Training in progress, step 850, checkpoint
Browse files- checkpoint-850/README.md +202 -0
- checkpoint-850/adapter_config.json +34 -0
- checkpoint-850/adapter_model.safetensors +3 -0
- checkpoint-850/added_tokens.json +13 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/mp_rank_00_model_states.pt +3 -0
- checkpoint-850/latest +1 -0
- checkpoint-850/rng_state_0.pth +3 -0
- checkpoint-850/rng_state_1.pth +3 -0
- checkpoint-850/rng_state_2.pth +3 -0
- checkpoint-850/rng_state_3.pth +3 -0
- checkpoint-850/rng_state_4.pth +3 -0
- checkpoint-850/rng_state_5.pth +3 -0
- checkpoint-850/rng_state_6.pth +3 -0
- checkpoint-850/rng_state_7.pth +3 -0
- checkpoint-850/scheduler.pt +3 -0
- checkpoint-850/special_tokens_map.json +30 -0
- checkpoint-850/tokenizer.json +0 -0
- checkpoint-850/tokenizer.model +3 -0
- checkpoint-850/tokenizer_config.json +133 -0
- checkpoint-850/trainer_state.json +1580 -0
- checkpoint-850/training_args.bin +3 -0
- checkpoint-850/zero_to_fp32.py +674 -0
checkpoint-850/README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: microsoft/Phi-3-mini-4k-instruct
|
| 3 |
+
library_name: peft
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.14.0
|
checkpoint-850/adapter_config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"eva_config": null,
|
| 7 |
+
"exclude_modules": null,
|
| 8 |
+
"fan_in_fan_out": false,
|
| 9 |
+
"inference_mode": true,
|
| 10 |
+
"init_lora_weights": true,
|
| 11 |
+
"layer_replication": null,
|
| 12 |
+
"layers_pattern": null,
|
| 13 |
+
"layers_to_transform": null,
|
| 14 |
+
"loftq_config": {},
|
| 15 |
+
"lora_alpha": 16,
|
| 16 |
+
"lora_bias": false,
|
| 17 |
+
"lora_dropout": 0.0,
|
| 18 |
+
"megatron_config": null,
|
| 19 |
+
"megatron_core": "megatron.core",
|
| 20 |
+
"modules_to_save": null,
|
| 21 |
+
"peft_type": "LORA",
|
| 22 |
+
"r": 8,
|
| 23 |
+
"rank_pattern": {},
|
| 24 |
+
"revision": null,
|
| 25 |
+
"target_modules": [
|
| 26 |
+
"qkv_proj",
|
| 27 |
+
"gate_up_proj",
|
| 28 |
+
"o_proj",
|
| 29 |
+
"down_proj"
|
| 30 |
+
],
|
| 31 |
+
"task_type": "CAUSAL_LM",
|
| 32 |
+
"use_dora": false,
|
| 33 |
+
"use_rslora": false
|
| 34 |
+
}
|
checkpoint-850/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cd4297aebfd94c1c658683f162b7ca02f1eea775fe99c7ee88c2ef914c2ac511
|
| 3 |
+
size 25200088
|
checkpoint-850/added_tokens.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<|assistant|>": 32001,
|
| 3 |
+
"<|endoftext|>": 32000,
|
| 4 |
+
"<|end|>": 32007,
|
| 5 |
+
"<|placeholder1|>": 32002,
|
| 6 |
+
"<|placeholder2|>": 32003,
|
| 7 |
+
"<|placeholder3|>": 32004,
|
| 8 |
+
"<|placeholder4|>": 32005,
|
| 9 |
+
"<|placeholder5|>": 32008,
|
| 10 |
+
"<|placeholder6|>": 32009,
|
| 11 |
+
"<|system|>": 32006,
|
| 12 |
+
"<|user|>": 32010
|
| 13 |
+
}
|
checkpoint-850/global_step850/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:05dc2188bb205277dd25544af9d3fd4736b2447f6e1a0b4b4332ddce1b9d7ac1
|
| 3 |
+
size 18881328
|
checkpoint-850/global_step850/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb7a56c5b271531dd1a6c093235037c22a98c89925510c607357199f141866bd
|
| 3 |
+
size 18881328
|
checkpoint-850/global_step850/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6066d45bba1674360695aa81fe991799f08ef889b2b6ebf8a780c438de4f8fe2
|
| 3 |
+
size 18881328
|
checkpoint-850/global_step850/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:44245b5d0ac98c26fcae8d5387af87299dae96872b5528161961abfcbc1bdb58
|
| 3 |
+
size 18881392
|
checkpoint-850/global_step850/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d9476925b4cc0bd0434c576680a776d33199eca413a202664e1dcb3173459260
|
| 3 |
+
size 18881392
|
checkpoint-850/global_step850/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:21e583934930498084027cc3e9a33d84031430ac2976d3c4b52f6561afb6beaf
|
| 3 |
+
size 18881392
|
checkpoint-850/global_step850/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5a80466e35bf3e64240ccc355f18a1e65f8d390e54b14a8e54a2c9f1bba71b2a
|
| 3 |
+
size 18881392
|
checkpoint-850/global_step850/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:16e2ac9e09b1aed5a04ffedea66bc841790a45c78c595cee74f769c8882c9808
|
| 3 |
+
size 18881392
|
checkpoint-850/global_step850/mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c95717ea47d0c52c157b716dae51ebdc04f1d210827e8d5cf1f5d14f22afcc95
|
| 3 |
+
size 25379244
|
checkpoint-850/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step850
|
checkpoint-850/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3f5c4738c31c5c9a38e1f586256d59a0e8e7d02641b9b9af2afdbe078440aeb4
|
| 3 |
+
size 15984
|
checkpoint-850/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4d374b3390eb52ec7f6161c06272d4f26cb715692bdf2ad5374287b6de420ca3
|
| 3 |
+
size 15984
|
checkpoint-850/rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:24111edc5a6a2994166cd410155ee3c630816d0fe21c13808ebd2a2ae45bc9d8
|
| 3 |
+
size 15984
|
checkpoint-850/rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:157b21eda1c7f898e519251deed08049767ffba123797289de56343a92ba7380
|
| 3 |
+
size 15984
|
checkpoint-850/rng_state_4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1ccb615552e5845759bc13aa2ae50c0525fbf941fa76ee2e2c20cb9838fe1995
|
| 3 |
+
size 15984
|
checkpoint-850/rng_state_5.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9fcf720fc22147ce563d6f2c2f6f3d916a7e8b7af174b480d072b5c822e992aa
|
| 3 |
+
size 15984
|
checkpoint-850/rng_state_6.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d055d3b033dc8e6fc2a19aa95162960544ab94a903988874315efe4ed5aa8e13
|
| 3 |
+
size 15984
|
checkpoint-850/rng_state_7.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e03c685f2e019350bfdd41f006495a18690aacbccd7ffc1f40de827f433eb87
|
| 3 |
+
size 15984
|
checkpoint-850/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e018ec51f51e576ee0ab0d945ed5b24487041ac34863e79688b43f75d30d7673
|
| 3 |
+
size 1064
|
checkpoint-850/special_tokens_map.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|end|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "<|endoftext|>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"unk_token": {
|
| 24 |
+
"content": "<unk>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
}
|
| 30 |
+
}
|
checkpoint-850/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-850/tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
| 3 |
+
size 499723
|
checkpoint-850/tokenizer_config.json
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": null,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": true,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": false
|
| 29 |
+
},
|
| 30 |
+
"32000": {
|
| 31 |
+
"content": "<|endoftext|>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"32001": {
|
| 39 |
+
"content": "<|assistant|>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": true,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
},
|
| 46 |
+
"32002": {
|
| 47 |
+
"content": "<|placeholder1|>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": true,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": true
|
| 53 |
+
},
|
| 54 |
+
"32003": {
|
| 55 |
+
"content": "<|placeholder2|>",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"rstrip": true,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": true
|
| 61 |
+
},
|
| 62 |
+
"32004": {
|
| 63 |
+
"content": "<|placeholder3|>",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": false,
|
| 66 |
+
"rstrip": true,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": true
|
| 69 |
+
},
|
| 70 |
+
"32005": {
|
| 71 |
+
"content": "<|placeholder4|>",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": false,
|
| 74 |
+
"rstrip": true,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": true
|
| 77 |
+
},
|
| 78 |
+
"32006": {
|
| 79 |
+
"content": "<|system|>",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": false,
|
| 82 |
+
"rstrip": true,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": true
|
| 85 |
+
},
|
| 86 |
+
"32007": {
|
| 87 |
+
"content": "<|end|>",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": false,
|
| 90 |
+
"rstrip": false,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": true
|
| 93 |
+
},
|
| 94 |
+
"32008": {
|
| 95 |
+
"content": "<|placeholder5|>",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": false,
|
| 98 |
+
"rstrip": true,
|
| 99 |
+
"single_word": false,
|
| 100 |
+
"special": true
|
| 101 |
+
},
|
| 102 |
+
"32009": {
|
| 103 |
+
"content": "<|placeholder6|>",
|
| 104 |
+
"lstrip": false,
|
| 105 |
+
"normalized": false,
|
| 106 |
+
"rstrip": true,
|
| 107 |
+
"single_word": false,
|
| 108 |
+
"special": true
|
| 109 |
+
},
|
| 110 |
+
"32010": {
|
| 111 |
+
"content": "<|user|>",
|
| 112 |
+
"lstrip": false,
|
| 113 |
+
"normalized": false,
|
| 114 |
+
"rstrip": true,
|
| 115 |
+
"single_word": false,
|
| 116 |
+
"special": true
|
| 117 |
+
}
|
| 118 |
+
},
|
| 119 |
+
"bos_token": "<s>",
|
| 120 |
+
"chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
|
