/chosen": 13.301411628723145,
|
| 289 |
+
"logits/rejected": 14.054819107055664,
|
| 290 |
+
"logps/chosen": -0.2808162569999695,
|
| 291 |
+
"logps/rejected": -0.39500662684440613,
|
| 292 |
+
"loss": 0.9,
|
| 293 |
+
"rewards/accuracies": 0.512499988079071,
|
| 294 |
+
"rewards/chosen": -0.4212244153022766,
|
| 295 |
+
"rewards/margins": 0.17128555476665497,
|
| 296 |
+
"rewards/rejected": -0.592509925365448,
|
| 297 |
+
"step": 160
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"epoch": 0.1461108723678556,
|
| 301 |
+
"grad_norm": 0.14965052902698517,
|
| 302 |
+
"learning_rate": 4.84320497372973e-06,
|
| 303 |
+
"logits/chosen": 12.261284828186035,
|
| 304 |
+
"logits/rejected": 13.0617036819458,
|
| 305 |
+
"logps/chosen": -0.29266461730003357,
|
| 306 |
+
"logps/rejected": -0.4265298843383789,
|
| 307 |
+
"loss": 0.896,
|
| 308 |
+
"rewards/accuracies": 0.637499988079071,
|
| 309 |
+
"rewards/chosen": -0.43899694085121155,
|
| 310 |
+
"rewards/margins": 0.20079784095287323,
|
| 311 |
+
"rewards/rejected": -0.6397948265075684,
|
| 312 |
+
"step": 170
|
| 313 |
+
},
|
| 314 |
+
{
|
| 315 |
+
"epoch": 0.15470562956596476,
|
| 316 |
+
"grad_norm": 0.13044072687625885,
|
| 317 |
+
"learning_rate": 4.824441214720629e-06,
|
| 318 |
+
"logits/chosen": 11.509119033813477,
|
| 319 |
+
"logits/rejected": 12.31033706665039,
|
| 320 |
+
"logps/chosen": -0.27384257316589355,
|
| 321 |
+
"logps/rejected": -0.3920982778072357,
|
| 322 |
+
"loss": 0.8911,
|
| 323 |
+
"rewards/accuracies": 0.5625,
|
| 324 |
+
"rewards/chosen": -0.4107638895511627,
|
| 325 |
+
"rewards/margins": 0.17738358676433563,
|
| 326 |
+
"rewards/rejected": -0.5881474018096924,
|
| 327 |
+
"step": 180
|
| 328 |
+
},
|
| 329 |
+
{
|
| 330 |
+
"epoch": 0.1633003867640739,
|
| 331 |
+
"grad_norm": 0.16182811558246613,
|
| 332 |
+
"learning_rate": 4.804657878971252e-06,
|
| 333 |
+
"logits/chosen": 10.68933391571045,
|
| 334 |
+
"logits/rejected": 11.632065773010254,
|
| 335 |
+
"logps/chosen": -0.292975515127182,
|
| 336 |
+
"logps/rejected": -0.42257896065711975,
|
| 337 |
+
"loss": 0.9002,
|
| 338 |
+
"rewards/accuracies": 0.6000000238418579,
|
| 339 |
+
"rewards/chosen": -0.4394632875919342,
|
| 340 |
+
"rewards/margins": 0.19440510869026184,
|
| 341 |
+
"rewards/rejected": -0.633868396282196,
|
| 342 |
+
"step": 190
|
| 343 |
+
},
|
| 344 |
+
{
|
| 345 |
+
"epoch": 0.17189514396218306,
|
| 346 |
+
"grad_norm": 0.181160107254982,
|
| 347 |
+
"learning_rate": 4.783863644106502e-06,
|
| 348 |
+
"logits/chosen": 10.593437194824219,
|
| 349 |
+
"logits/rejected": 11.435877799987793,
|
| 350 |
+
"logps/chosen": -0.32495418190956116,
|
| 351 |
+
"logps/rejected": -0.4480825364589691,
|
| 352 |
+
"loss": 0.8773,
|
| 353 |
+
"rewards/accuracies": 0.574999988079071,
|
| 354 |
+
"rewards/chosen": -0.48743128776550293,
|
| 355 |
+
"rewards/margins": 0.18469250202178955,
|
| 356 |
+
"rewards/rejected": -0.6721237897872925,
|
| 357 |
+
"step": 200
|
| 358 |
+
},
|
| 359 |
+
{
|
| 360 |
+
"epoch": 0.17189514396218306,
|
| 361 |
+
"eval_logits/chosen": 9.299257278442383,
|
| 362 |
+
"eval_logits/rejected": 10.055145263671875,
|
| 363 |
+
"eval_logps/chosen": -0.31059205532073975,
|
| 364 |
+
"eval_logps/rejected": -0.47102925181388855,
|
| 365 |
+
"eval_loss": 0.8721462488174438,
|
| 366 |
+
"eval_rewards/accuracies": 0.6105263233184814,
|
| 367 |
+
"eval_rewards/chosen": -0.4658880829811096,
|
| 368 |
+
"eval_rewards/margins": 0.24065588414669037,
|
| 369 |
+
"eval_rewards/rejected": -0.7065439224243164,
|
| 370 |
+
"eval_runtime": 25.78,
|
| 371 |
+
"eval_samples_per_second": 29.209,
|
| 372 |
+
"eval_steps_per_second": 3.685,
|
| 373 |
+
"step": 200
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"epoch": 0.18048990116029223,
|
| 377 |
+
"grad_norm": 0.24912959337234497,
|
| 378 |
+
"learning_rate": 4.762067631165049e-06,
|
| 379 |
+
"logits/chosen": 8.803088188171387,
|
| 380 |
+
"logits/rejected": 9.326388359069824,
|
| 381 |
+
"logps/chosen": -0.3249451816082001,
|
| 382 |
+
"logps/rejected": -0.44993042945861816,
|
| 383 |
+
"loss": 0.8484,
|
| 384 |
+
"rewards/accuracies": 0.5375000238418579,
|
| 385 |
+
"rewards/chosen": -0.4874177575111389,
|
| 386 |
+
"rewards/margins": 0.18747788667678833,
|
| 387 |
+
"rewards/rejected": -0.6748956441879272,
|
| 388 |
+
"step": 210
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 0.18908465835840138,
|
| 392 |
+
"grad_norm": 0.319579541683197,
|
| 393 |
+
"learning_rate": 4.7392794005985324e-06,
|
| 394 |
+
"logits/chosen": 6.257112979888916,
|
| 395 |
+
"logits/rejected": 7.168400764465332,
|
| 396 |
+
"logps/chosen": -0.335318386554718,
|
| 397 |
+
"logps/rejected": -0.5439311265945435,
|
| 398 |
+
"loss": 0.8499,
|
| 399 |
+
"rewards/accuracies": 0.637499988079071,
|
| 400 |
+
"rewards/chosen": -0.5029775500297546,
|
| 401 |
+
"rewards/margins": 0.31291908025741577,
|
| 402 |
+
"rewards/rejected": -0.8158966302871704,
|
| 403 |
+
"step": 220
|
| 404 |
+
},
|
| 405 |
+
{
|
| 406 |
+
"epoch": 0.19767941555651053,
|
| 407 |
+
"grad_norm": 0.31494757533073425,
|
| 408 |
+
"learning_rate": 4.715508948078037e-06,
|
| 409 |
+
"logits/chosen": 5.725883960723877,
|
| 410 |
+
"logits/rejected": 5.9254865646362305,
|
| 411 |
+
"logps/chosen": -0.3735908567905426,
|
| 412 |
+
"logps/rejected": -0.5729750394821167,
|
| 413 |
+
"loss": 0.826,
|
| 414 |
+
"rewards/accuracies": 0.6499999761581421,
|
| 415 |
+
"rewards/chosen": -0.5603862404823303,
|
| 416 |
+
"rewards/margins": 0.2990763187408447,
|
| 417 |
+
"rewards/rejected": -0.859462559223175,
|
| 418 |
+
"step": 230
|
| 419 |
+
},
|
| 420 |
+
{
|
| 421 |
+
"epoch": 0.20627417275461968,
|
| 422 |
+
"grad_norm": 0.46439653635025024,
|
| 423 |
+
"learning_rate": 4.690766700109659e-06,
|
| 424 |
+
"logits/chosen": 5.059751033782959,
|
| 425 |
+
"logits/rejected": 5.128623008728027,
|
| 426 |
+
"logps/chosen": -0.4083784222602844,
|
| 427 |
+
"logps/rejected": -0.6792675852775574,
|
| 428 |
+
"loss": 0.7992,
|
| 429 |
+
"rewards/accuracies": 0.637499988079071,
|
| 430 |
+
"rewards/chosen": -0.612567663192749,
|
| 431 |
+
"rewards/margins": 0.40633392333984375,