| 121 |
+
"clean_up_tokenization_spaces": false,
|
| 122 |
+
"eos_token": "<|end|>",
|
| 123 |
+
"extra_special_tokens": {},
|
| 124 |
+
"legacy": false,
|
| 125 |
+
"model_max_length": 4096,
|
| 126 |
+
"pad_token": "<|endoftext|>",
|
| 127 |
+
"padding_side": "right",
|
| 128 |
+
"sp_model_kwargs": {},
|
| 129 |
+
"split_special_tokens": false,
|
| 130 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 131 |
+
"unk_token": "<unk>",
|
| 132 |
+
"use_default_system_prompt": false
|
| 133 |
+
}
|
checkpoint-850/trainer_state.json
ADDED
|
@@ -0,0 +1,1580 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.730554361839278,
|
| 5 |
+
"eval_steps": 50,
|
| 6 |
+
"global_step": 850,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.008594757198109154,
|
| 13 |
+
"grad_norm": 0.06708361208438873,
|
| 14 |
+
"learning_rate": 4.999451708687114e-06,
|
| 15 |
+
"logits/chosen": 14.524938583374023,
|
| 16 |
+
"logits/rejected": 14.82593822479248,
|
| 17 |
+
"logps/chosen": -0.31433865427970886,
|
| 18 |
+
"logps/rejected": -0.32406437397003174,
|
| 19 |
+
"loss": 0.9442,
|
| 20 |
+
"rewards/accuracies": 0.4124999940395355,
|
| 21 |
+
"rewards/chosen": -0.4715079367160797,
|
| 22 |
+
"rewards/margins": 0.014588532969355583,
|
| 23 |
+
"rewards/rejected": -0.48609647154808044,
|
| 24 |
+
"step": 10
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 0.017189514396218308,
|
| 28 |
+
"grad_norm": 0.056814808398485184,
|
| 29 |
+
"learning_rate": 4.997807075247147e-06,
|
| 30 |
+
"logits/chosen": 14.309213638305664,
|
| 31 |
+
"logits/rejected": 14.978128433227539,
|
| 32 |
+
"logps/chosen": -0.31283506751060486,
|
| 33 |
+
"logps/rejected": -0.3911947011947632,
|
| 34 |
+
"loss": 0.928,
|
| 35 |
+
"rewards/accuracies": 0.550000011920929,
|
| 36 |
+
"rewards/chosen": -0.46925264596939087,
|
| 37 |
+
"rewards/margins": 0.1175394207239151,
|
| 38 |
+
"rewards/rejected": -0.5867919921875,
|
| 39 |
+
"step": 20
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"epoch": 0.02578427159432746,
|
| 43 |
+
"grad_norm": 0.061199307441711426,
|
| 44 |
+
"learning_rate": 4.9950668210706795e-06,
|
| 45 |
+
"logits/chosen": 14.68384075164795,
|
| 46 |
+
"logits/rejected": 15.338122367858887,
|
| 47 |
+
"logps/chosen": -0.3007296621799469,
|
| 48 |
+
"logps/rejected": -0.3204456865787506,
|
| 49 |
+
"loss": 0.9439,
|
| 50 |
+
"rewards/accuracies": 0.4375,
|
| 51 |
+
"rewards/chosen": -0.45109447836875916,
|
| 52 |
+
"rewards/margins": 0.029573997482657433,
|
| 53 |
+
"rewards/rejected": -0.48066848516464233,
|
| 54 |
+
"step": 30
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"epoch": 0.034379028792436615,
|
| 58 |
+
"grad_norm": 0.08423774689435959,
|
| 59 |
+
"learning_rate": 4.9912321481237616e-06,
|
| 60 |
+
"logits/chosen": 14.39265251159668,
|
| 61 |
+
"logits/rejected": 15.059102058410645,
|
| 62 |
+
"logps/chosen": -0.28216058015823364,
|
| 63 |
+
"logps/rejected": -0.33495840430259705,
|
| 64 |
+
"loss": 0.9184,
|
| 65 |
+
"rewards/accuracies": 0.4124999940395355,
|
| 66 |
+
"rewards/chosen": -0.42324090003967285,
|
| 67 |
+
"rewards/margins": 0.07919676601886749,
|
| 68 |
+
"rewards/rejected": -0.5024376511573792,
|
| 69 |
+
"step": 40
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"epoch": 0.042973785990545764,
|
| 73 |
+
"grad_norm": 0.06052614375948906,
|
| 74 |
+
"learning_rate": 4.986304738420684e-06,
|
| 75 |
+
"logits/chosen": 14.383735656738281,
|
| 76 |
+
"logits/rejected": 15.029413223266602,
|
| 77 |
+
"logps/chosen": -0.27970507740974426,
|
| 78 |
+
"logps/rejected": -0.33213528990745544,
|
| 79 |
+
"loss": 0.9317,
|
| 80 |
+
"rewards/accuracies": 0.5249999761581421,
|
| 81 |
+
"rewards/chosen": -0.4195576310157776,
|
| 82 |
+
"rewards/margins": 0.07864536345005035,
|
| 83 |
+
"rewards/rejected": -0.49820294976234436,
|
| 84 |
+
"step": 50
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"epoch": 0.042973785990545764,
|
| 88 |
+
"eval_logits/chosen": 14.424538612365723,
|
| 89 |
+
"eval_logits/rejected": 15.006633758544922,
|
| 90 |
+
"eval_logps/chosen": -0.2923925220966339,
|
| 91 |
+
"eval_logps/rejected": -0.3531996011734009,
|
| 92 |
+
"eval_loss": 0.9324354529380798,
|
| 93 |
+
"eval_rewards/accuracies": 0.5052631497383118,
|
| 94 |
+
"eval_rewards/chosen": -0.43858882784843445,
|
| 95 |
+
"eval_rewards/margins": 0.09121060371398926,
|
| 96 |
+
"eval_rewards/rejected": -0.5297994017601013,
|
| 97 |
+
"eval_runtime": 26.3759,
|
| 98 |
+
"eval_samples_per_second": 28.549,
|
| 99 |
+
"eval_steps_per_second": 3.602,
|
| 100 |
+
"step": 50
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.05156854318865492,
|
| 104 |
+
"grad_norm": 0.06899414211511612,
|
| 105 |
+
"learning_rate": 4.980286753286196e-06,
|
| 106 |
+
"logits/chosen": 14.888933181762695,
|
| 107 |
+
"logits/rejected": 15.33955192565918,
|
| 108 |
+
"logps/chosen": -0.2886829972267151,
|
| 109 |
+
"logps/rejected": -0.34016504883766174,
|
| 110 |
+
"loss": 0.9323,
|
| 111 |
+
"rewards/accuracies": 0.5,
|
| 112 |
+
"rewards/chosen": -0.43302449584007263,
|
| 113 |
+
"rewards/margins": 0.07722309231758118,
|
| 114 |
+
"rewards/rejected": -0.5102475881576538,
|
| 115 |
+
"step": 60
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"epoch": 0.060163300386764075,
|
| 119 |
+
"grad_norm": 0.06679105013608932,
|
| 120 |
+
"learning_rate": 4.973180832407471e-06,
|
| 121 |
+
"logits/chosen": 14.721624374389648,
|
| 122 |
+
"logits/rejected": 15.614666938781738,
|
| 123 |
+
"logps/chosen": -0.29435139894485474,
|
| 124 |
+
"logps/rejected": -0.38699784874916077,
|
| 125 |
+
"loss": 0.9172,
|
| 126 |
+
"rewards/accuracies": 0.48750001192092896,
|
| 127 |
+
"rewards/chosen": -0.4415270686149597,
|
| 128 |
+
"rewards/margins": 0.13896968960762024,
|
| 129 |
+
"rewards/rejected": -0.5804967880249023,
|
| 130 |
+
"step": 70
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"epoch": 0.06875805758487323,
|
| 134 |
+
"grad_norm": 0.07169903814792633,
|
| 135 |
+
"learning_rate": 4.964990092676263e-06,
|
| 136 |
+
"logits/chosen": 13.848808288574219,
|
| 137 |
+
"logits/rejected": 14.609800338745117,
|
| 138 |
+
"logps/chosen": -0.26156893372535706,
|
| 139 |
+
"logps/rejected": -0.33030644059181213,
|
| 140 |
+
"loss": 0.9245,
|
| 141 |
+
"rewards/accuracies": 0.48750001192092896,
|
| 142 |
+
"rewards/chosen": -0.3923533856868744,
|
| 143 |
+
"rewards/margins": 0.10310628265142441,
|
| 144 |
+
"rewards/rejected": -0.495459645986557,
|
| 145 |
+
"step": 80
|
| 146 |
+
},
|
| 147 |
+
{
|
| 148 |
+
"epoch": 0.07735281478298238,
|
| 149 |
+
"grad_norm": 0.06593246012926102,
|
| 150 |
+
"learning_rate": 4.9557181268217225e-06,
|
| 151 |
+
"logits/chosen": 14.603567123413086,
|
| 152 |
+
"logits/rejected": 14.994171142578125,
|
| 153 |
+
"logps/chosen": -0.3191321790218353,
|
| 154 |
+
"logps/rejected": -0.3477073311805725,
|
| 155 |
+
"loss": 0.9359,
|
| 156 |
+
"rewards/accuracies": 0.5,
|
| 157 |
+
"rewards/chosen": -0.4786983132362366,
|
| 158 |
+
"rewards/margins": 0.042862698435783386,
|
| 159 |
+
"rewards/rejected": -0.5215609669685364,
|
| 160 |
+
"step": 90
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"epoch": 0.08594757198109153,
|
| 164 |
+
"grad_norm": 0.0718066617846489,
|
| 165 |
+
"learning_rate": 4.9453690018345144e-06,
|
| 166 |
+
"logits/chosen": 13.928094863891602,
|
| 167 |
+
"logits/rejected": 14.792709350585938,
|
| 168 |
+
"logps/chosen": -0.24115696549415588,
|
| 169 |
+
"logps/rejected": -0.3537539839744568,
|
| 170 |
+
"loss": 0.9066,
|
| 171 |
+
"rewards/accuracies": 0.5874999761581421,
|
| 172 |
+
"rewards/chosen": -0.3617354929447174,
|
| 173 |
+
"rewards/margins": 0.16889554262161255,
|
| 174 |
+
"rewards/rejected": -0.5306310653686523,
|
| 175 |
+
"step": 100
|
| 176 |
+
},
|
| 177 |
+
{
|
| 178 |
+
"epoch": 0.08594757198109153,
|
| 179 |
+
"eval_logits/chosen": 14.40036392211914,
|
| 180 |
+
"eval_logits/rejected": 14.97786808013916,
|
| 181 |
+
"eval_logps/chosen": -0.2777771055698395,
|
| 182 |
+
"eval_logps/rejected": -0.3516874611377716,
|
| 183 |
+
"eval_loss": 0.9236211180686951,
|
| 184 |
+
"eval_rewards/accuracies": 0.5052631497383118,
|
| 185 |
+
"eval_rewards/chosen": -0.4166657328605652,
|
| 186 |
+
"eval_rewards/margins": 0.11086549609899521,
|
| 187 |
+
"eval_rewards/rejected": -0.5275312066078186,
|
| 188 |
+
"eval_runtime": 25.8056,
|
| 189 |
+
"eval_samples_per_second": 29.18,
|
| 190 |
+
"eval_steps_per_second": 3.681,
|
| 191 |
+
"step": 100
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 0.09454232917920069,
|
| 195 |
+
"grad_norm": 0.06681054830551147,
|
| 196 |
+
"learning_rate": 4.933947257182901e-06,
|
| 197 |
+
"logits/chosen": 14.76116943359375,
|
| 198 |
+
"logits/rejected": 15.001077651977539,
|
| 199 |
+
"logps/chosen": -0.297056645154953,
|
| 200 |
+
"logps/rejected": -0.3221590518951416,
|
| 201 |
+
"loss": 0.929,
|
| 202 |
+
"rewards/accuracies": 0.44999998807907104,
|
| 203 |
+
"rewards/chosen": -0.4455850124359131,
|
| 204 |
+
"rewards/margins": 0.03765357658267021,