|
| 432 |
+
"rewards/rejected": -1.0189014673233032,
|
| 433 |
+
"step": 240
|
| 434 |
+
},
|
| 435 |
+
{
|
| 436 |
+
"epoch": 0.21486892995272883,
|
| 437 |
+
"grad_norm": 0.42406076192855835,
|
| 438 |
+
"learning_rate": 4.665063509461098e-06,
|
| 439 |
+
"logits/chosen": 4.128974437713623,
|
| 440 |
+
"logits/rejected": 4.141166687011719,
|
| 441 |
+
"logps/chosen": -0.4256651997566223,
|
| 442 |
+
"logps/rejected": -0.7279168367385864,
|
| 443 |
+
"loss": 0.7848,
|
| 444 |
+
"rewards/accuracies": 0.625,
|
| 445 |
+
"rewards/chosen": -0.6384977102279663,
|
| 446 |
+
"rewards/margins": 0.4533773958683014,
|
| 447 |
+
"rewards/rejected": -1.0918750762939453,
|
| 448 |
+
"step": 250
|
| 449 |
+
},
|
| 450 |
+
{
|
| 451 |
+
"epoch": 0.21486892995272883,
|
| 452 |
+
"eval_logits/chosen": 3.800307512283325,
|
| 453 |
+
"eval_logits/rejected": 3.1472771167755127,
|
| 454 |
+
"eval_logps/chosen": -0.4563433527946472,
|
| 455 |
+
"eval_logps/rejected": -0.8247694373130798,
|
| 456 |
+
"eval_loss": 0.7728626728057861,
|
| 457 |
+
"eval_rewards/accuracies": 0.6526315808296204,
|
| 458 |
+
"eval_rewards/chosen": -0.6845150589942932,
|
| 459 |
+
"eval_rewards/margins": 0.5526391267776489,
|
| 460 |
+
"eval_rewards/rejected": -1.237154245376587,
|
| 461 |
+
"eval_runtime": 25.7836,
|
| 462 |
+
"eval_samples_per_second": 29.205,
|
| 463 |
+
"eval_steps_per_second": 3.685,
|
| 464 |
+
"step": 250
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 0.22346368715083798,
|
| 468 |
+
"grad_norm": 0.4071955680847168,
|
| 469 |
+
"learning_rate": 4.638410650401267e-06,
|
| 470 |
+
"logits/chosen": 3.169527530670166,
|
| 471 |
+
"logits/rejected": 2.603461503982544,
|
| 472 |
+
"logps/chosen": -0.5029922723770142,
|
| 473 |
+
"logps/rejected": -0.9469219446182251,
|
| 474 |
+
"loss": 0.7273,
|
| 475 |
+
"rewards/accuracies": 0.7124999761581421,
|
| 476 |
+
"rewards/chosen": -0.7544883489608765,
|
| 477 |
+
"rewards/margins": 0.6658946871757507,
|
| 478 |
+
"rewards/rejected": -1.4203828573226929,
|
| 479 |
+
"step": 260
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 0.23205844434894715,
|
| 483 |
+
"grad_norm": 0.6253886222839355,
|
| 484 |
+
"learning_rate": 4.610819813755038e-06,
|
| 485 |
+
"logits/chosen": 3.8718018531799316,
|
| 486 |
+
"logits/rejected": 2.569753646850586,
|
| 487 |
+
"logps/chosen": -0.4955294132232666,
|
| 488 |
+
"logps/rejected": -0.8811863660812378,
|
| 489 |
+
"loss": 0.7483,
|
| 490 |
+
"rewards/accuracies": 0.6875,
|
| 491 |
+
"rewards/chosen": -0.7432941198348999,
|
| 492 |
+
"rewards/margins": 0.5784854888916016,
|
| 493 |
+
"rewards/rejected": -1.321779489517212,
|
| 494 |
+
"step": 270
|
| 495 |
+
},
|
| 496 |
+
{
|
| 497 |
+
"epoch": 0.2406532015470563,
|
| 498 |
+
"grad_norm": 0.5592113733291626,
|
| 499 |
+
"learning_rate": 4.582303101775249e-06,
|
| 500 |
+
"logits/chosen": 3.4818286895751953,
|
| 501 |
+
"logits/rejected": 2.428328275680542,
|
| 502 |
+
"logps/chosen": -0.5700691342353821,
|
| 503 |
+
"logps/rejected": -1.010145664215088,
|
| 504 |
+
"loss": 0.7165,
|
| 505 |
+
"rewards/accuracies": 0.612500011920929,
|
| 506 |
+
"rewards/chosen": -0.8551036715507507,
|
| 507 |
+
"rewards/margins": 0.6601148843765259,
|
| 508 |
+
"rewards/rejected": -1.5152184963226318,
|
| 509 |
+
"step": 280
|
| 510 |
+
},
|
| 511 |
+
{
|
| 512 |
+
"epoch": 0.24924795874516545,
|
| 513 |
+
"grad_norm": 0.8438608050346375,
|
| 514 |
+
"learning_rate": 4.55287302283426e-06,
|
| 515 |
+
"logits/chosen": 2.5937914848327637,
|
| 516 |
+
"logits/rejected": 1.8570162057876587,
|
| 517 |
+
"logps/chosen": -0.592321515083313,
|
| 518 |
+
"logps/rejected": -1.1775600910186768,
|
| 519 |
+
"loss": 0.6685,
|
| 520 |
+
"rewards/accuracies": 0.6000000238418579,
|
| 521 |
+
"rewards/chosen": -0.8884822130203247,
|
| 522 |
+
"rewards/margins": 0.8778578042984009,
|
| 523 |
+
"rewards/rejected": -1.7663400173187256,
|
| 524 |
+
"step": 290
|
| 525 |
+
},
|
| 526 |
+
{
|
| 527 |
+
"epoch": 0.2578427159432746,
|
| 528 |
+
"grad_norm": 2.9559757709503174,
|
| 529 |
+
"learning_rate": 4.522542485937369e-06,
|
| 530 |
+
"logits/chosen": 3.2419090270996094,
|
| 531 |
+
"logits/rejected": 1.9082870483398438,
|
| 532 |
+
"logps/chosen": -0.6832663416862488,
|
| 533 |
+
"logps/rejected": -1.5631868839263916,
|
| 534 |
+
"loss": 0.6009,
|
| 535 |
+
"rewards/accuracies": 0.625,
|
| 536 |
+
"rewards/chosen": -1.0248994827270508,
|
| 537 |
+
"rewards/margins": 1.3198809623718262,
|
| 538 |
+
"rewards/rejected": -2.344780445098877,
|
| 539 |
+
"step": 300
|
| 540 |
+
},
|
| 541 |
+
{
|
| 542 |
+
"epoch": 0.2578427159432746,
|
| 543 |
+
"eval_logits/chosen": 2.5470504760742188,
|
| 544 |
+
"eval_logits/rejected": 1.492888331413269,
|
| 545 |
+
"eval_logps/chosen": -0.7285813689231873,
|
| 546 |
+
"eval_logps/rejected": -1.8318607807159424,
|
| 547 |
+
"eval_loss": 0.5855891704559326,
|
| 548 |
+
"eval_rewards/accuracies": 0.7052631378173828,
|
| 549 |
+
"eval_rewards/chosen": -1.092872142791748,
|
| 550 |
+
"eval_rewards/margins": 1.6549187898635864,
|
| 551 |
+
"eval_rewards/rejected": -2.747790813446045,
|
| 552 |
+
"eval_runtime": 25.8105,
|
| 553 |
+
"eval_samples_per_second": 29.174,
|
| 554 |
+
"eval_steps_per_second": 3.681,
|
| 555 |
+
"step": 300
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"epoch": 0.2664374731413838,
|
| 559 |
+
"grad_norm": 1.4503060579299927,
|
| 560 |
+
"learning_rate": 4.491324795060491e-06,
|
| 561 |
+
"logits/chosen": 1.6672757863998413,
|
| 562 |
+
"logits/rejected": 0.7888604402542114,
|
| 563 |
+
"logps/chosen": -0.769140899181366,
|
| 564 |
+
"logps/rejected": -2.0822532176971436,
|
| 565 |
+
"loss": 0.512,
|
| 566 |
+
"rewards/accuracies": 0.75,
|
| 567 |
+
"rewards/chosen": -1.1537113189697266,
|
| 568 |
+
"rewards/margins": 1.9696683883666992,
|
| 569 |
+
"rewards/rejected": -3.123379945755005,
|
| 570 |
+
"step": 310
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 0.2750322303394929,
|
| 574 |
+
"grad_norm": 0.36741188168525696,
|
| 575 |
+
"learning_rate": 4.4592336433146e-06,
|
| 576 |
+
"logits/chosen": 2.6584715843200684,
|
| 577 |
+