|
| 205 |
+
"rewards/rejected": -0.4832385182380676,
|
| 206 |
+
"step": 110
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 0.10313708637730984,
|
| 210 |
+
"grad_norm": 0.10024584829807281,
|
| 211 |
+
"learning_rate": 4.921457902821578e-06,
|
| 212 |
+
"logits/chosen": 14.405306816101074,
|
| 213 |
+
"logits/rejected": 15.084524154663086,
|
| 214 |
+
"logps/chosen": -0.2726767361164093,
|
| 215 |
+
"logps/rejected": -0.3543504774570465,
|
| 216 |
+
"loss": 0.9299,
|
| 217 |
+
"rewards/accuracies": 0.5874999761581421,
|
| 218 |
+
"rewards/chosen": -0.40901508927345276,
|
| 219 |
+
"rewards/margins": 0.12251058965921402,
|
| 220 |
+
"rewards/rejected": -0.531525731086731,
|
| 221 |
+
"step": 120
|
| 222 |
+
},
|
| 223 |
+
{
|
| 224 |
+
"epoch": 0.11173184357541899,
|
| 225 |
+
"grad_norm": 0.08629737794399261,
|
| 226 |
+
"learning_rate": 4.907906416994146e-06,
|
| 227 |
+
"logits/chosen": 14.073992729187012,
|
| 228 |
+
"logits/rejected": 14.882128715515137,
|
| 229 |
+
"logps/chosen": -0.2827032506465912,
|
| 230 |
+
"logps/rejected": -0.369393527507782,
|
| 231 |
+
"loss": 0.9109,
|
| 232 |
+
"rewards/accuracies": 0.5375000238418579,
|
| 233 |
+
"rewards/chosen": -0.42405492067337036,
|
| 234 |
+
"rewards/margins": 0.13003548979759216,
|
| 235 |
+
"rewards/rejected": -0.5540903806686401,
|
| 236 |
+
"step": 130
|
| 237 |
+
},
|
| 238 |
+
{
|
| 239 |
+
"epoch": 0.12032660077352815,
|
| 240 |
+
"grad_norm": 0.07973086833953857,
|
| 241 |
+
"learning_rate": 4.893298743830168e-06,
|
| 242 |
+
"logits/chosen": 13.96656322479248,
|
| 243 |
+
"logits/rejected": 14.639463424682617,
|
| 244 |
+
"logps/chosen": -0.28426361083984375,
|
| 245 |
+
"logps/rejected": -0.3899250030517578,
|
| 246 |
+
"loss": 0.9138,
|
| 247 |
+
"rewards/accuracies": 0.5625,
|
| 248 |
+
"rewards/chosen": -0.4263954162597656,
|
| 249 |
+
"rewards/margins": 0.1584920585155487,
|
| 250 |
+
"rewards/rejected": -0.5848874449729919,
|
| 251 |
+
"step": 140
|
| 252 |
+
},
|
| 253 |
+
{
|
| 254 |
+
"epoch": 0.1289213579716373,
|
| 255 |
+
"grad_norm": 0.08767445385456085,
|
| 256 |
+
"learning_rate": 4.8776412907378845e-06,
|
| 257 |
+
"logits/chosen": 13.705177307128906,
|
| 258 |
+
"logits/rejected": 14.19865608215332,
|
| 259 |
+
"logps/chosen": -0.26735779643058777,
|
| 260 |
+
"logps/rejected": -0.34726911783218384,
|
| 261 |
+
"loss": 0.9157,
|
| 262 |
+
"rewards/accuracies": 0.574999988079071,
|
| 263 |
+
"rewards/chosen": -0.40103667974472046,
|
| 264 |
+
"rewards/margins": 0.1198669821023941,
|
| 265 |
+
"rewards/rejected": -0.5209037065505981,
|
| 266 |
+
"step": 150
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"epoch": 0.1289213579716373,
|
| 270 |
+
"eval_logits/chosen": 13.20260238647461,
|
| 271 |
+
"eval_logits/rejected": 13.959339141845703,
|
| 272 |
+
"eval_logps/chosen": -0.27623170614242554,
|
| 273 |
+
"eval_logps/rejected": -0.3724917769432068,
|
| 274 |
+
"eval_loss": 0.909102737903595,
|
| 275 |
+
"eval_rewards/accuracies": 0.557894766330719,
|
| 276 |
+
"eval_rewards/chosen": -0.4143475592136383,
|
| 277 |
+
"eval_rewards/margins": 0.14439010620117188,
|
| 278 |
+
"eval_rewards/rejected": -0.5587376356124878,
|
| 279 |
+
"eval_runtime": 25.7839,
|
| 280 |
+
"eval_samples_per_second": 29.204,
|
| 281 |
+
"eval_steps_per_second": 3.684,
|
| 282 |
+
"step": 150
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.13751611516974646,
|
| 286 |
+
"grad_norm": 0.09749539196491241,
|
| 287 |
+
"learning_rate": 4.860940925593703e-06,
|
| 288 |
+
"logits/chosen": 13.301411628723145,
|
| 289 |
+
"logits/rejected": 14.054819107055664,
|
| 290 |
+
"logps/chosen": -0.2808162569999695,
|
| 291 |
+
"logps/rejected": -0.39500662684440613,
|
| 292 |
+
"loss": 0.9,
|
| 293 |
+
"rewards/accuracies": 0.512499988079071,
|
| 294 |
+
"rewards/chosen": -0.4212244153022766,
|
| 295 |
+
"rewards/margins": 0.17128555476665497,
|
| 296 |
+
"rewards/rejected": -0.592509925365448,
|
| 297 |
+
"step": 160
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"epoch": 0.1461108723678556,
|
| 301 |
+
"grad_norm": 0.14965052902698517,
|
| 302 |
+
"learning_rate": 4.84320497372973e-06,
|
| 303 |
+
"logits/chosen": 12.261284828186035,
|
| 304 |
+
"logits/rejected": 13.0617036819458,
|
| 305 |
+
"logps/chosen": -0.29266461730003357,
|
| 306 |
+
"logps/rejected": -0.4265298843383789,
|
| 307 |
+
"loss": 0.896,
|
| 308 |
+
"rewards/accuracies": 0.637499988079071,
|
| 309 |
+
"rewards/chosen": -0.43899694085121155,
|
| 310 |
+
"rewards/margins": 0.20079784095287323,
|
| 311 |
+
"rewards/rejected": -0.6397948265075684,
|
| 312 |
+
"step": 170
|
| 313 |
+
},
|
| 314 |
+
{
|
| 315 |
+
"epoch": 0.15470562956596476,
|
| 316 |
+
"grad_norm": 0.13044072687625885,
|
| 317 |
+
"learning_rate": 4.824441214720629e-06,
|
| 318 |
+
"logits/chosen": 11.509119033813477,
|
| 319 |
+
"logits/rejected": 12.31033706665039,
|
| 320 |
+
"logps/chosen": -0.27384257316589355,
|
| 321 |
+
"logps/rejected": -0.3920982778072357,
|
| 322 |
+
"loss": 0.8911,
|
| 323 |
+
"rewards/accuracies": 0.5625,
|
| 324 |
+
"rewards/chosen": -0.4107638895511627,
|
| 325 |
+
"rewards/margins": 0.17738358676433563,
|
| 326 |
+
"rewards/rejected": -0.5881474018096924,
|
| 327 |
+
"step": 180
|
| 328 |
+
},
|
| 329 |
+
{
|
| 330 |
+
"epoch": 0.1633003867640739,
|
| 331 |
+
"grad_norm": 0.16182811558246613,
|
| 332 |
+
"learning_rate": 4.804657878971252e-06,
|
| 333 |
+
"logits/chosen": 10.68933391571045,
|
| 334 |
+
"logits/rejected": 11.632065773010254,
|
| 335 |
+
"logps/chosen": -0.292975515127182,
|
| 336 |
+
"logps/rejected": -0.42257896065711975,
|
| 337 |
+
"loss": 0.9002,
|
| 338 |
+
"rewards/accuracies": 0.6000000238418579,
|
| 339 |
+
"rewards/chosen": -0.4394632875919342,
|
| 340 |
+
"rewards/margins": 0.19440510869026184,
|
| 341 |
+
"rewards/rejected": -0.633868396282196,
|
| 342 |
+
"step": 190
|
| 343 |
+
},
|
| 344 |
+
{
|
| 345 |
+
"epoch": 0.17189514396218306,
|
| 346 |
+
"grad_norm": 0.181160107254982,
|
| 347 |
+
"learning_rate": 4.783863644106502e-06,
|
| 348 |
+
"logits/chosen": 10.593437194824219,
|
| 349 |
+
"logits/rejected": 11.435877799987793,
|
| 350 |
+
"logps/chosen": -0.32495418190956116,
|
| 351 |
+
"logps/rejected": -0.4480825364589691,
|
| 352 |
+
"loss": 0.8773,
|
| 353 |
+
"rewards/accuracies": 0.574999988079071,
|
| 354 |
+
"rewards/chosen": -0.48743128776550293,
|
| 355 |
+
"rewards/margins": 0.18469250202178955,
|
| 356 |
+
"rewards/rejected": -0.6721237897872925,
|
| 357 |
+
"step": 200
|
| 358 |
+
},
|
| 359 |
+
{
|
| 360 |
+
"epoch": 0.17189514396218306,
|
| 361 |
+
"eval_logits/chosen": 9.299257278442383,
|
| 362 |
+
"eval_logits/rejected": 10.055145263671875,
|
| 363 |
+
"eval_logps/chosen": -0.31059205532073975,
|
| 364 |
+
"eval_logps/rejected": -0.47102925181388855,
|
| 365 |
+
"eval_loss": 0.8721462488174438,
|
| 366 |
+
"eval_rewards/accuracies": 0.6105263233184814,
|
| 367 |
+
"eval_rewards/chosen": -0.4658880829811096,
|
| 368 |
+
"eval_rewards/margins": 0.24065588414669037,
|
| 369 |
+
"eval_rewards/rejected": -0.7065439224243164,
|
| 370 |
+
"eval_runtime": 25.78,
|
| 371 |
+
"eval_samples_per_second": 29.209,
|
| 372 |
+
"eval_steps_per_second": 3.685,
|
| 373 |
+
"step": 200
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"epoch": 0.18048990116029223,
|
| 377 |
+
"grad_norm": 0.24912959337234497,
|
| 378 |
+
"learning_rate": 4.762067631165049e-06,
|
| 379 |
+
"logits/chosen": 8.803088188171387,
|
| 380 |
+
"logits/rejected": 9.326388359069824,
|
| 381 |
+
"logps/chosen": -0.3249451816082001,
|
| 382 |
+
"logps/rejected": -0.44993042945861816,
|
| 383 |
+
"loss": 0.8484,
|
| 384 |
+
"rewards/accuracies": 0.5375000238418579,
|
| 385 |
+
"rewards/chosen": -0.4874177575111389,
|
| 386 |
+
"rewards/margins": 0.18747788667678833,
|
| 387 |
+
"rewards/rejected": -0.6748956441879272,
|
| 388 |
+
"step": 210
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 0.18908465835840138,
|
| 392 |
+
"grad_norm": 0.319579541683197,
|
| 393 |
+
"learning_rate": 4.7392794005985324e-06,
|
| 394 |
+
"logits/chosen": 6.257112979888916,
|
| 395 |
+
"logits/rejected": 7.168400764465332,
|
| 396 |
+
"logps/chosen": -0.335318386554718,
|
| 397 |
+
"logps/rejected": -0.5439311265945435,
|
| 398 |
+
"loss": 0.8499,
|
| 399 |
+
"rewards/accuracies": 0.637499988079071,
|
| 400 |
+
"rewards/chosen": -0.5029775500297546,
|
| 401 |
+
"rewards/margins": 0.31291908025741577,
|
| 402 |
+
"rewards/rejected": -0.8158966302871704,
|
| 403 |
+
"step": 220
|
| 404 |
+
},
|
| 405 |
+
{
|
| 406 |
+
"epoch": 0.19767941555651053,
|
| 407 |
+
"grad_norm": 0.31494757533073425,
|
| 408 |
+
"learning_rate": 4.715508948078037e-06,
|
| 409 |
+
"logits/chosen": 5.725883960723877,
|
| 410 |
+
"logits/rejected": 5.9254865646362305,
|
| 411 |
+
"logps/chosen": -0.3735908567905426,
|
| 412 |
+
"logps/rejected": -0.5729750394821167,
|
| 413 |
+
"loss": 0.826,
|
| 414 |
+
"rewards/accuracies": 0.6499999761581421,
|
| 415 |
+
"rewards/chosen": -0.5603862404823303,
|
| 416 |
+
"rewards/margins": 0.2990763187408447,
|
| 417 |
+
"rewards/rejected": -0.859462559223175,
|
| 418 |
+
"step": 230
|
| 419 |
+
},
|
| 420 |
+
{
|
| 421 |
+
"epoch": 0.20627417275461968,
|
| 422 |
+
"grad_norm": 0.46439653635025024,
|
| 423 |
+
"learning_rate": 4.690766700109659e-06,
|
| 424 |
+
"logits/chosen": 5.059751033782959,
|
| 425 |
+
"logits/rejected": 5.128623008728027,
|
| 426 |
+
"logps/chosen": -0.4083784222602844,
|
| 427 |
+
"logps/rejected": -0.6792675852775574,
|
| 428 |
+
"loss": 0.7992,
|
| 429 |
+
"rewards/accuracies": 0.637499988079071,
|
| 430 |
+
"rewards/chosen": -0.612567663192749,
|
| 431 |
+
"rewards/margins": 0.40633392333984375,
|
| 432 |
+
"rewards/rejected": -1.0189014673233032,
|
| 433 |
+
"step": 240
|
| 434 |
+
},
|
| 435 |
+
{
|
| 436 |
+
"epoch": 0.21486892995272883,
|
| 437 |
+
"grad_norm": 0.42406076192855835,
|
| 438 |
+
"learning_rate": 4.665063509461098e-06,
|
| 439 |
+
"logits/chosen": 4.128974437713623,
|
| 440 |
+
"logits/rejected": 4.141166687011719,
|
| 441 |
+
"logps/chosen": -0.4256651997566223,
|
| 442 |
+
"logps/rejected": -0.7279168367385864,
|
| 443 |
+
"loss": 0.7848,
|
| 444 |
+
"rewards/accuracies": 0.625,
|
| 445 |
+
"rewards/chosen": -0.6384977102279663,
|
| 446 |
+
"rewards/margins": 0.4533773958683014,
|
| 447 |
+
"rewards/rejected": -1.0918750762939453,
|
| 448 |
+
"step": 250
|
| 449 |
+
},
|
| 450 |
+
{
|
| 451 |
+
"epoch": 0.21486892995272883,
|
| 452 |
+
"eval_logits/chosen": 3.800307512283325,
|
| 453 |
+
"eval_logits/rejected": 3.1472771167755127,
|
| 454 |
+
"eval_logps/chosen": -0.4563433527946472,
|
| 455 |
+
"eval_logps/rejected": -0.8247694373130798,
|
| 456 |
+
"eval_loss": 0.7728626728057861,
|
| 457 |
+
"eval_rewards/accuracies": 0.6526315808296204,
|
| 458 |
+
"eval_rewards/chosen": -0.6845150589942932,
|
| 459 |
+
"eval_rewards/margins": 0.5526391267776489,
|
| 460 |
+
"eval_rewards/rejected": -1.237154245376587,
|
| 461 |
+
"eval_runtime": 25.7836,
|
| 462 |
+
"eval_samples_per_second": 29.205,
|
| 463 |
+
"eval_steps_per_second": 3.685,
|
| 464 |
+
"step": 250
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 0.22346368715083798,
|
| 468 |
+
"grad_norm": 0.4071955680847168,
|
| 469 |
+
"learning_rate": 4.638410650401267e-06,
|
| 470 |
+
"logits/chosen": 3.169527530670166,
|
| 471 |
+
"logits/rejected": 2.603461503982544,
|
| 472 |
+
"logps/chosen": -0.5029922723770142,
|
| 473 |
+
"logps/rejected": -0.9469219446182251,
|
| 474 |
+
"loss": 0.7273,
|
| 475 |
+
"rewards/accuracies": 0.7124999761581421,
|
| 476 |
+
"rewards/chosen": -0.7544883489608765,
|
| 477 |
+
"rewards/margins": 0.6658946871757507,
|
| 478 |
+
"rewards/rejected": -1.4203828573226929,
|
| 479 |
+
"step": 260
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 0.23205844434894715,
|
| 483 |
+
"grad_norm": 0.6253886222839355,
|
| 484 |
+
"learning_rate": 4.610819813755038e-06,
|
| 485 |
+
"logits/chosen": 3.8718018531799316,
|
| 486 |
+
"logits/rejected": 2.569753646850586,
|
| 487 |
+
"logps/chosen": -0.4955294132232666,
|
| 488 |
+
"logps/rejected": -0.8811863660812378,
|
| 489 |
+
"loss": 0.7483,
|
| 490 |
+
"rewards/accuracies": 0.6875,
|
| 491 |
+
"rewards/chosen": -0.7432941198348999,
|
| 492 |
+
"rewards/margins": 0.5784854888916016,
|
| 493 |
+
"rewards/rejected": -1.321779489517212,
|
| 494 |
+
"step": 270
|
| 495 |
+
},
|
| 496 |
+
{
|
| 497 |
+
"epoch": 0.2406532015470563,
|
| 498 |
+
"grad_norm": 0.5592113733291626,
|
| 499 |
+
"learning_rate": 4.582303101775249e-06,
|
| 500 |
+
"logits/chosen": 3.4818286895751953,
|
| 501 |
+
"logits/rejected": 2.428328275680542,
|
| 502 |
+
"logps/chosen": -0.5700691342353821,
|
| 503 |
+
"logps/rejected": -1.010145664215088,
|
| 504 |
+
"loss": 0.7165,
|
| 505 |
+
"rewards/accuracies": 0.612500011920929,
|
| 506 |
+
"rewards/chosen": -0.8551036715507507,
|
| 507 |
+
"rewards/margins": 0.6601148843765259,
|
| 508 |
+
"rewards/rejected": -1.5152184963226318,
|
| 509 |
+
"step": 280
|
| 510 |
+
},
|
| 511 |
+
{
|
| 512 |
+
"epoch": 0.24924795874516545,
|
| 513 |
+
"grad_norm": 0.8438608050346375,
|
| 514 |
+
"learning_rate": 4.55287302283426e-06,
|
| 515 |
+
"logits/chosen": 2.5937914848327637,
|
| 516 |
+
"logits/rejected": 1.8570162057876587,
|
| 517 |
+
"logps/chosen": -0.592321515083313,
|
| 518 |
+
"logps/rejected": -1.1775600910186768,
|
| 519 |
+
"loss": 0.6685,
|
| 520 |
+
"rewards/accuracies": 0.6000000238418579,
|
| 521 |
+
"rewards/chosen": -0.8884822130203247,
|
| 522 |
+
"rewards/margins": 0.8778578042984009,
|
| 523 |
+
"rewards/rejected": -1.7663400173187256,
|
| 524 |
+
"step": 290
|
| 525 |
+
},
|
| 526 |
+
{
|
| 527 |
+
"epoch": 0.2578427159432746,
|
| 528 |
+
"grad_norm": 2.9559757709503174,
|
| 529 |
+
"learning_rate": 4.522542485937369e-06,
|
| 530 |
+
"logits/chosen": 3.2419090270996094,
|
| 531 |
+
"logits/rejected": 1.9082870483398438,
|
| 532 |
+
"logps/chosen": -0.6832663416862488,
|
| 533 |
+
"logps/rejected": -1.5631868839263916,
|
| 534 |
+
"loss": 0.6009,
|
| 535 |
+
"rewards/accuracies": 0.625,
|
| 536 |
+
"rewards/chosen": -1.0248994827270508,
|
| 537 |
+
"rewards/margins": 1.3198809623718262,
|
| 538 |
+
"rewards/rejected": -2.344780445098877,
|
| 539 |
+
"step": 300
|
| 540 |
+
},
|
| 541 |
+
{
|
| 542 |
+
"epoch": 0.2578427159432746,
|
| 543 |
+
"eval_logits/chosen": 2.5470504760742188,
|
| 544 |
+
"eval_logits/rejected": 1.492888331413269,
|
| 545 |
+
"eval_logps/chosen": -0.7285813689231873,
|
| 546 |
+
"eval_logps/rejected": -1.8318607807159424,
|
| 547 |
+
"eval_loss": 0.5855891704559326,
|
| 548 |
+
"eval_rewards/accuracies": 0.7052631378173828,
|
| 549 |
+
"eval_rewards/chosen": -1.092872142791748,
|
| 550 |
+
"eval_rewards/margins": 1.6549187898635864,
|
| 551 |
+
"eval_rewards/rejected": -2.747790813446045,
|
| 552 |
+
"eval_runtime": 25.8105,
|
| 553 |
+
"eval_samples_per_second": 29.174,
|
| 554 |
+
"eval_steps_per_second": 3.681,
|
| 555 |
+
"step": 300
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"epoch": 0.2664374731413838,
|
| 559 |
+
"grad_norm": 1.4503060579299927,
|
| 560 |
+
"learning_rate": 4.491324795060491e-06,
|
| 561 |
+
"logits/chosen": 1.6672757863998413,
|
| 562 |
+
"logits/rejected": 0.7888604402542114,
|
| 563 |
+
"logps/chosen": -0.769140899181366,
|
| 564 |
+
"logps/rejected": -2.0822532176971436,
|
| 565 |
+
"loss": 0.512,
|
| 566 |
+
"rewards/accuracies": 0.75,
|
| 567 |
+
"rewards/chosen": -1.1537113189697266,
|
| 568 |
+
"rewards/margins": 1.9696683883666992,
|
| 569 |
+
"rewards/rejected": -3.123379945755005,
|
| 570 |
+
"step": 310
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 0.2750322303394929,
|
| 574 |
+
"grad_norm": 0.36741188168525696,
|
| 575 |
+
"learning_rate": 4.4592336433146e-06,
|
| 576 |
+
"logits/chosen": 2.6584715843200684,
|
| 577 |
+
"logits/rejected": 1.835911750793457,
|
| 578 |
+
"logps/chosen": -0.8400143384933472,
|
| 579 |
+
"logps/rejected": -1.9262489080429077,
|
| 580 |
+
"loss": 0.5405,
|
| 581 |
+
"rewards/accuracies": 0.6499999761581421,
|
| 582 |
+
"rewards/chosen": -1.2600215673446655,
|
| 583 |
+
"rewards/margins": 1.6293519735336304,
|
| 584 |
+
"rewards/rejected": -2.889373302459717,
|
| 585 |
+
"step": 320
|
| 586 |
+
},
|
| 587 |
+
{
|
| 588 |
+
"epoch": 0.28362698753760207,
|
| 589 |
+
"grad_norm": 0.6233783960342407,
|
| 590 |
+
"learning_rate": 4.426283106939474e-06,
|
| 591 |
+
"logits/chosen": 3.2203617095947266,
|
| 592 |
+
"logits/rejected": 2.3215420246124268,
|
| 593 |
+
"logps/chosen": -0.7985933423042297,
|
| 594 |
+
"logps/rejected": -2.4170174598693848,
|
| 595 |
+
"loss": 0.5335,
|
| 596 |
+
"rewards/accuracies": 0.637499988079071,
|
| 597 |
+
"rewards/chosen": -1.197890043258667,
|
| 598 |
+
"rewards/margins": 2.427635669708252,
|
| 599 |
+
"rewards/rejected": -3.625525712966919,
|
| 600 |
+
"step": 330
|
| 601 |
+
},
|
| 602 |
+
{
|
| 603 |
+
"epoch": 0.2922217447357112,
|
| 604 |
+
"grad_norm": 1.0881849527359009,
|
| 605 |
+
"learning_rate": 4.3924876391293915e-06,
|
| 606 |
+
"logits/chosen": 2.229017734527588,
|
| 607 |
+
"logits/rejected": 1.2251309156417847,
|
| 608 |
+
"logps/chosen": -0.8058193325996399,
|
| 609 |
+
"logps/rejected": -2.810622215270996,
|
| 610 |
+
"loss": 0.4903,
|
| 611 |
+
"rewards/accuracies": 0.7124999761581421,
|
| 612 |
+
"rewards/chosen": -1.2087291479110718,
|
| 613 |
+
"rewards/margins": 3.007204294204712,
|
| 614 |
+
"rewards/rejected": -4.215933799743652,
|
| 615 |
+
"step": 340
|
| 616 |
+
},
|
| 617 |
+
{
|
| 618 |
+
"epoch": 0.30081650193382037,
|
| 619 |
+
"grad_norm": 4.168415069580078,
|
| 620 |
+
"learning_rate": 4.357862063693486e-06,
|
| 621 |
+
"logits/chosen": 2.4198296070098877,
|
| 622 |
+
"logits/rejected": 1.5391919612884521,
|
| 623 |
+
"logps/chosen": -1.010558843612671,
|
| 624 |
+
"logps/rejected": -2.2362923622131348,
|
| 625 |
+
"loss": 0.5249,
|
| 626 |
+
"rewards/accuracies": 0.5625,
|
| 627 |
+
"rewards/chosen": -1.515838384628296,
|
| 628 |
+
"rewards/margins": 1.8385999202728271,