"logits/rejected": 1.835911750793457,
|
| 578 |
+
"logps/chosen": -0.8400143384933472,
|
| 579 |
+
"logps/rejected": -1.9262489080429077,
|
| 580 |
+
"loss": 0.5405,
|
| 581 |
+
"rewards/accuracies": 0.6499999761581421,
|
| 582 |
+
"rewards/chosen": -1.2600215673446655,
|
| 583 |
+
"rewards/margins": 1.6293519735336304,
|
| 584 |
+
"rewards/rejected": -2.889373302459717,
|
| 585 |
+
"step": 320
|
| 586 |
+
},
|
| 587 |
+
{
|
| 588 |
+
"epoch": 0.28362698753760207,
|
| 589 |
+
"grad_norm": 0.6233783960342407,
|
| 590 |
+
"learning_rate": 4.426283106939474e-06,
|
| 591 |
+
"logits/chosen": 3.2203617095947266,
|
| 592 |
+
"logits/rejected": 2.3215420246124268,
|
| 593 |
+
"logps/chosen": -0.7985933423042297,
|
| 594 |
+
"logps/rejected": -2.4170174598693848,
|
| 595 |
+
"loss": 0.5335,
|
| 596 |
+
"rewards/accuracies": 0.637499988079071,
|
| 597 |
+
"rewards/chosen": -1.197890043258667,
|
| 598 |
+
"rewards/margins": 2.427635669708252,
|
| 599 |
+
"rewards/rejected": -3.625525712966919,
|
| 600 |
+
"step": 330
|
| 601 |
+
},
|
| 602 |
+
{
|
| 603 |
+
"epoch": 0.2922217447357112,
|
| 604 |
+
"grad_norm": 1.0881849527359009,
|
| 605 |
+
"learning_rate": 4.3924876391293915e-06,
|
| 606 |
+
"logits/chosen": 2.229017734527588,
|
| 607 |
+
"logits/rejected": 1.2251309156417847,
|
| 608 |
+
"logps/chosen": -0.8058193325996399,
|
| 609 |
+
"logps/rejected": -2.810622215270996,
|
| 610 |
+
"loss": 0.4903,
|
| 611 |
+
"rewards/accuracies": 0.7124999761581421,
|
| 612 |
+
"rewards/chosen": -1.2087291479110718,
|
| 613 |
+
"rewards/margins": 3.007204294204712,
|
| 614 |
+
"rewards/rejected": -4.215933799743652,
|
| 615 |
+
"step": 340
|
| 616 |
+
},
|
| 617 |
+
{
|
| 618 |
+
"epoch": 0.30081650193382037,
|
| 619 |
+
"grad_norm": 4.168415069580078,
|
| 620 |
+
"learning_rate": 4.357862063693486e-06,
|
| 621 |
+
"logits/chosen": 2.4198296070098877,
|
| 622 |
+
"logits/rejected": 1.5391919612884521,
|
| 623 |
+
"logps/chosen": -1.010558843612671,
|
| 624 |
+
"logps/rejected": -2.2362923622131348,
|
| 625 |
+
"loss": 0.5249,
|
| 626 |
+
"rewards/accuracies": 0.5625,
|
| 627 |
+
"rewards/chosen": -1.515838384628296,
|
| 628 |
+
"rewards/margins": 1.8385999202728271,
|
| 629 |
+
"rewards/rejected": -3.3544387817382812,
|
| 630 |
+
"step": 350
|
| 631 |
+
},
|
| 632 |
+
{
|
| 633 |
+
"epoch": 0.30081650193382037,
|
| 634 |
+
"eval_logits/chosen": 2.996535539627075,
|
| 635 |
+
"eval_logits/rejected": 2.064058303833008,
|
| 636 |
+
"eval_logps/chosen": -0.8687878847122192,
|
| 637 |
+
"eval_logps/rejected": -2.9790267944335938,
|
| 638 |
+
"eval_loss": 0.5171241760253906,
|
| 639 |
+
"eval_rewards/accuracies": 0.7263157963752747,
|
| 640 |
+
"eval_rewards/chosen": -1.3031818866729736,
|
| 641 |
+
"eval_rewards/margins": 3.165358781814575,
|
| 642 |
+
"eval_rewards/rejected": -4.468540668487549,
|
| 643 |
+
"eval_runtime": 25.8152,
|
| 644 |
+
"eval_samples_per_second": 29.169,
|
| 645 |
+
"eval_steps_per_second": 3.68,
|
| 646 |
+
"step": 350
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"epoch": 0.3094112591319295,
|
| 650 |
+
"grad_norm": 0.5646592378616333,
|
| 651 |
+
"learning_rate": 4.322421568553529e-06,
|
| 652 |
+
"logits/chosen": 3.050445556640625,
|
| 653 |
+
"logits/rejected": 2.0960793495178223,
|
| 654 |
+
"logps/chosen": -0.7702202796936035,
|
| 655 |
+
"logps/rejected": -2.5967533588409424,
|
| 656 |
+
"loss": 0.5067,
|
| 657 |
+
"rewards/accuracies": 0.675000011920929,
|
| 658 |
+
"rewards/chosen": -1.1553303003311157,
|
| 659 |
+
"rewards/margins": 2.739799737930298,
|
| 660 |
+
"rewards/rejected": -3.895130157470703,
|
| 661 |
+
"step": 360
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"epoch": 0.31800601633003867,
|
| 665 |
+
"grad_norm": 0.5547713041305542,
|
| 666 |
+
"learning_rate": 4.286181699082008e-06,
|
| 667 |
+
"logits/chosen": 2.7148895263671875,
|
| 668 |
+
"logits/rejected": 1.9958852529525757,
|
| 669 |
+
"logps/chosen": -0.9548311233520508,
|
| 670 |
+
"logps/rejected": -3.1348252296447754,
|
| 671 |
+
"loss": 0.4726,
|
| 672 |
+
"rewards/accuracies": 0.800000011920929,
|
| 673 |
+
"rewards/chosen": -1.4322465658187866,
|
| 674 |
+
"rewards/margins": 3.269991397857666,
|
| 675 |
+
"rewards/rejected": -4.702237606048584,
|
| 676 |
+
"step": 370
|
| 677 |
+
},
|
| 678 |
+
{
|
| 679 |
+
"epoch": 0.3266007735281478,
|
| 680 |
+
"grad_norm": 3.4396660327911377,
|
| 681 |
+
"learning_rate": 4.249158351283414e-06,
|
| 682 |
+
"logits/chosen": 2.586766004562378,
|
| 683 |
+
"logits/rejected": 2.070089340209961,
|
| 684 |
+
"logps/chosen": -0.9903923273086548,
|
| 685 |
+
"logps/rejected": -3.0135743618011475,
|
| 686 |
+
"loss": 0.4801,
|
| 687 |
+
"rewards/accuracies": 0.6625000238418579,
|
| 688 |
+
"rewards/chosen": -1.485588550567627,
|
| 689 |
+
"rewards/margins": 3.034773349761963,
|
| 690 |
+
"rewards/rejected": -4.52036190032959,
|
| 691 |
+
"step": 380
|
| 692 |
+
},
|
| 693 |
+
{
|
| 694 |
+
"epoch": 0.33519553072625696,
|
| 695 |
+
"grad_norm": 0.9405317306518555,
|
| 696 |
+
"learning_rate": 4.211367764821722e-06,
|
| 697 |
+
"logits/chosen": 4.370789527893066,
|
| 698 |
+
"logits/rejected": 3.165931224822998,
|
| 699 |
+
"logps/chosen": -0.7785463929176331,
|
| 700 |
+
"logps/rejected": -2.456723928451538,
|
| 701 |
+
"loss": 0.4585,
|
| 702 |
+
"rewards/accuracies": 0.5874999761581421,
|
| 703 |
+
"rewards/chosen": -1.1678194999694824,
|
| 704 |
+
"rewards/margins": 2.5172665119171143,
|
| 705 |
+
"rewards/rejected": -3.6850857734680176,
|
| 706 |
+
"step": 390
|
| 707 |
+
},
|
| 708 |
+
{
|
| 709 |
+
"epoch": 0.3437902879243661,
|
| 710 |
+
"grad_norm": 0.7120731472969055,
|
| 711 |
+
"learning_rate": 4.172826515897146e-06,
|
| 712 |
+
"logits/chosen": 3.3425400257110596,
|
| 713 |
+
"logits/rejected": 2.6448545455932617,
|
| 714 |
+
"logps/chosen": -0.9174768328666687,
|
| 715 |
+
"logps/rejected": -3.047037124633789,
|
| 716 |
+
"loss": 0.4771,
|
| 717 |
+
"rewards/accuracies": 0.675000011920929,
|
| 718 |
+
"rewards/chosen": -1.3762153387069702,
|
| 719 |
+
"rewards/margins": 3.194340229034424,
|
| 720 |
+
"rewards/rejected": -4.570555686950684,
|
| 721 |
+
"step": 400
|
| 722 |
+