|
| 629 |
+
"rewards/rejected": -3.3544387817382812,
|
| 630 |
+
"step": 350
|
| 631 |
+
},
|
| 632 |
+
{
|
| 633 |
+
"epoch": 0.30081650193382037,
|
| 634 |
+
"eval_logits/chosen": 2.996535539627075,
|
| 635 |
+
"eval_logits/rejected": 2.064058303833008,
|
| 636 |
+
"eval_logps/chosen": -0.8687878847122192,
|
| 637 |
+
"eval_logps/rejected": -2.9790267944335938,
|
| 638 |
+
"eval_loss": 0.5171241760253906,
|
| 639 |
+
"eval_rewards/accuracies": 0.7263157963752747,
|
| 640 |
+
"eval_rewards/chosen": -1.3031818866729736,
|
| 641 |
+
"eval_rewards/margins": 3.165358781814575,
|
| 642 |
+
"eval_rewards/rejected": -4.468540668487549,
|
| 643 |
+
"eval_runtime": 25.8152,
|
| 644 |
+
"eval_samples_per_second": 29.169,
|
| 645 |
+
"eval_steps_per_second": 3.68,
|
| 646 |
+
"step": 350
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"epoch": 0.3094112591319295,
|
| 650 |
+
"grad_norm": 0.5646592378616333,
|
| 651 |
+
"learning_rate": 4.322421568553529e-06,
|
| 652 |
+
"logits/chosen": 3.050445556640625,
|
| 653 |
+
"logits/rejected": 2.0960793495178223,
|
| 654 |
+
"logps/chosen": -0.7702202796936035,
|
| 655 |
+
"logps/rejected": -2.5967533588409424,
|
| 656 |
+
"loss": 0.5067,
|
| 657 |
+
"rewards/accuracies": 0.675000011920929,
|
| 658 |
+
"rewards/chosen": -1.1553303003311157,
|
| 659 |
+
"rewards/margins": 2.739799737930298,
|
| 660 |
+
"rewards/rejected": -3.895130157470703,
|
| 661 |
+
"step": 360
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"epoch": 0.31800601633003867,
|
| 665 |
+
"grad_norm": 0.5547713041305542,
|
| 666 |
+
"learning_rate": 4.286181699082008e-06,
|
| 667 |
+
"logits/chosen": 2.7148895263671875,
|
| 668 |
+
"logits/rejected": 1.9958852529525757,
|
| 669 |
+
"logps/chosen": -0.9548311233520508,
|
| 670 |
+
"logps/rejected": -3.1348252296447754,
|
| 671 |
+
"loss": 0.4726,
|
| 672 |
+
"rewards/accuracies": 0.800000011920929,
|
| 673 |
+
"rewards/chosen": -1.4322465658187866,
|
| 674 |
+
"rewards/margins": 3.269991397857666,
|
| 675 |
+
"rewards/rejected": -4.702237606048584,
|
| 676 |
+
"step": 370
|
| 677 |
+
},
|
| 678 |
+
{
|
| 679 |
+
"epoch": 0.3266007735281478,
|
| 680 |
+
"grad_norm": 3.4396660327911377,
|
| 681 |
+
"learning_rate": 4.249158351283414e-06,
|
| 682 |
+
"logits/chosen": 2.586766004562378,
|
| 683 |
+
"logits/rejected": 2.070089340209961,
|
| 684 |
+
"logps/chosen": -0.9903923273086548,
|
| 685 |
+
"logps/rejected": -3.0135743618011475,
|
| 686 |
+
"loss": 0.4801,
|
| 687 |
+
"rewards/accuracies": 0.6625000238418579,
|
| 688 |
+
"rewards/chosen": -1.485588550567627,
|
| 689 |
+
"rewards/margins": 3.034773349761963,
|
| 690 |
+
"rewards/rejected": -4.52036190032959,
|
| 691 |
+
"step": 380
|
| 692 |
+
},
|
| 693 |
+
{
|
| 694 |
+
"epoch": 0.33519553072625696,
|
| 695 |
+
"grad_norm": 0.9405317306518555,
|
| 696 |
+
"learning_rate": 4.211367764821722e-06,
|
| 697 |
+
"logits/chosen": 4.370789527893066,
|
| 698 |
+
"logits/rejected": 3.165931224822998,
|
| 699 |
+
"logps/chosen": -0.7785463929176331,
|
| 700 |
+
"logps/rejected": -2.456723928451538,
|
| 701 |
+
"loss": 0.4585,
|
| 702 |
+
"rewards/accuracies": 0.5874999761581421,
|
| 703 |
+
"rewards/chosen": -1.1678194999694824,
|
| 704 |
+
"rewards/margins": 2.5172665119171143,
|
| 705 |
+
"rewards/rejected": -3.6850857734680176,
|
| 706 |
+
"step": 390
|
| 707 |
+
},
|
| 708 |
+
{
|
| 709 |
+
"epoch": 0.3437902879243661,
|
| 710 |
+
"grad_norm": 0.7120731472969055,
|
| 711 |
+
"learning_rate": 4.172826515897146e-06,
|
| 712 |
+
"logits/chosen": 3.3425400257110596,
|
| 713 |
+
"logits/rejected": 2.6448545455932617,
|
| 714 |
+
"logps/chosen": -0.9174768328666687,
|
| 715 |
+
"logps/rejected": -3.047037124633789,
|
| 716 |
+
"loss": 0.4771,
|
| 717 |
+
"rewards/accuracies": 0.675000011920929,
|
| 718 |
+
"rewards/chosen": -1.3762153387069702,
|
| 719 |
+
"rewards/margins": 3.194340229034424,
|
| 720 |
+
"rewards/rejected": -4.570555686950684,
|
| 721 |
+
"step": 400
|
| 722 |
+
},
|
| 723 |
+
{
|
| 724 |
+
"epoch": 0.3437902879243661,
|
| 725 |
+
"eval_logits/chosen": 3.548964262008667,
|
| 726 |
+
"eval_logits/rejected": 2.7726428508758545,
|
| 727 |
+
"eval_logps/chosen": -1.0053316354751587,
|
| 728 |
+
"eval_logps/rejected": -3.487654447555542,
|
| 729 |
+
"eval_loss": 0.47841358184814453,
|
| 730 |
+
"eval_rewards/accuracies": 0.7368420958518982,
|
| 731 |
+
"eval_rewards/chosen": -1.5079973936080933,
|
| 732 |
+
"eval_rewards/margins": 3.723484992980957,
|
| 733 |
+
"eval_rewards/rejected": -5.231482028961182,
|
| 734 |
+
"eval_runtime": 25.8148,
|
| 735 |
+
"eval_samples_per_second": 29.169,
|
| 736 |
+
"eval_steps_per_second": 3.68,
|
| 737 |
+
"step": 400
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"epoch": 0.3523850451224753,
|
| 741 |
+
"grad_norm": 2.403956651687622,
|
| 742 |
+
"learning_rate": 4.133551509975264e-06,
|
| 743 |
+
"logits/chosen": 3.2028489112854004,
|
| 744 |
+
"logits/rejected": 2.2486982345581055,
|
| 745 |
+
"logps/chosen": -0.9957242012023926,
|
| 746 |
+
"logps/rejected": -3.243959426879883,
|
| 747 |
+
"loss": 0.4449,
|
| 748 |
+
"rewards/accuracies": 0.637499988079071,
|
| 749 |
+
"rewards/chosen": -1.4935863018035889,
|
| 750 |
+
"rewards/margins": 3.3723526000976562,
|
| 751 |
+
"rewards/rejected": -4.865939140319824,
|
| 752 |
+
"step": 410
|
| 753 |
+
},
|
| 754 |
+
{
|
| 755 |
+
"epoch": 0.36097980232058446,
|
| 756 |
+
"grad_norm": 0.39530256390571594,
|
| 757 |
+
"learning_rate": 4.093559974371725e-06,
|
| 758 |
+
"logits/chosen": 3.8590214252471924,
|
| 759 |
+
"logits/rejected": 3.1420931816101074,
|
| 760 |
+
"logps/chosen": -0.9541120529174805,
|
| 761 |
+
"logps/rejected": -3.0112829208374023,
|
| 762 |
+
"loss": 0.4598,
|
| 763 |
+
"rewards/accuracies": 0.699999988079071,
|
| 764 |
+
"rewards/chosen": -1.4311680793762207,
|
| 765 |
+
"rewards/margins": 3.085756301879883,
|
| 766 |
+
"rewards/rejected": -4.5169243812561035,
|
| 767 |
+
"step": 420
|
| 768 |
+
},
|
| 769 |
+
{
|
| 770 |
+
"epoch": 0.3695745595186936,
|
| 771 |
+
"grad_norm": 0.29451707005500793,
|
| 772 |
+
"learning_rate": 4.052869450695776e-06,
|
| 773 |
+
"logits/chosen": 4.697268486022949,
|
| 774 |
+
"logits/rejected": 3.7647697925567627,
|
| 775 |
+
"logps/chosen": -1.1037578582763672,
|
| 776 |
+
"logps/rejected": -3.8626160621643066,
|
| 777 |
+
"loss": 0.4275,
|
| 778 |
+
"rewards/accuracies": 0.75,
|
| 779 |
+
"rewards/chosen": -1.6556367874145508,
|
| 780 |
+
"rewards/margins": 4.138287544250488,
|
| 781 |
+
"rewards/rejected": -5.793923854827881,
|
| 782 |
+
"step": 430
|
| 783 |
+
},
|
| 784 |
+
{
|
| 785 |
+
"epoch": 0.37816931671680276,
|
| 786 |
+
"grad_norm": 0.5065125823020935,
|
| 787 |
+
"learning_rate": 4.011497787155938e-06,
|
| 788 |
+
"logits/chosen": 3.5233864784240723,
|
| 789 |
+
"logits/rejected": 2.798567533493042,
|
| 790 |
+
"logps/chosen": -1.1753087043762207,
|
| 791 |
+
"logps/rejected": -4.171238899230957,
|
| 792 |
+
"loss": 0.4132,
|
| 793 |
+
"rewards/accuracies": 0.75,
|
| 794 |
+
"rewards/chosen": -1.7629629373550415,
|
| 795 |
+
"rewards/margins": 4.493895053863525,
|
| 796 |
+
"rewards/rejected": -6.256857872009277,
|
| 797 |
+
"step": 440
|
| 798 |
+
},
|
| 799 |
+
{
|
| 800 |
+
"epoch": 0.3867640739149119,
|
| 801 |
+
"grad_norm": 1.414167881011963,
|
| 802 |
+
"learning_rate": 3.969463130731183e-06,
|
| 803 |
+
"logits/chosen": 4.733740329742432,
|
| 804 |
+
"logits/rejected": 4.114102363586426,
|
| 805 |
+
"logps/chosen": -1.1846634149551392,
|
| 806 |
+
"logps/rejected": -4.04649543762207,
|
| 807 |
+
"loss": 0.4266,
|
| 808 |
+
"rewards/accuracies": 0.7749999761581421,
|
| 809 |
+
"rewards/chosen": -1.776995301246643,
|
| 810 |
+
"rewards/margins": 4.292747974395752,
|
| 811 |
+
"rewards/rejected": -6.0697431564331055,
|
| 812 |
+
"step": 450
|
| 813 |
+
},
|
| 814 |
+
{
|
| 815 |
+
"epoch": 0.3867640739149119,
|
| 816 |
+
"eval_logits/chosen": 4.25229549407959,
|
| 817 |
+
"eval_logits/rejected": 3.900564193725586,
|
| 818 |
+
"eval_logps/chosen": -1.410205602645874,
|
| 819 |
+
"eval_logps/rejected": -4.276910781860352,
|
| 820 |
+
"eval_loss": 0.4397798478603363,
|
| 821 |
+
"eval_rewards/accuracies": 0.800000011920929,
|
| 822 |
+
"eval_rewards/chosen": -2.1153085231781006,
|
| 823 |
+
"eval_rewards/margins": 4.3000569343566895,
|
| 824 |
+
"eval_rewards/rejected": -6.415364742279053,
|
| 825 |
+
"eval_runtime": 25.7968,
|
| 826 |
+
"eval_samples_per_second": 29.19,
|
| 827 |
+
"eval_steps_per_second": 3.683,
|
| 828 |
+
"step": 450
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"epoch": 0.39535883111302106,
|
| 832 |
+
"grad_norm": 1.7992101907730103,
|
| 833 |
+
"learning_rate": 3.92678391921108e-06,
|
| 834 |
+
"logits/chosen": 4.718934059143066,
|
| 835 |
+
"logits/rejected": 4.305315971374512,
|
| 836 |
+
"logps/chosen": -1.423595666885376,
|
| 837 |
+
"logps/rejected": -3.9873733520507812,
|
| 838 |
+
"loss": 0.367,
|
| 839 |
+
"rewards/accuracies": 0.762499988079071,
|
| 840 |
+
"rewards/chosen": -2.1353936195373535,
|
| 841 |
+
"rewards/margins": 3.8456661701202393,
|
| 842 |
+
"rewards/rejected": -5.981060028076172,
|
| 843 |
+
"step": 460
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"epoch": 0.4039535883111302,
|
| 847 |
+
"grad_norm": 1.9630879163742065,
|
| 848 |
+
"learning_rate": 3.88347887310836e-06,
|
| 849 |
+
"logits/chosen": 3.8371150493621826,
|
| 850 |
+
"logits/rejected": 3.5719306468963623,
|
| 851 |
+
"logps/chosen": -2.0386481285095215,
|
| 852 |
+
"logps/rejected": -4.779314994812012,
|
| 853 |
+
"loss": 0.3957,
|
| 854 |
+
"rewards/accuracies": 0.8374999761581421,
|
| 855 |
+
"rewards/chosen": -3.0579724311828613,
|
| 856 |
+
"rewards/margins": 4.1110005378723145,
|
| 857 |
+
"rewards/rejected": -7.168972969055176,
|
| 858 |
+
"step": 470
|
| 859 |
+
},
|
| 860 |
+
{
|
| 861 |
+
"epoch": 0.41254834550923936,
|
| 862 |
+
"grad_norm": 4.952139854431152,
|
| 863 |
+
"learning_rate": 3.839566987447492e-06,
|
| 864 |
+
"logits/chosen": 5.024113655090332,
|
| 865 |
+
"logits/rejected": 4.880651950836182,
|
| 866 |
+
"logps/chosen": -2.3612470626831055,
|
| 867 |
+
"logps/rejected": -4.691690444946289,
|
| 868 |
+
"loss": 0.3808,
|
| 869 |
+
"rewards/accuracies": 0.824999988079071,
|
| 870 |
+
"rewards/chosen": -3.5418708324432373,
|
| 871 |
+
"rewards/margins": 3.495664596557617,
|
| 872 |
+
"rewards/rejected": -7.037535190582275,
|
| 873 |
+
"step": 480
|
| 874 |
+
},
|
| 875 |
+
{
|
| 876 |
+
"epoch": 0.4211431027073485,
|
| 877 |
+
"grad_norm": 2.832200527191162,
|
| 878 |
+
"learning_rate": 3.795067523432826e-06,
|
| 879 |
+
"logits/chosen": 4.689079284667969,
|
| 880 |
+
"logits/rejected": 4.435003280639648,
|
| 881 |
+
"logps/chosen": -2.437671184539795,
|
| 882 |
+
"logps/rejected": -5.003944396972656,
|
| 883 |
+
"loss": 0.3555,
|
| 884 |
+
"rewards/accuracies": 0.875,
|
| 885 |
+
"rewards/chosen": -3.6565067768096924,
|
| 886 |
+
"rewards/margins": 3.849409580230713,
|
| 887 |
+
"rewards/rejected": -7.505916595458984,
|
| 888 |
+
"step": 490
|
| 889 |
+
},
|
| 890 |
+
{
|
| 891 |
+
"epoch": 0.42973785990545765,
|
| 892 |
+
"grad_norm": 3.2997682094573975,
|
| 893 |
+
"learning_rate": 3.7500000000000005e-06,
|
| 894 |
+
"logits/chosen": 4.286547660827637,
|
| 895 |
+
"logits/rejected": 4.181652545928955,
|
| 896 |
+
"logps/chosen": -2.3390612602233887,
|
| 897 |
+
"logps/rejected": -4.888935565948486,
|
| 898 |
+
"loss": 0.3211,
|
| 899 |
+
"rewards/accuracies": 0.824999988079071,
|
| 900 |
+
"rewards/chosen": -3.508591890335083,
|
| 901 |
+
"rewards/margins": 3.8248119354248047,
|
| 902 |
+
"rewards/rejected": -7.333403587341309,
|
| 903 |
+
"step": 500
|
| 904 |
+
},
|
| 905 |
+
{
|
| 906 |
+
"epoch": 0.42973785990545765,
|
| 907 |
+
"eval_logits/chosen": 3.5323922634124756,
|
| 908 |
+
"eval_logits/rejected": 3.5116958618164062,
|
| 909 |
+
"eval_logps/chosen": -2.679356575012207,
|
| 910 |
+
"eval_logps/rejected": -5.927057266235352,
|
| 911 |
+
"eval_loss": 0.37026864290237427,
|
| 912 |
+
"eval_rewards/accuracies": 0.8736842274665833,
|
| 913 |
+
"eval_rewards/chosen": -4.019035339355469,
|
| 914 |
+
"eval_rewards/margins": 4.871551036834717,
|
| 915 |
+
"eval_rewards/rejected": -8.890586853027344,
|
| 916 |
+
"eval_runtime": 25.8768,
|
| 917 |
+
"eval_samples_per_second": 29.099,
|
| 918 |
+
"eval_steps_per_second": 3.671,
|
| 919 |
+
"step": 500
|
| 920 |
+
},
|
| 921 |
+
{
|
| 922 |
+
"epoch": 0.4383326171035668,
|
| 923 |
+
"grad_norm": 2.6194217205047607,
|
| 924 |
+
"learning_rate": 3.7043841852542884e-06,
|
| 925 |
+
"logits/chosen": 4.265946388244629,
|
| 926 |
+
"logits/rejected": 3.7863662242889404,
|
| 927 |
+
"logps/chosen": -2.279764413833618,
|
| 928 |
+
"logps/rejected": -4.825397968292236,
|
| 929 |
+
"loss": 0.3375,
|
| 930 |
+
"rewards/accuracies": 0.887499988079071,
|
| 931 |
+
"rewards/chosen": -3.4196460247039795,
|
| 932 |
+
"rewards/margins": 3.818450927734375,
|
| 933 |
+
"rewards/rejected": -7.238096714019775,
|
| 934 |
+
"step": 510
|
| 935 |
+
},
|
| 936 |
+
{
|
| 937 |
+
"epoch": 0.44692737430167595,
|
| 938 |
+
"grad_norm": 4.434008598327637,
|
| 939 |
+
"learning_rate": 3.658240087799655e-06,
|
| 940 |
+
"logits/chosen": 3.4983534812927246,
|
| 941 |
+
"logits/rejected": 3.3109116554260254,
|
| 942 |
+
"logps/chosen": -2.7063632011413574,
|
| 943 |
+
"logps/rejected": -5.9535369873046875,
|
| 944 |
+
"loss": 0.3388,
|
| 945 |
+
"rewards/accuracies": 0.887499988079071,
|
| 946 |
+
"rewards/chosen": -4.059545040130615,
|
| 947 |
+
"rewards/margins": 4.870760917663574,
|
| 948 |
+
"rewards/rejected": -8.930305480957031,
|
| 949 |
+
"step": 520
|
| 950 |
+
},
|
| 951 |
+
{
|
| 952 |
+
"epoch": 0.45552213149978515,
|
| 953 |
+
"grad_norm": 2.4193809032440186,
|
| 954 |
+
"learning_rate": 3.611587947962319e-06,
|
| 955 |
+
"logits/chosen": 3.4949145317077637,
|
| 956 |
+
"logits/rejected": 3.402980089187622,
|
| 957 |
+
"logps/chosen": -2.5146005153656006,
|
| 958 |
+
"logps/rejected": -5.63289737701416,
|
| 959 |
+
"loss": 0.3281,
|
| 960 |
+
"rewards/accuracies": 0.8500000238418579,
|
| 961 |
+
"rewards/chosen": -3.7719013690948486,
|
| 962 |
+
"rewards/margins": 4.677445411682129,
|
| 963 |
+
"rewards/rejected": -8.449346542358398,
|
| 964 |
+
"step": 530
|
| 965 |
+
},
|
| 966 |
+
{
|
| 967 |
+
"epoch": 0.4641168886978943,
|
| 968 |
+
"grad_norm": 10.788633346557617,
|
| 969 |
+
"learning_rate": 3.564448228912682e-06,
|
| 970 |
+
"logits/chosen": 3.3073112964630127,
|
| 971 |
+
"logits/rejected": 3.163470506668091,
|
| 972 |
+
"logps/chosen": -2.258653163909912,
|
| 973 |
+
"logps/rejected": -5.642867088317871,
|
| 974 |
+
"loss": 0.3565,
|
| 975 |
+
"rewards/accuracies": 0.9125000238418579,
|
| 976 |
+
"rewards/chosen": -3.387979507446289,
|
| 977 |
+
"rewards/margins": 5.076320648193359,
|
| 978 |
+
"rewards/rejected": -8.464300155639648,
|
| 979 |
+
"step": 540
|
| 980 |
+
},
|
| 981 |
+
{
|
| 982 |
+
"epoch": 0.47271164589600345,
|
| 983 |
+
"grad_norm": 1.6846323013305664,
|
| 984 |
+
"learning_rate": 3.516841607689501e-06,
|
| 985 |
+
"logits/chosen": 3.476361036300659,
|
| 986 |
+
"logits/rejected": 3.375828504562378,
|
| 987 |
+
"logps/chosen": -2.5325064659118652,
|
| 988 |
+
"logps/rejected": -5.799270153045654,
|
| 989 |
+
"loss": 0.3103,
|
| 990 |
+
"rewards/accuracies": 0.887499988079071,
|
| 991 |
+
"rewards/chosen": -3.798759937286377,
|
| 992 |
+
"rewards/margins": 4.900145530700684,
|
| 993 |
+
"rewards/rejected": -8.698905944824219,
|
| 994 |
+
"step": 550
|
| 995 |
+
},
|
| 996 |
+
{
|
| 997 |
+
"epoch": 0.47271164589600345,
|
| 998 |
+
"eval_logits/chosen": 3.451749563217163,
|
| 999 |
+
"eval_logits/rejected": 3.3771002292633057,
|
| 1000 |
+
"eval_logps/chosen": -2.9835667610168457,
|
| 1001 |
+
"eval_logps/rejected": -6.5389509201049805,
|
| 1002 |
+
"eval_loss": 0.32732319831848145,
|
| 1003 |
+
"eval_rewards/accuracies": 0.9052631855010986,
|
| 1004 |
+
"eval_rewards/chosen": -4.475350379943848,
|
| 1005 |
+
"eval_rewards/margins": 5.333076000213623,
|
| 1006 |
+
"eval_rewards/rejected": -9.808425903320312,
|
| 1007 |
+
"eval_runtime": 25.8141,
|
| 1008 |
+
"eval_samples_per_second": 29.17,
|
| 1009 |
+
"eval_steps_per_second": 3.68,
|
| 1010 |
+
"step": 550
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"epoch": 0.4813064030941126,
|
| 1014 |
+
"grad_norm": 2.7683331966400146,
|
| 1015 |
+
"learning_rate": 3.4687889661302577e-06,
|
| 1016 |
+
"logits/chosen": 2.468799591064453,
|
| 1017 |
+
"logits/rejected": 2.4257254600524902,
|
| 1018 |
+
"logps/chosen": -2.6801788806915283,
|
| 1019 |
+
"logps/rejected": -6.136897087097168,
|
| 1020 |
+
"loss": 0.3171,
|
| 1021 |
+
"rewards/accuracies": 0.887499988079071,
|
| 1022 |
+
"rewards/chosen": -4.020268440246582,
|
| 1023 |
+
"rewards/margins": 5.185078144073486,
|
| 1024 |
+
"rewards/rejected": -9.205347061157227,
|
| 1025 |
+
"step": 560
|
| 1026 |
+
},
|
| 1027 |
+
{
|
| 1028 |
+
"epoch": 0.48990116029222175,
|
| 1029 |
+
"grad_norm": 11.559685707092285,
|
| 1030 |
+
"learning_rate": 3.4203113817116955e-06,
|
| 1031 |
+
"logits/chosen": 3.6535427570343018,
|
| 1032 |
+
"logits/rejected": 3.583962917327881,
|
| 1033 |
+
"logps/chosen": -2.7984983921051025,
|
| 1034 |
+
"logps/rejected": -6.468808650970459,
|
| 1035 |
+
"loss": 0.331,
|
| 1036 |
+
"rewards/accuracies": 0.949999988079071,
|
| 1037 |
+
"rewards/chosen": -4.197747707366943,
|
| 1038 |
+
"rewards/margins": 5.505465984344482,
|
| 1039 |
+
"rewards/rejected": -9.703214645385742,
|
| 1040 |
+
"step": 570
|
| 1041 |
+
},
|
| 1042 |
+
{
|
| 1043 |
+
"epoch": 0.4984959174903309,
|
| 1044 |
+
"grad_norm": 7.691457271575928,
|
| 1045 |
+
"learning_rate": 3.3714301183045382e-06,
|
| 1046 |
+
"logits/chosen": 2.7467286586761475,
|
| 1047 |
+
"logits/rejected": 2.4911317825317383,
|
| 1048 |
+
"logps/chosen": -2.4207634925842285,
|
| 1049 |
+
"logps/rejected": -6.385074138641357,
|
| 1050 |
+
"loss": 0.2557,
|
| 1051 |
+
"rewards/accuracies": 0.9750000238418579,
|
| 1052 |
+
"rewards/chosen": -3.631145477294922,