},
|
| 723 |
+
{
|
| 724 |
+
"epoch": 0.3437902879243661,
|
| 725 |
+
"eval_logits/chosen": 3.548964262008667,
|
| 726 |
+
"eval_logits/rejected": 2.7726428508758545,
|
| 727 |
+
"eval_logps/chosen": -1.0053316354751587,
|
| 728 |
+
"eval_logps/rejected": -3.487654447555542,
|
| 729 |
+
"eval_loss": 0.47841358184814453,
|
| 730 |
+
"eval_rewards/accuracies": 0.7368420958518982,
|
| 731 |
+
"eval_rewards/chosen": -1.5079973936080933,
|
| 732 |
+
"eval_rewards/margins": 3.723484992980957,
|
| 733 |
+
"eval_rewards/rejected": -5.231482028961182,
|
| 734 |
+
"eval_runtime": 25.8148,
|
| 735 |
+
"eval_samples_per_second": 29.169,
|
| 736 |
+
"eval_steps_per_second": 3.68,
|
| 737 |
+
"step": 400
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"epoch": 0.3523850451224753,
|
| 741 |
+
"grad_norm": 2.403956651687622,
|
| 742 |
+
"learning_rate": 4.133551509975264e-06,
|
| 743 |
+
"logits/chosen": 3.2028489112854004,
|
| 744 |
+
"logits/rejected": 2.2486982345581055,
|
| 745 |
+
"logps/chosen": -0.9957242012023926,
|
| 746 |
+
"logps/rejected": -3.243959426879883,
|
| 747 |
+
"loss": 0.4449,
|
| 748 |
+
"rewards/accuracies": 0.637499988079071,
|
| 749 |
+
"rewards/chosen": -1.4935863018035889,
|
| 750 |
+
"rewards/margins": 3.3723526000976562,
|
| 751 |
+
"rewards/rejected": -4.865939140319824,
|
| 752 |
+
"step": 410
|
| 753 |
+
},
|
| 754 |
+
{
|
| 755 |
+
"epoch": 0.36097980232058446,
|
| 756 |
+
"grad_norm": 0.39530256390571594,
|
| 757 |
+
"learning_rate": 4.093559974371725e-06,
|
| 758 |
+
"logits/chosen": 3.8590214252471924,
|
| 759 |
+
"logits/rejected": 3.1420931816101074,
|
| 760 |
+
"logps/chosen": -0.9541120529174805,
|
| 761 |
+
"logps/rejected": -3.0112829208374023,
|
| 762 |
+
"loss": 0.4598,
|
| 763 |
+
"rewards/accuracies": 0.699999988079071,
|
| 764 |
+
"rewards/chosen": -1.4311680793762207,
|
| 765 |
+
"rewards/margins": 3.085756301879883,
|
| 766 |
+
"rewards/rejected": -4.5169243812561035,
|
| 767 |
+
"step": 420
|
| 768 |
+
},
|
| 769 |
+
{
|
| 770 |
+
"epoch": 0.3695745595186936,
|
| 771 |
+
"grad_norm": 0.29451707005500793,
|
| 772 |
+
"learning_rate": 4.052869450695776e-06,
|
| 773 |
+
"logits/chosen": 4.697268486022949,
|
| 774 |
+
"logits/rejected": 3.7647697925567627,
|
| 775 |
+
"logps/chosen": -1.1037578582763672,
|
| 776 |
+
"logps/rejected": -3.8626160621643066,
|
| 777 |
+
"loss": 0.4275,
|
| 778 |
+
"rewards/accuracies": 0.75,
|
| 779 |
+
"rewards/chosen": -1.6556367874145508,
|
| 780 |
+
"rewards/margins": 4.138287544250488,
|
| 781 |
+
"rewards/rejected": -5.793923854827881,
|
| 782 |
+
"step": 430
|
| 783 |
+
},
|
| 784 |
+
{
|
| 785 |
+
"epoch": 0.37816931671680276,
|
| 786 |
+
"grad_norm": 0.5065125823020935,
|
| 787 |
+
"learning_rate": 4.011497787155938e-06,
|
| 788 |
+
"logits/chosen": 3.5233864784240723,
|
| 789 |
+
"logits/rejected": 2.798567533493042,
|
| 790 |
+
"logps/chosen": -1.1753087043762207,
|
| 791 |
+
"logps/rejected": -4.171238899230957,
|
| 792 |
+
"loss": 0.4132,
|
| 793 |
+
"rewards/accuracies": 0.75,
|
| 794 |
+
"rewards/chosen": -1.7629629373550415,
|
| 795 |
+
"rewards/margins": 4.493895053863525,
|
| 796 |
+
"rewards/rejected": -6.256857872009277,
|
| 797 |
+
"step": 440
|
| 798 |
+
},
|
| 799 |
+
{
|
| 800 |
+
"epoch": 0.3867640739149119,
|
| 801 |
+
"grad_norm": 1.414167881011963,
|
| 802 |
+
"learning_rate": 3.969463130731183e-06,
|
| 803 |
+
"logits/chosen": 4.733740329742432,
|
| 804 |
+
"logits/rejected": 4.114102363586426,
|
| 805 |
+
"logps/chosen": -1.1846634149551392,
|
| 806 |
+
"logps/rejected": -4.04649543762207,
|
| 807 |
+
"loss": 0.4266,
|
| 808 |
+
"rewards/accuracies": 0.7749999761581421,
|
| 809 |
+
"rewards/chosen": -1.776995301246643,
|
| 810 |
+
"rewards/margins": 4.292747974395752,
|
| 811 |
+
"rewards/rejected": -6.0697431564331055,
|
| 812 |
+
"step": 450
|
| 813 |
+
},
|
| 814 |
+
{
|
| 815 |
+
"epoch": 0.3867640739149119,
|
| 816 |
+
"eval_logits/chosen": 4.25229549407959,
|
| 817 |
+
"eval_logits/rejected": 3.900564193725586,
|
| 818 |
+
"eval_logps/chosen": -1.410205602645874,
|
| 819 |
+
"eval_logps/rejected": -4.276910781860352,
|
| 820 |
+
"eval_loss": 0.4397798478603363,
|
| 821 |
+
"eval_rewards/accuracies": 0.800000011920929,
|
| 822 |
+
"eval_rewards/chosen": -2.1153085231781006,
|
| 823 |
+
"eval_rewards/margins": 4.3000569343566895,
|
| 824 |
+
"eval_rewards/rejected": -6.415364742279053,
|
| 825 |
+
"eval_runtime": 25.7968,
|
| 826 |
+
"eval_samples_per_second": 29.19,
|
| 827 |
+
"eval_steps_per_second": 3.683,
|
| 828 |
+
"step": 450
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"epoch": 0.39535883111302106,
|
| 832 |
+
"grad_norm": 1.7992101907730103,
|
| 833 |
+
"learning_rate": 3.92678391921108e-06,
|
| 834 |
+
"logits/chosen": 4.718934059143066,
|
| 835 |
+
"logits/rejected": 4.305315971374512,
|
| 836 |
+
"logps/chosen": -1.423595666885376,
|
| 837 |
+
"logps/rejected": -3.9873733520507812,
|
| 838 |
+
"loss": 0.367,
|
| 839 |
+
"rewards/accuracies": 0.762499988079071,
|
| 840 |
+
"rewards/chosen": -2.1353936195373535,
|
| 841 |
+
"rewards/margins": 3.8456661701202393,
|
| 842 |
+
"rewards/rejected": -5.981060028076172,
|
| 843 |
+
"step": 460
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"epoch": 0.4039535883111302,
|
| 847 |
+
"grad_norm": 1.9630879163742065,
|
| 848 |
+
"learning_rate": 3.88347887310836e-06,
|
| 849 |
+
"logits/chosen": 3.8371150493621826,
|
| 850 |
+
"logits/rejected": 3.5719306468963623,
|
| 851 |
+
"logps/chosen": -2.0386481285095215,
|
| 852 |
+
"logps/rejected": -4.779314994812012,
|
| 853 |
+
"loss": 0.3957,
|
| 854 |
+
"rewards/accuracies": 0.8374999761581421,
|
| 855 |
+
"rewards/chosen": -3.0579724311828613,
|
| 856 |
+
"rewards/margins": 4.1110005378723145,
|
| 857 |
+
"rewards/rejected": -7.168972969055176,
|
| 858 |
+
"step": 470
|
| 859 |
+
},
|
| 860 |
+
{
|
| 861 |
+
"epoch": 0.41254834550923936,
|
| 862 |
+
"grad_norm": 4.952139854431152,
|
| 863 |
+
"learning_rate": 3.839566987447492e-06,
|
| 864 |
+
"logits/chosen": 5.024113655090332,
|
| 865 |
+
"logits/rejected": 4.880651950836182,
|
| 866 |
+
"logps/chosen": -2.3612470626831055,
|
| 867 |
+