|
| 1053 |
+
"rewards/margins": 5.946464538574219,
|
| 1054 |
+
"rewards/rejected": -9.577610969543457,
|
| 1055 |
+
"step": 580
|
| 1056 |
+
},
|
| 1057 |
+
{
|
| 1058 |
+
"epoch": 0.50709067468844,
|
| 1059 |
+
"grad_norm": 5.381045341491699,
|
| 1060 |
+
"learning_rate": 3.3221666168464584e-06,
|
| 1061 |
+
"logits/chosen": 3.239227294921875,
|
| 1062 |
+
"logits/rejected": 3.1982555389404297,
|
| 1063 |
+
"logps/chosen": -3.2162883281707764,
|
| 1064 |
+
"logps/rejected": -6.693168640136719,
|
| 1065 |
+
"loss": 0.2921,
|
| 1066 |
+
"rewards/accuracies": 0.949999988079071,
|
| 1067 |
+
"rewards/chosen": -4.824432373046875,
|
| 1068 |
+
"rewards/margins": 5.215321063995361,
|
| 1069 |
+
"rewards/rejected": -10.039752960205078,
|
| 1070 |
+
"step": 590
|
| 1071 |
+
},
|
| 1072 |
+
{
|
| 1073 |
+
"epoch": 0.5156854318865493,
|
| 1074 |
+
"grad_norm": 2.616710901260376,
|
| 1075 |
+
"learning_rate": 3.272542485937369e-06,
|
| 1076 |
+
"logits/chosen": 2.7326784133911133,
|
| 1077 |
+
"logits/rejected": 2.4248623847961426,
|
| 1078 |
+
"logps/chosen": -3.001952648162842,
|
| 1079 |
+
"logps/rejected": -6.597250461578369,
|
| 1080 |
+
"loss": 0.3225,
|
| 1081 |
+
"rewards/accuracies": 0.9125000238418579,
|
| 1082 |
+
"rewards/chosen": -4.502928733825684,
|
| 1083 |
+
"rewards/margins": 5.392947196960449,
|
| 1084 |
+
"rewards/rejected": -9.89587688446045,
|
| 1085 |
+
"step": 600
|
| 1086 |
+
},
|
| 1087 |
+
{
|
| 1088 |
+
"epoch": 0.5156854318865493,
|
| 1089 |
+
"eval_logits/chosen": 3.1995701789855957,
|
| 1090 |
+
"eval_logits/rejected": 3.2761952877044678,
|
| 1091 |
+
"eval_logps/chosen": -3.166325330734253,
|
| 1092 |
+
"eval_logps/rejected": -7.062953472137451,
|
| 1093 |
+
"eval_loss": 0.29786577820777893,
|
| 1094 |
+
"eval_rewards/accuracies": 0.9263157844543457,
|
| 1095 |
+
"eval_rewards/chosen": -4.74948787689209,
|
| 1096 |
+
"eval_rewards/margins": 5.84494161605835,
|
| 1097 |
+
"eval_rewards/rejected": -10.594429969787598,
|
| 1098 |
+
"eval_runtime": 25.8074,
|
| 1099 |
+
"eval_samples_per_second": 29.178,
|
| 1100 |
+
"eval_steps_per_second": 3.681,
|
| 1101 |
+
"step": 600
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"epoch": 0.5242801890846583,
|
| 1105 |
+
"grad_norm": 3.5550060272216797,
|
| 1106 |
+
"learning_rate": 3.222579492361179e-06,
|
| 1107 |
+
"logits/chosen": 2.8619818687438965,
|
| 1108 |
+
"logits/rejected": 3.014125347137451,
|
| 1109 |
+
"logps/chosen": -2.9217543601989746,
|
| 1110 |
+
"logps/rejected": -6.349586486816406,
|
| 1111 |
+
"loss": 0.2516,
|
| 1112 |
+
"rewards/accuracies": 0.9125000238418579,
|
| 1113 |
+
"rewards/chosen": -4.382631301879883,
|
| 1114 |
+
"rewards/margins": 5.141747951507568,
|
| 1115 |
+
"rewards/rejected": -9.52437973022461,
|
| 1116 |
+
"step": 610
|
| 1117 |
+
},
|
| 1118 |
+
{
|
| 1119 |
+
"epoch": 0.5328749462827675,
|
| 1120 |
+
"grad_norm": 3.6020898818969727,
|
| 1121 |
+
"learning_rate": 3.1722995515381644e-06,
|
| 1122 |
+
"logits/chosen": 2.770552635192871,
|
| 1123 |
+
"logits/rejected": 2.9711716175079346,
|
| 1124 |
+
"logps/chosen": -2.8700039386749268,
|
| 1125 |
+
"logps/rejected": -6.527164459228516,
|
| 1126 |
+
"loss": 0.3062,
|
| 1127 |
+
"rewards/accuracies": 0.925000011920929,
|
| 1128 |
+
"rewards/chosen": -4.305006504058838,
|
| 1129 |
+
"rewards/margins": 5.485739707946777,
|
| 1130 |
+
"rewards/rejected": -9.790745735168457,
|
| 1131 |
+
"step": 620
|
| 1132 |
+
},
|
| 1133 |
+
{
|
| 1134 |
+
"epoch": 0.5414697034808766,
|
| 1135 |
+
"grad_norm": 2.2209339141845703,
|
| 1136 |
+
"learning_rate": 3.121724717912138e-06,
|
| 1137 |
+
"logits/chosen": 3.1150155067443848,
|
| 1138 |
+
"logits/rejected": 3.038687229156494,
|
| 1139 |
+
"logps/chosen": -2.9821603298187256,
|
| 1140 |
+
"logps/rejected": -6.432187080383301,
|
| 1141 |
+
"loss": 0.2726,
|
| 1142 |
+
"rewards/accuracies": 0.9125000238418579,
|
| 1143 |
+
"rewards/chosen": -4.473240852355957,
|
| 1144 |
+
"rewards/margins": 5.175040245056152,
|
| 1145 |
+
"rewards/rejected": -9.648280143737793,
|
| 1146 |
+
"step": 630
|
| 1147 |
+
},
|
| 1148 |
+
{
|
| 1149 |
+
"epoch": 0.5500644606789858,
|
| 1150 |
+
"grad_norm": 2.148709297180176,
|
| 1151 |
+
"learning_rate": 3.0708771752766397e-06,
|
| 1152 |
+
"logits/chosen": 3.256204605102539,
|
| 1153 |
+
"logits/rejected": 2.9765384197235107,
|
| 1154 |
+
"logps/chosen": -2.7979862689971924,
|
| 1155 |
+
"logps/rejected": -6.7102813720703125,
|
| 1156 |
+
"loss": 0.2861,
|
| 1157 |
+
"rewards/accuracies": 0.9125000238418579,
|
| 1158 |
+
"rewards/chosen": -4.196979522705078,
|
| 1159 |
+
"rewards/margins": 5.868442535400391,
|
| 1160 |
+
"rewards/rejected": -10.065422058105469,
|
| 1161 |
+
"step": 640
|
| 1162 |
+
},
|
| 1163 |
+
{
|
| 1164 |
+
"epoch": 0.5586592178770949,
|
| 1165 |
+
"grad_norm": 7.988170623779297,
|
| 1166 |
+
"learning_rate": 3.019779227044398e-06,
|
| 1167 |
+
"logits/chosen": 2.7312607765197754,
|
| 1168 |
+
"logits/rejected": 2.705409526824951,
|
| 1169 |
+
"logps/chosen": -2.8119194507598877,
|
| 1170 |
+
"logps/rejected": -6.627874851226807,
|
| 1171 |
+
"loss": 0.2507,
|
| 1172 |
+
"rewards/accuracies": 0.9125000238418579,
|
| 1173 |
+
"rewards/chosen": -4.217879295349121,
|
| 1174 |
+
"rewards/margins": 5.723933219909668,
|
| 1175 |
+
"rewards/rejected": -9.941811561584473,
|
| 1176 |
+
"step": 650
|
| 1177 |
+
},
|
| 1178 |
+
{
|
| 1179 |
+
"epoch": 0.5586592178770949,
|
| 1180 |
+
"eval_logits/chosen": 2.9934144020080566,
|
| 1181 |
+
"eval_logits/rejected": 3.124950647354126,
|
| 1182 |
+
"eval_logps/chosen": -3.1934540271759033,
|
| 1183 |
+
"eval_logps/rejected": -7.429007053375244,
|
| 1184 |
+
"eval_loss": 0.28581172227859497,
|
| 1185 |
+
"eval_rewards/accuracies": 0.9368420839309692,
|
| 1186 |
+
"eval_rewards/chosen": -4.7901811599731445,
|
| 1187 |
+
"eval_rewards/margins": 6.353330135345459,
|
| 1188 |
+
"eval_rewards/rejected": -11.143510818481445,
|
| 1189 |
+
"eval_runtime": 25.8075,
|
| 1190 |
+
"eval_samples_per_second": 29.178,
|
| 1191 |
+
"eval_steps_per_second": 3.681,
|
| 1192 |
+
"step": 650
|
| 1193 |
+
},
|
| 1194 |
+
{
|
| 1195 |
+
"epoch": 0.5672539750752041,
|
| 1196 |
+
"grad_norm": 3.133023500442505,
|
| 1197 |
+
"learning_rate": 2.9684532864643123e-06,
|
| 1198 |
+
"logits/chosen": 3.3388328552246094,
|
| 1199 |
+
"logits/rejected": 3.3477108478546143,
|
| 1200 |
+
"logps/chosen": -3.3007023334503174,
|
| 1201 |
+
"logps/rejected": -6.496421813964844,
|
| 1202 |
+
"loss": 0.2635,
|
| 1203 |
+
"rewards/accuracies": 0.9125000238418579,
|
| 1204 |
+
"rewards/chosen": -4.951053619384766,
|
| 1205 |
+
"rewards/margins": 4.793579578399658,
|
| 1206 |
+
"rewards/rejected": -9.744632720947266,
|
| 1207 |
+
"step": 660
|
| 1208 |
+
},
|
| 1209 |
+
{
|
| 1210 |
+
"epoch": 0.5758487322733132,
|
| 1211 |
+
"grad_norm": 3.6694588661193848,
|
| 1212 |
+
"learning_rate": 2.9169218667902562e-06,
|
| 1213 |
+
"logits/chosen": 3.1316323280334473,
|
| 1214 |
+
"logits/rejected": 2.8977527618408203,
|
| 1215 |
+
"logps/chosen": -2.8769032955169678,
|
| 1216 |
+
"logps/rejected": -5.834782123565674,
|
| 1217 |
+
"loss": 0.2854,
|
| 1218 |
+
"rewards/accuracies": 0.875,
|
| 1219 |
+
"rewards/chosen": -4.31535530090332,
|
| 1220 |
+
"rewards/margins": 4.4368181228637695,
|
| 1221 |
+
"rewards/rejected": -8.752172470092773,
|
| 1222 |
+
"step": 670
|
| 1223 |
+
},
|
| 1224 |
+
{
|
| 1225 |
+
"epoch": 0.5844434894714224,
|
| 1226 |
+
"grad_norm": 3.409086227416992,
|
| 1227 |
+
"learning_rate": 2.8652075714060296e-06,
|
| 1228 |
+
"logits/chosen": 2.726431369781494,
|
| 1229 |
+
"logits/rejected": 2.9928715229034424,
|
| 1230 |
+
"logps/chosen": -3.0180654525756836,
|
| 1231 |
+
"logps/rejected": -7.160694122314453,
|
| 1232 |
+
"loss": 0.2461,
|
| 1233 |
+
"rewards/accuracies": 0.949999988079071,
|
| 1234 |
+
"rewards/chosen": -4.527098178863525,
|
| 1235 |
+
"rewards/margins": 6.213942050933838,
|
| 1236 |
+
"rewards/rejected": -10.741040229797363,
|
| 1237 |
+
"step": 680
|
| 1238 |
+
},
|
| 1239 |
+
{
|
| 1240 |
+
"epoch": 0.5930382466695315,
|
| 1241 |
+
"grad_norm": 5.1549153327941895,
|
| 1242 |
+
"learning_rate": 2.813333083910761e-06,
|
| 1243 |
+
"logits/chosen": 3.371833086013794,
|
| 1244 |
+
"logits/rejected": 3.317675828933716,
|
| 1245 |
+
"logps/chosen": -3.1700775623321533,
|
| 1246 |
+
"logps/rejected": -6.8295745849609375,
|
| 1247 |
+
"loss": 0.2458,
|
| 1248 |
+
"rewards/accuracies": 0.949999988079071,
|
| 1249 |
+
"rewards/chosen": -4.755115985870361,
|
| 1250 |
+
"rewards/margins": 5.489245891571045,
|
| 1251 |
+
"rewards/rejected": -10.244361877441406,
|
| 1252 |
+
"step": 690
|
| 1253 |
+
},
|
| 1254 |
+
{
|
| 1255 |
+
"epoch": 0.6016330038676407,
|
| 1256 |
+
"grad_norm": 4.8320112228393555,
|
| 1257 |
+
"learning_rate": 2.761321158169134e-06,
|
| 1258 |
+
"logits/chosen": 2.5933046340942383,
|
| 1259 |
+
"logits/rejected": 2.7114923000335693,
|
| 1260 |
+
"logps/chosen": -3.2017345428466797,
|
| 1261 |
+