"logps/rejected": -4.691690444946289,
|
| 868 |
+
"loss": 0.3808,
|
| 869 |
+
"rewards/accuracies": 0.824999988079071,
|
| 870 |
+
"rewards/chosen": -3.5418708324432373,
|
| 871 |
+
"rewards/margins": 3.495664596557617,
|
| 872 |
+
"rewards/rejected": -7.037535190582275,
|
| 873 |
+
"step": 480
|
| 874 |
+
},
|
| 875 |
+
{
|
| 876 |
+
"epoch": 0.4211431027073485,
|
| 877 |
+
"grad_norm": 2.832200527191162,
|
| 878 |
+
"learning_rate": 3.795067523432826e-06,
|
| 879 |
+
"logits/chosen": 4.689079284667969,
|
| 880 |
+
"logits/rejected": 4.435003280639648,
|
| 881 |
+
"logps/chosen": -2.437671184539795,
|
| 882 |
+
"logps/rejected": -5.003944396972656,
|
| 883 |
+
"loss": 0.3555,
|
| 884 |
+
"rewards/accuracies": 0.875,
|
| 885 |
+
"rewards/chosen": -3.6565067768096924,
|
| 886 |
+
"rewards/margins": 3.849409580230713,
|
| 887 |
+
"rewards/rejected": -7.505916595458984,
|
| 888 |
+
"step": 490
|
| 889 |
+
},
|
| 890 |
+
{
|
| 891 |
+
"epoch": 0.42973785990545765,
|
| 892 |
+
"grad_norm": 3.2997682094573975,
|
| 893 |
+
"learning_rate": 3.7500000000000005e-06,
|
| 894 |
+
"logits/chosen": 4.286547660827637,
|
| 895 |
+
"logits/rejected": 4.181652545928955,
|
| 896 |
+
"logps/chosen": -2.3390612602233887,
|
| 897 |
+
"logps/rejected": -4.888935565948486,
|
| 898 |
+
"loss": 0.3211,
|
| 899 |
+
"rewards/accuracies": 0.824999988079071,
|
| 900 |
+
"rewards/chosen": -3.508591890335083,
|
| 901 |
+
"rewards/margins": 3.8248119354248047,
|
| 902 |
+
"rewards/rejected": -7.333403587341309,
|
| 903 |
+
"step": 500
|
| 904 |
+
},
|
| 905 |
+
{
|
| 906 |
+
"epoch": 0.42973785990545765,
|
| 907 |
+
"eval_logits/chosen": 3.5323922634124756,
|
| 908 |
+
"eval_logits/rejected": 3.5116958618164062,
|
| 909 |
+
"eval_logps/chosen": -2.679356575012207,
|
| 910 |
+
"eval_logps/rejected": -5.927057266235352,
|
| 911 |
+
"eval_loss": 0.37026864290237427,
|
| 912 |
+
"eval_rewards/accuracies": 0.8736842274665833,
|
| 913 |
+
"eval_rewards/chosen": -4.019035339355469,
|
| 914 |
+
"eval_rewards/margins": 4.871551036834717,
|
| 915 |
+
"eval_rewards/rejected": -8.890586853027344,
|
| 916 |
+
"eval_runtime": 25.8768,
|
| 917 |
+
"eval_samples_per_second": 29.099,
|
| 918 |
+
"eval_steps_per_second": 3.671,
|
| 919 |
+
"step": 500
|
| 920 |
+
},
|
| 921 |
+
{
|
| 922 |
+
"epoch": 0.4383326171035668,
|
| 923 |
+
"grad_norm": 2.6194217205047607,
|
| 924 |
+
"learning_rate": 3.7043841852542884e-06,
|
| 925 |
+
"logits/chosen": 4.265946388244629,
|
| 926 |
+
"logits/rejected": 3.7863662242889404,
|
| 927 |
+
"logps/chosen": -2.279764413833618,
|
| 928 |
+
"logps/rejected": -4.825397968292236,
|
| 929 |
+
"loss": 0.3375,
|
| 930 |
+
"rewards/accuracies": 0.887499988079071,
|
| 931 |
+
"rewards/chosen": -3.4196460247039795,
|
| 932 |
+
"rewards/margins": 3.818450927734375,
|
| 933 |
+
"rewards/rejected": -7.238096714019775,
|
| 934 |
+
"step": 510
|
| 935 |
+
},
|
| 936 |
+
{
|
| 937 |
+
"epoch": 0.44692737430167595,
|
| 938 |
+
"grad_norm": 4.434008598327637,
|
| 939 |
+
"learning_rate": 3.658240087799655e-06,
|
| 940 |
+
"logits/chosen": 3.4983534812927246,
|
| 941 |
+
"logits/rejected": 3.3109116554260254,
|
| 942 |
+
"logps/chosen": -2.7063632011413574,
|
| 943 |
+
"logps/rejected": -5.9535369873046875,
|
| 944 |
+
"loss": 0.3388,
|
| 945 |
+
"rewards/accuracies": 0.887499988079071,
|
| 946 |
+
"rewards/chosen": -4.059545040130615,
|
| 947 |
+
"rewards/margins": 4.870760917663574,
|
| 948 |
+
"rewards/rejected": -8.930305480957031,
|
| 949 |
+
"step": 520
|
| 950 |
+
},
|
| 951 |
+
{
|
| 952 |
+
"epoch": 0.45552213149978515,
|
| 953 |
+
"grad_norm": 2.4193809032440186,
|
| 954 |
+
"learning_rate": 3.611587947962319e-06,
|
| 955 |
+
"logits/chosen": 3.4949145317077637,
|
| 956 |
+
"logits/rejected": 3.402980089187622,
|
| 957 |
+
"logps/chosen": -2.5146005153656006,
|
| 958 |
+
"logps/rejected": -5.63289737701416,
|
| 959 |
+
"loss": 0.3281,
|
| 960 |
+
"rewards/accuracies": 0.8500000238418579,
|
| 961 |
+
"rewards/chosen": -3.7719013690948486,
|
| 962 |
+
"rewards/margins": 4.677445411682129,
|
| 963 |
+
"rewards/rejected": -8.449346542358398,
|
| 964 |
+
"step": 530
|
| 965 |
+
},
|
| 966 |
+
{
|
| 967 |
+
"epoch": 0.4641168886978943,
|
| 968 |
+
"grad_norm": 10.788633346557617,
|
| 969 |
+
"learning_rate": 3.564448228912682e-06,
|
| 970 |
+
"logits/chosen": 3.3073112964630127,
|
| 971 |
+
"logits/rejected": 3.163470506668091,
|
| 972 |
+
"logps/chosen": -2.258653163909912,
|
| 973 |
+
"logps/rejected": -5.642867088317871,
|
| 974 |
+
"loss": 0.3565,
|
| 975 |
+
"rewards/accuracies": 0.9125000238418579,
|
| 976 |
+
"rewards/chosen": -3.387979507446289,
|
| 977 |
+
"rewards/margins": 5.076320648193359,
|
| 978 |
+
"rewards/rejected": -8.464300155639648,
|
| 979 |
+
"step": 540
|
| 980 |
+
},
|
| 981 |
+
{
|
| 982 |
+
"epoch": 0.47271164589600345,
|
| 983 |
+
"grad_norm": 1.6846323013305664,
|
| 984 |
+
"learning_rate": 3.516841607689501e-06,
|
| 985 |
+
"logits/chosen": 3.476361036300659,
|
| 986 |
+
"logits/rejected": 3.375828504562378,
|
| 987 |
+
"logps/chosen": -2.5325064659118652,
|
| 988 |
+
"logps/rejected": -5.799270153045654,
|
| 989 |
+
"loss": 0.3103,
|
| 990 |
+
"rewards/accuracies": 0.887499988079071,
|
| 991 |
+
"rewards/chosen": -3.798759937286377,
|
| 992 |
+
"rewards/margins": 4.900145530700684,
|
| 993 |
+
"rewards/rejected": -8.698905944824219,
|
| 994 |
+
"step": 550
|
| 995 |
+
},
|
| 996 |
+
{
|
| 997 |
+
"epoch": 0.47271164589600345,
|
| 998 |
+
"eval_logits/chosen": 3.451749563217163,
|
| 999 |
+
"eval_logits/rejected": 3.3771002292633057,
|
| 1000 |
+
"eval_logps/chosen": -2.9835667610168457,
|
| 1001 |
+
"eval_logps/rejected": -6.5389509201049805,
|
| 1002 |
+
"eval_loss": 0.32732319831848145,
|
| 1003 |
+
"eval_rewards/accuracies": 0.9052631855010986,
|
| 1004 |
+
"eval_rewards/chosen": -4.475350379943848,
|
| 1005 |
+
"eval_rewards/margins": 5.333076000213623,
|
| 1006 |
+
"eval_rewards/rejected": -9.808425903320312,
|
| 1007 |
+
"eval_runtime": 25.8141,
|
| 1008 |
+
"eval_samples_per_second": 29.17,
|
| 1009 |
+
"eval_steps_per_second": 3.68,
|
| 1010 |
+
"step": 550
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"epoch": 0.4813064030941126,
|
| 1014 |
+
"grad_norm": 2.7683331966400146,
|
| 1015 |
+
"learning_rate": 3.4687889661302577e-06,
|
| 1016 |
+
"logits/chosen": 2.468799591064453,
|
| 1017 |
+
"logits/rejected": 2.4257254600524902,
|
| 1018 |
+
"logps/chosen": -2.6801788806915283,
|
| 1019 |
+
"logps/rejected": -6.136897087097168,
|
| 1020 |
+
"loss": 0.3171,
|
| 1021 |
+
"rewards/accuracies": 0.887499988079071,
|
| 1022 |
+
"rewards/chosen": -4.020268440246582,
|
| 1023 |
+
"rewards/margins": 5.185078144073486,
|
| 1024 |
+
"rewards/rejected": -9.205347061157227,
|
| 1025 |
+
"step": 560
|
| 1026 |
+
},
|
| 1027 |
+
{
|
| 1028 |
+
"epoch": 0.48990116029222175,
|
| 1029 |
+
"grad_norm": 11.559685707092285,
|
| 1030 |
+
"learning_rate": 3.4203113817116955e-06,
|
| 1031 |
+
"logits/chosen": 3.6535427570343018,
|
| 1032 |
+
"logits/rejected": 3.583962917327881,
|
| 1033 |
+
"logps/chosen": -2.7984983921051025,
|
| 1034 |
+
"logps/rejected": -6.468808650970459,
|
| 1035 |
+
"loss": 0.331,
|
| 1036 |
+
"rewards/accuracies": 0.949999988079071,
|
| 1037 |
+
"rewards/chosen": -4.197747707366943,
|
| 1038 |
+
"rewards/margins": 5.505465984344482,
|
| 1039 |
+
"rewards/rejected": -9.703214645385742,
|
| 1040 |
+
"step": 570
|
| 1041 |
+
},
|
| 1042 |
+
{
|
| 1043 |
+
"epoch": 0.4984959174903309,
|
| 1044 |
+
"grad_norm": 7.691457271575928,
|
| 1045 |
+
"learning_rate": 3.3714301183045382e-06,
|
| 1046 |
+
"logits/chosen": 2.7467286586761475,
|
| 1047 |
+
"logits/rejected": 2.4911317825317383,
|
| 1048 |
+
"logps/chosen": -2.4207634925842285,
|
| 1049 |
+
"logps/rejected": -6.385074138641357,
|
| 1050 |
+
"loss": 0.2557,
|
| 1051 |
+
"rewards/accuracies": 0.9750000238418579,
|
| 1052 |
+
"rewards/chosen": -3.631145477294922,
|
| 1053 |
+
"rewards/margins": 5.946464538574219,
|
| 1054 |
+
"rewards/rejected": -9.577610969543457,
|
| 1055 |
+
"step": 580
|
| 1056 |
+
},
|
| 1057 |
+
{
|
| 1058 |
+
"epoch": 0.50709067468844,
|
| 1059 |
+
"grad_norm": 5.381045341491699,
|
| 1060 |
+
"learning_rate": 3.3221666168464584e-06,
|
| 1061 |
+
"logits/chosen": 3.239227294921875,
|
| 1062 |
+
"logits/rejected": 3.1982555389404297,
|
| 1063 |
+
"logps/chosen": -3.2162883281707764,
|
| 1064 |
+
"logps/rejected": -6.693168640136719,
|
| 1065 |
+
"loss": 0.2921,
|
| 1066 |
+
"rewards/accuracies": 0.949999988079071,
|
| 1067 |
+
"rewards/chosen": -4.824432373046875,
|
| 1068 |
+
"rewards/margins": 5.215321063995361,
|
| 1069 |
+
"rewards/rejected": -10.039752960205078,
|
| 1070 |
+
"step": 590
|
| 1071 |
+
},
|
| 1072 |
+
{
|
| 1073 |
+
"epoch": 0.5156854318865493,
|
| 1074 |
+
"grad_norm": 2.616710901260376,
|
| 1075 |
+
"learning_rate": 3.272542485937369e-06,
|
| 1076 |
+
"logits/chosen": 2.7326784133911133,
|
| 1077 |
+
"logits/rejected": 2.4248623847961426,
|
| 1078 |
+
"logps/chosen": -3.001952648162842,
|
| 1079 |
+
"logps/rejected": -6.597250461578369,
|
| 1080 |
+
"loss": 0.3225,
|
| 1081 |
+
"rewards/accuracies": 0.9125000238418579,
|
| 1082 |
+
"rewards/chosen": -4.502928733825684,
|
| 1083 |
+
"rewards/margins": 5.392947196960449,
|
| 1084 |
+
"rewards/rejected": -9.89587688446045,
|
| 1085 |
+
"step": 600
|
| 1086 |
+
},
|
| 1087 |
+
{
|
| 1088 |
+
"epoch": 0.5156854318865493,
|
| 1089 |
+
"eval_logits/chosen": 3.1995701789855957,
|
| 1090 |
+
"eval_logits/rejected": 3.2761952877044678,
|
| 1091 |
+
"eval_logps/chosen": -3.166325330734253,
|
| 1092 |
+
"eval_logps/rejected": -7.062953472137451,
|
| 1093 |
+
"eval_loss": 0.29786577820777893,
|
| 1094 |
+
"eval_rewards/accuracies": 0.9263157844543457,
|
| 1095 |
+
"eval_rewards/chosen": -4.74948787689209,
|
| 1096 |
+
"eval_rewards/margins": 5.84494161605835,
|
| 1097 |
+
"eval_rewards/rejected": -10.594429969787598,
|
| 1098 |
+
"eval_runtime": 25.8074,
|
| 1099 |
+
"eval_samples_per_second": 29.178,
|
| 1100 |
+
"eval_steps_per_second": 3.681,
|
| 1101 |
+
"step": 600
|
| 1102 |
+
}
|
| 1103 |
+
],
|
| 1104 |
+
"logging_steps": 10,
|
| 1105 |
+
"max_steps": 1500,
|
| 1106 |
+
"num_input_tokens_seen": 0,
|
| 1107 |
+
"num_train_epochs": 2,
|
| 1108 |
+
"save_steps": 50,
|
| 1109 |
+
"stateful_callbacks": {
|
| 1110 |
+
"TrainerControl": {
|
| 1111 |
+
"args": {
|
| 1112 |
+
"should_epoch_stop": false,
|
| 1113 |
+
"should_evaluate": false,
|
| 1114 |
+
"should_log": false,
|
| 1115 |
+
"should_save": true,
|
| 1116 |
+
"should_training_stop": false
|
| 1117 |
+
},
|
| 1118 |
+
"attributes": {}
|
| 1119 |
+
}
|
| 1120 |
+
},
|
| 1121 |
+
"total_flos": 1.3684522578293555e+18,
|
| 1122 |
+
"train_batch_size": 1,
|
| 1123 |
+
"trial_name": null,
|
| 1124 |
+
"trial_params": null
|
| 1125 |
+
}
|
checkpoint-600/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2cc4cd97bd7e66b9f8e8e61852db449abcbbbd1c049a5ad37ec259f9f39597e8
|
| 3 |
+
size 7224
|
checkpoint-600/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import json
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
from collections import OrderedDict
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
|
| 29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 31 |
+
from deepspeed.utils import logger
|
| 32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class zero_model_state:
|
| 39 |
+
buffers: dict()
|
| 40 |
+
param_shapes: dict()
|
| 41 |
+
shared_params: list
|
| 42 |
+
ds_version: int
|
| 43 |
+
frozen_param_shapes: dict()
|
| 44 |
+
frozen_param_fragments: dict()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
debug = 0
|
| 48 |
+
|
| 49 |
+
# load to cpu
|
| 50 |
+
device = torch.device('cpu')
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def atoi(text):
|
| 54 |
+
return int(text) if text.isdigit() else text
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def natural_keys(text):
|
| 58 |
+
'''
|
| 59 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 61 |
+
(See Toothy's implementation in the comments)
|
| 62 |
+
'''
|
| 63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 67 |
+
if not os.path.isdir(checkpoint_dir):
|
| 68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 69 |
+
|
| 70 |
+
# there should be only one file
|
| 71 |
+
if zero_stage <= 2:
|
| 72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 73 |
+
elif zero_stage == 3:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(file):
|
| 77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 78 |
+
|
| 79 |
+
return file
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 85 |
+
|
| 86 |
+
if len(ckpt_files) == 0:
|
| 87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 88 |
+
|
| 89 |
+
return ckpt_files
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_optim_files(checkpoint_dir):
|
| 93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def get_model_state_files(checkpoint_dir):
|
| 97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def parse_model_states(files):
|
| 101 |
+
zero_model_states = []
|
| 102 |
+
for file in files:
|
| 103 |
+
state_dict = torch.load(file, map_location=device)
|
| 104 |
+
|
| 105 |
+
if BUFFER_NAMES not in state_dict:
|
| 106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 108 |
+
if debug:
|
| 109 |
+
print("Found buffers:", buffer_names)
|
| 110 |
+
|
| 111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 114 |
+
|
| 115 |
+
# collect parameters that are included in param_shapes
|
| 116 |
+
param_names = []
|
| 117 |
+
for s in param_shapes:
|
| 118 |
+
for name in s.keys():
|
| 119 |
+
param_names.append(name)
|
| 120 |
+
|
| 121 |
+
# update with frozen parameters
|
| 122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 123 |
+
if frozen_param_shapes is not None:
|
| 124 |
+
if debug:
|
| 125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 126 |
+
param_names += list(frozen_param_shapes.keys())
|
| 127 |
+
|
| 128 |
+
# handle shared params
|
| 129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 130 |
+
|
| 131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 132 |
+
|
| 133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 134 |
+
|
| 135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 136 |
+
param_shapes=param_shapes,
|
| 137 |
+
shared_params=shared_params,
|
| 138 |
+
ds_version=ds_version,
|
| 139 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 140 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 141 |
+
zero_model_states.append(z_model_state)
|
| 142 |
+
|
| 143 |
+
return zero_model_states
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 147 |
+
total_files = len(files)
|
| 148 |
+
state_dicts = []
|
| 149 |
+
for f in files:
|
| 150 |
+
state_dict = torch.load(f, map_location=device)
|
| 151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 152 |
+
# and also handle the case where it was already removed by another helper script
|
| 153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 154 |
+
state_dicts.append(state_dict)
|
| 155 |
+
|
| 156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
+
|
| 161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
+
# use the max of the partition_count to get the dp world_size.
|
| 164 |
+
|
| 165 |
+
if type(world_size) is list:
|
| 166 |
+
world_size = max(world_size)
|
| 167 |
+
|
| 168 |
+
if world_size != total_files:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# the groups are named differently in each stage
|
| 175 |
+
if zero_stage <= 2:
|
| 176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
+
elif zero_stage == 3:
|
| 178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
+
else:
|
| 180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
+
|
| 182 |
+
if zero_stage <= 2:
|
| 183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
+
elif zero_stage == 3:
|
| 185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
+
#
|
| 188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
+
|
| 191 |
+
fp32_flat_groups = [
|
| 192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 199 |
+
"""
|
| 200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
+
|
| 208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
+
|
| 212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
+
|
| 214 |
+
zero_model_states = parse_model_states(model_files)
|
| 215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
+
|
| 217 |
+
if zero_stage <= 2:
|
| 218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 219 |
+
exclude_frozen_parameters)
|
| 220 |
+
elif zero_stage == 3:
|
| 221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 222 |
+
exclude_frozen_parameters)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 231 |
+
|
| 232 |
+
if debug:
|
| 233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 235 |
+
|
| 236 |
+
wanted_params = len(frozen_param_shapes)
|
| 237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 241 |
+
|
| 242 |
+
total_params = 0
|
| 243 |
+
total_numel = 0
|
| 244 |
+
for name, shape in frozen_param_shapes.items():
|
| 245 |
+
total_params += 1
|
| 246 |
+
unpartitioned_numel = shape.numel()
|
| 247 |
+
total_numel += unpartitioned_numel
|
| 248 |
+
|
| 249 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 250 |
+
|
| 251 |
+
if debug:
|
| 252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 253 |
+
|
| 254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def _has_callable(obj, fn):
|
| 258 |
+
attr = getattr(obj, fn, None)
|
| 259 |
+
return callable(attr)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 263 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 264 |
+
|
| 265 |
+
# Reconstruction protocol:
|
| 266 |
+
#
|
| 267 |
+
# XXX: document this
|
| 268 |
+
|
| 269 |
+
if debug:
|
| 270 |
+
for i in range(world_size):
|
| 271 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 273 |
+
|
| 274 |
+
# XXX: memory usage doubles here (zero2)
|
| 275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 276 |
+
merged_single_partition_of_fp32_groups = []
|
| 277 |
+
for i in range(num_param_groups):
|
| 278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 281 |
+
avail_numel = sum(
|
| 282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 283 |
+
|
| 284 |
+
if debug:
|
| 285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 287 |
+
# not asserting if there is a mismatch due to possible padding
|
| 288 |
+
print(f"Have {avail_numel} numels to process.")
|
| 289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 290 |
+
|
| 291 |
+
# params
|
| 292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 293 |
+
# out-of-core computing solution
|
| 294 |
+
total_numel = 0
|
| 295 |
+
total_params = 0
|
| 296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 297 |
+
offset = 0
|
| 298 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 299 |
+
for name, shape in shapes.items():
|
| 300 |
+
|
| 301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 302 |
+
total_numel += unpartitioned_numel
|
| 303 |
+
total_params += 1
|
| 304 |
+
|
| 305 |
+
if debug:
|
| 306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 308 |
+
offset += unpartitioned_numel
|
| 309 |
+
|
| 310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 314 |
+
align_to = 2 * world_size
|
| 315 |
+
|
| 316 |
+
def zero2_align(x):
|
| 317 |
+
return align_to * math.ceil(x / align_to)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
offset = zero2_align(offset)
|
| 323 |
+
avail_numel = zero2_align(avail_numel)
|
| 324 |
+
|
| 325 |
+
if debug:
|
| 326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 327 |
+
|
| 328 |
+
# Sanity check
|
| 329 |
+
if offset != avail_numel:
|
| 330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 331 |
+
|
| 332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 336 |
+
exclude_frozen_parameters):
|
| 337 |
+
state_dict = OrderedDict()
|
| 338 |
+
|
| 339 |
+
# buffers
|
| 340 |
+
buffers = zero_model_states[0].buffers
|
| 341 |
+
state_dict.update(buffers)
|
| 342 |
+
if debug:
|
| 343 |
+
print(f"added {len(buffers)} buffers")
|
| 344 |
+
|
| 345 |
+
if not exclude_frozen_parameters:
|
| 346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 347 |
+
|
| 348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 349 |
+
|
| 350 |
+
# recover shared parameters
|
| 351 |
+
for pair in zero_model_states[0].shared_params:
|
| 352 |
+
if pair[1] in state_dict:
|
| 353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 354 |
+
|
| 355 |
+
return state_dict
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 359 |
+
remainder = unpartitioned_numel % world_size
|
| 360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 362 |
+
return partitioned_numel, padding_numel
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 367 |
+
return
|
| 368 |
+
|
| 369 |
+
if debug:
|
| 370 |
+
for i in range(world_size):
|
| 371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 373 |
+
|
| 374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 375 |
+
wanted_params = len(frozen_param_shapes)
|
| 376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 380 |
+
|
| 381 |
+
total_params = 0
|
| 382 |
+
total_numel = 0
|
| 383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 384 |
+
total_params += 1
|
| 385 |
+
unpartitioned_numel = shape.numel()
|
| 386 |
+
total_numel += unpartitioned_numel
|
| 387 |
+
|
| 388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 390 |
+
|
| 391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 392 |
+
|
| 393 |
+
if debug:
|
| 394 |
+
print(
|
| 395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 402 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 406 |
+
|
| 407 |
+
# merge list of dicts, preserving order
|
| 408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 409 |
+
|
| 410 |
+
if debug:
|
| 411 |
+
for i in range(world_size):
|
| 412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 413 |
+
|
| 414 |
+
wanted_params = len(param_shapes)
|
| 415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 416 |
+
# not asserting if there is a mismatch due to possible padding
|
| 417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 420 |
+
|
| 421 |
+
# params
|
| 422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 423 |
+
# out-of-core computing solution
|
| 424 |
+
offset = 0
|
| 425 |
+
total_numel = 0
|
| 426 |
+
total_params = 0
|
| 427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
| 428 |
+
unpartitioned_numel = shape.numel()
|
| 429 |
+
total_numel += unpartitioned_numel
|
| 430 |
+
total_params += 1
|
| 431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 432 |
+
|
| 433 |
+
if debug:
|
| 434 |
+
print(
|
| 435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# XXX: memory usage doubles here
|
| 439 |
+
state_dict[name] = torch.cat(
|
| 440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 442 |
+
offset += partitioned_numel
|
| 443 |
+
|
| 444 |
+
offset *= world_size
|
| 445 |
+
|
| 446 |
+
# Sanity check
|
| 447 |
+
if offset != avail_numel:
|
| 448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 449 |
+
|
| 450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 454 |
+
exclude_frozen_parameters):
|
| 455 |
+
state_dict = OrderedDict()
|
| 456 |
+
|
| 457 |
+
# buffers
|
| 458 |
+
buffers = zero_model_states[0].buffers
|
| 459 |
+
state_dict.update(buffers)
|
| 460 |
+
if debug:
|
| 461 |
+
print(f"added {len(buffers)} buffers")
|
| 462 |
+
|
| 463 |
+
if not exclude_frozen_parameters:
|
| 464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 465 |
+
|
| 466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 467 |
+
|
| 468 |
+
# recover shared parameters
|
| 469 |
+
for pair in zero_model_states[0].shared_params:
|
| 470 |
+
if pair[1] in state_dict:
|
| 471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 472 |
+
|
| 473 |
+
return state_dict
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 477 |
+
"""
|
| 478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 480 |
+
via a model hub.
|
| 481 |
+
|
| 482 |
+
Args:
|
| 483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
- pytorch ``state_dict``
|
| 489 |
+
|
| 490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 492 |
+
the checkpoint.
|
| 493 |
+
|
| 494 |
+
A typical usage might be ::
|
| 495 |
+
|
| 496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 497 |
+
# do the training and checkpoint saving
|
| 498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 499 |
+
model = model.cpu() # move to cpu
|
| 500 |
+
model.load_state_dict(state_dict)
|
| 501 |
+
# submit to model hub or save the model to share with others
|
| 502 |
+
|
| 503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 506 |
+
|
| 507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 508 |
+
|
| 509 |
+
"""
|
| 510 |
+
if tag is None:
|
| 511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 512 |
+
if os.path.isfile(latest_path):
|
| 513 |
+
with open(latest_path, 'r') as fd:
|
| 514 |
+
tag = fd.read().strip()
|
| 515 |
+
else:
|
| 516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 517 |
+
|
| 518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 519 |
+
|
| 520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 522 |
+
|
| 523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 527 |
+
output_dir,
|
| 528 |
+
max_shard_size="5GB",
|
| 529 |
+
safe_serialization=False,
|
| 530 |
+
tag=None,
|
| 531 |
+
exclude_frozen_parameters=False):
|
| 532 |
+
"""
|
| 533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 535 |
+
|
| 536 |
+
Args:
|
| 537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 543 |
+
"""
|
| 544 |
+
# Dependency pre-check
|
| 545 |
+
if safe_serialization:
|
| 546 |
+
try:
|
| 547 |
+
from safetensors.torch import save_file
|
| 548 |
+
except ImportError:
|
| 549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 550 |
+
raise
|
| 551 |
+
if max_shard_size is not None:
|
| 552 |
+
try:
|
| 553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 554 |
+
except ImportError:
|
| 555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 556 |
+
raise
|
| 557 |
+
|
| 558 |
+
# Convert zero checkpoint to state_dict
|
| 559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 560 |
+
|
| 561 |
+
# Shard the model if it is too big.
|
| 562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 563 |
+
if max_shard_size is not None:
|
| 564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
| 566 |
+
filename_pattern=filename_pattern,
|
| 567 |
+
max_shard_size=max_shard_size)
|
| 568 |
+
else:
|
| 569 |
+
from collections import namedtuple
|
| 570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 573 |
+
|
| 574 |
+
# Save the model
|
| 575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
| 578 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 579 |
+
if safe_serialization:
|
| 580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
| 581 |
+
else:
|
| 582 |
+
torch.save(shard, output_path)
|
| 583 |
+
|
| 584 |
+
# Save index if sharded
|
| 585 |
+
if state_dict_split.is_sharded:
|
| 586 |
+
index = {
|
| 587 |
+
"metadata": state_dict_split.metadata,
|
| 588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 589 |
+
}
|
| 590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 594 |
+
f.write(content)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 598 |
+
"""
|
| 599 |
+
1. Put the provided model to cpu
|
| 600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 601 |
+
3. Load it into the provided model
|
| 602 |
+
|
| 603 |
+
Args:
|
| 604 |
+
- ``model``: the model object to update
|
| 605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 607 |
+
|
| 608 |
+
Returns:
|
| 609 |
+
- ``model`: modified model
|
| 610 |
+
|
| 611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 613 |
+
conveniently placed for you in the checkpoint folder.
|
| 614 |
+
|
| 615 |
+
A typical usage might be ::
|
| 616 |
+
|
| 617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 619 |
+
# submit to model hub or save the model to share with others
|
| 620 |
+
|
| 621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 624 |
+
|
| 625 |
+
"""
|
| 626 |
+
logger.info(f"Extracting fp32 weights")
|
| 627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 628 |
+
|
| 629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 630 |
+
model = model.cpu()
|
| 631 |
+
model.load_state_dict(state_dict, strict=False)
|
| 632 |
+
|
| 633 |
+
return model
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
if __name__ == "__main__":
|
| 637 |
+
parser = argparse.ArgumentParser()
|
| 638 |
+
parser.add_argument("checkpoint_dir",
|
| 639 |
+
type=str,
|
| 640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 641 |
+
parser.add_argument("output_dir",
|
| 642 |
+
type=str,
|
| 643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 644 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 645 |
+
parser.add_argument(
|
| 646 |
+
"--max_shard_size",
|
| 647 |
+
type=str,
|
| 648 |
+
default="5GB",
|
| 649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 652 |
+
"without CPU OOM issues.")
|
| 653 |
+
parser.add_argument(
|
| 654 |
+
"--safe_serialization",
|
| 655 |
+
default=False,
|
| 656 |
+
action='store_true',
|
| 657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 658 |
+
parser.add_argument("-t",
|
| 659 |
+
"--tag",
|
| 660 |
+
type=str,
|
| 661 |
+
default=None,
|
| 662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 665 |
+
args = parser.parse_args()
|
| 666 |
+
|
| 667 |
+
debug = args.debug
|
| 668 |
+
|
| 669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 670 |
+
args.output_dir,
|
| 671 |
+
max_shard_size=args.max_shard_size,
|
| 672 |
+
safe_serialization=args.safe_serialization,
|
| 673 |
+
tag=args.tag,
|
| 674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|