"logps/rejected": -7.420884609222412,
|
| 1262 |
+
"loss": 0.2464,
|
| 1263 |
+
"rewards/accuracies": 0.925000011920929,
|
| 1264 |
+
"rewards/chosen": -4.8026018142700195,
|
| 1265 |
+
"rewards/margins": 6.328725814819336,
|
| 1266 |
+
"rewards/rejected": -11.131326675415039,
|
| 1267 |
+
"step": 700
|
| 1268 |
+
},
|
| 1269 |
+
{
|
| 1270 |
+
"epoch": 0.6016330038676407,
|
| 1271 |
+
"eval_logits/chosen": 2.7770564556121826,
|
| 1272 |
+
"eval_logits/rejected": 2.9842188358306885,
|
| 1273 |
+
"eval_logps/chosen": -3.5835421085357666,
|
| 1274 |
+
"eval_logps/rejected": -8.199637413024902,
|
| 1275 |
+
"eval_loss": 0.26223084330558777,
|
| 1276 |
+
"eval_rewards/accuracies": 0.9263157844543457,
|
| 1277 |
+
"eval_rewards/chosen": -5.375312805175781,
|
| 1278 |
+
"eval_rewards/margins": 6.924142360687256,
|
| 1279 |
+
"eval_rewards/rejected": -12.299455642700195,
|
| 1280 |
+
"eval_runtime": 25.8482,
|
| 1281 |
+
"eval_samples_per_second": 29.132,
|
| 1282 |
+
"eval_steps_per_second": 3.675,
|
| 1283 |
+
"step": 700
|
| 1284 |
+
},
|
| 1285 |
+
{
|
| 1286 |
+
"epoch": 0.6102277610657499,
|
| 1287 |
+
"grad_norm": 3.6024580001831055,
|
| 1288 |
+
"learning_rate": 2.70919460833079e-06,
|
| 1289 |
+
"logits/chosen": 2.4713566303253174,
|
| 1290 |
+
"logits/rejected": 2.523773193359375,
|
| 1291 |
+
"logps/chosen": -2.962407112121582,
|
| 1292 |
+
"logps/rejected": -7.556809902191162,
|
| 1293 |
+
"loss": 0.2785,
|
| 1294 |
+
"rewards/accuracies": 0.9624999761581421,
|
| 1295 |
+
"rewards/chosen": -4.443611145019531,
|
| 1296 |
+
"rewards/margins": 6.891604423522949,
|
| 1297 |
+
"rewards/rejected": -11.33521556854248,
|
| 1298 |
+
"step": 710
|
| 1299 |
+
},
|
| 1300 |
+
{
|
| 1301 |
+
"epoch": 0.618822518263859,
|
| 1302 |
+
"grad_norm": 3.6402506828308105,
|
| 1303 |
+
"learning_rate": 2.6569762988232838e-06,
|
| 1304 |
+
"logits/chosen": 3.112736940383911,
|
| 1305 |
+
"logits/rejected": 2.901930809020996,
|
| 1306 |
+
"logps/chosen": -3.1669626235961914,
|
| 1307 |
+
"logps/rejected": -7.049059867858887,
|
| 1308 |
+
"loss": 0.2623,
|
| 1309 |
+
"rewards/accuracies": 0.925000011920929,
|
| 1310 |
+
"rewards/chosen": -4.750443935394287,
|
| 1311 |
+
"rewards/margins": 5.823145866394043,
|
| 1312 |
+
"rewards/rejected": -10.573590278625488,
|
| 1313 |
+
"step": 720
|
| 1314 |
+
},
|
| 1315 |
+
{
|
| 1316 |
+
"epoch": 0.6274172754619682,
|
| 1317 |
+
"grad_norm": 9.418655395507812,
|
| 1318 |
+
"learning_rate": 2.604689134322999e-06,
|
| 1319 |
+
"logits/chosen": 2.8671321868896484,
|
| 1320 |
+
"logits/rejected": 2.763396739959717,
|
| 1321 |
+
"logps/chosen": -3.1475024223327637,
|
| 1322 |
+
"logps/rejected": -7.338767051696777,
|
| 1323 |
+
"loss": 0.2702,
|
| 1324 |
+
"rewards/accuracies": 0.9125000238418579,
|
| 1325 |
+
"rewards/chosen": -4.721253871917725,
|
| 1326 |
+
"rewards/margins": 6.286896705627441,
|
| 1327 |
+
"rewards/rejected": -11.008151054382324,
|
| 1328 |
+
"step": 730
|
| 1329 |
+
},
|
| 1330 |
+
{
|
| 1331 |
+
"epoch": 0.6360120326600773,
|
| 1332 |
+
"grad_norm": 6.016907215118408,
|
| 1333 |
+
"learning_rate": 2.5523560497083927e-06,
|
| 1334 |
+
"logits/chosen": 2.8831398487091064,
|
| 1335 |
+
"logits/rejected": 2.9516844749450684,
|
| 1336 |
+
"logps/chosen": -3.055087089538574,
|
| 1337 |
+
"logps/rejected": -7.092196464538574,
|
| 1338 |
+
"loss": 0.2103,
|
| 1339 |
+
"rewards/accuracies": 0.949999988079071,
|
| 1340 |
+
"rewards/chosen": -4.5826311111450195,
|
| 1341 |
+
"rewards/margins": 6.0556640625,
|
| 1342 |
+
"rewards/rejected": -10.638293266296387,
|
| 1343 |
+
"step": 740
|
| 1344 |
+
},
|
| 1345 |
+
{
|
| 1346 |
+
"epoch": 0.6446067898581865,
|
| 1347 |
+
"grad_norm": 2.791388988494873,
|
| 1348 |
+
"learning_rate": 2.5e-06,
|
| 1349 |
+
"logits/chosen": 3.5676627159118652,
|
| 1350 |
+
"logits/rejected": 3.4635086059570312,
|
| 1351 |
+
"logps/chosen": -2.8061039447784424,
|
| 1352 |
+
"logps/rejected": -6.826286315917969,
|
| 1353 |
+
"loss": 0.2545,
|
| 1354 |
+
"rewards/accuracies": 0.949999988079071,
|
| 1355 |
+
"rewards/chosen": -4.209155082702637,
|
| 1356 |
+
"rewards/margins": 6.030273914337158,
|
| 1357 |
+
"rewards/rejected": -10.239428520202637,
|
| 1358 |
+
"step": 750
|
| 1359 |
+
},
|
| 1360 |
+
{
|
| 1361 |
+
"epoch": 0.6446067898581865,
|
| 1362 |
+
"eval_logits/chosen": 2.94565749168396,
|
| 1363 |
+
"eval_logits/rejected": 3.170260190963745,
|
| 1364 |
+
"eval_logps/chosen": -3.455902338027954,
|
| 1365 |
+
"eval_logps/rejected": -8.303979873657227,
|
| 1366 |
+
"eval_loss": 0.2537091076374054,
|
| 1367 |
+
"eval_rewards/accuracies": 0.9368420839309692,
|
| 1368 |
+
"eval_rewards/chosen": -5.1838531494140625,
|
| 1369 |
+
"eval_rewards/margins": 7.272115707397461,
|
| 1370 |
+
"eval_rewards/rejected": -12.455968856811523,
|
| 1371 |
+
"eval_runtime": 25.8128,
|
| 1372 |
+
"eval_samples_per_second": 29.172,
|
| 1373 |
+
"eval_steps_per_second": 3.68,
|
| 1374 |
+
"step": 750
|
| 1375 |
+
},
|
| 1376 |
+
{
|
| 1377 |
+
"epoch": 0.6532015470562956,
|
| 1378 |
+
"grad_norm": 2.978318452835083,
|
| 1379 |
+
"learning_rate": 2.447643950291608e-06,
|
| 1380 |
+
"logits/chosen": 3.1550345420837402,
|
| 1381 |
+
"logits/rejected": 2.9587855339050293,
|
| 1382 |
+
"logps/chosen": -3.403642177581787,
|
| 1383 |
+
"logps/rejected": -7.627197265625,
|
| 1384 |
+
"loss": 0.2261,
|
| 1385 |
+
"rewards/accuracies": 0.9375,
|
| 1386 |
+
"rewards/chosen": -5.10546350479126,
|
| 1387 |
+
"rewards/margins": 6.335333824157715,
|
| 1388 |
+
"rewards/rejected": -11.440796852111816,
|
| 1389 |
+
"step": 760
|
| 1390 |
+
},
|
| 1391 |
+
{
|
| 1392 |
+
"epoch": 0.6617963042544048,
|
| 1393 |
+
"grad_norm": 4.7188801765441895,
|
| 1394 |
+
"learning_rate": 2.3953108656770018e-06,
|
| 1395 |
+
"logits/chosen": 3.7232565879821777,
|
| 1396 |
+
"logits/rejected": 3.5991597175598145,
|
| 1397 |
+
"logps/chosen": -3.6658260822296143,
|
| 1398 |
+
"logps/rejected": -7.148935794830322,
|
| 1399 |
+
"loss": 0.2703,
|
| 1400 |
+
"rewards/accuracies": 0.862500011920929,
|
| 1401 |
+
"rewards/chosen": -5.498739242553711,
|
| 1402 |
+
"rewards/margins": 5.22466516494751,
|
| 1403 |
+
"rewards/rejected": -10.723405838012695,
|
| 1404 |
+
"step": 770
|
| 1405 |
+
},
|
| 1406 |
+
{
|
| 1407 |
+
"epoch": 0.6703910614525139,
|
| 1408 |
+
"grad_norm": 4.847439289093018,
|
| 1409 |
+
"learning_rate": 2.3430237011767166e-06,
|
| 1410 |
+
"logits/chosen": 2.366446018218994,
|
| 1411 |
+
"logits/rejected": 2.4268651008605957,
|
| 1412 |
+
"logps/chosen": -3.6872811317443848,
|
| 1413 |
+
"logps/rejected": -8.306299209594727,
|
| 1414 |
+
"loss": 0.2493,
|
| 1415 |
+
"rewards/accuracies": 0.987500011920929,
|
| 1416 |
+
"rewards/chosen": -5.530921459197998,
|
| 1417 |
+
"rewards/margins": 6.928528785705566,
|
| 1418 |
+
"rewards/rejected": -12.459450721740723,
|
| 1419 |
+
"step": 780
|
| 1420 |
+
},
|
| 1421 |
+
{
|
| 1422 |
+
"epoch": 0.6789858186506231,
|
| 1423 |
+
"grad_norm": 3.72248911857605,
|
| 1424 |
+
"learning_rate": 2.290805391669212e-06,
|
| 1425 |
+
"logits/chosen": 2.7826573848724365,
|
| 1426 |
+
"logits/rejected": 2.9013209342956543,
|
| 1427 |
+
"logps/chosen": -3.5557899475097656,
|
| 1428 |
+
"logps/rejected": -7.959009647369385,
|
| 1429 |
+
"loss": 0.2461,
|
| 1430 |
+
"rewards/accuracies": 0.925000011920929,
|
| 1431 |
+
"rewards/chosen": -5.33368444442749,
|
| 1432 |
+
"rewards/margins": 6.604828834533691,
|
| 1433 |
+
"rewards/rejected": -11.938512802124023,
|
| 1434 |
+
"step": 790
|
| 1435 |
+
},
|
| 1436 |
+
{
|
| 1437 |
+
"epoch": 0.6875805758487322,
|
| 1438 |
+
"grad_norm": 4.7869343757629395,
|
| 1439 |
+
"learning_rate": 2.238678841830867e-06,
|
| 1440 |
+
"logits/chosen": 2.5417182445526123,
|
| 1441 |
+
"logits/rejected": 2.938063621520996,
|
| 1442 |
+
"logps/chosen": -3.5474331378936768,
|
| 1443 |
+
"logps/rejected": -7.563382148742676,
|
| 1444 |
+
"loss": 0.2483,
|
| 1445 |
+
"rewards/accuracies": 0.925000011920929,
|
| 1446 |
+
"rewards/chosen": -5.3211493492126465,
|
| 1447 |
+
"rewards/margins": 6.023923873901367,
|
| 1448 |
+
"rewards/rejected": -11.345073699951172,
|
| 1449 |
+
"step": 800
|
| 1450 |
+
},
|
| 1451 |
+
{
|
| 1452 |
+
"epoch": 0.6875805758487322,
|
| 1453 |
+
"eval_logits/chosen": 2.9645943641662598,
|
| 1454 |
+
"eval_logits/rejected": 3.2736430168151855,
|
| 1455 |
+
"eval_logps/chosen": -3.4982783794403076,
|
| 1456 |
+
"eval_logps/rejected": -8.614095687866211,
|
| 1457 |
+
"eval_loss": 0.24035032093524933,
|
| 1458 |
+
"eval_rewards/accuracies": 0.9263157844543457,
|
| 1459 |
+
"eval_rewards/chosen": -5.24741792678833,
|
| 1460 |
+
"eval_rewards/margins": 7.673725128173828,
|
| 1461 |
+
"eval_rewards/rejected": -12.921142578125,
|
| 1462 |
+
"eval_runtime": 25.8098,
|
| 1463 |
+
"eval_samples_per_second": 29.175,
|
| 1464 |
+
"eval_steps_per_second": 3.681,
|
| 1465 |
+
"step": 800
|
| 1466 |
+
},
|
| 1467 |
+
{
|
| 1468 |
+
"epoch": 0.6961753330468414,
|
| 1469 |
+
"grad_norm": 5.635983943939209,
|
| 1470 |
+
"learning_rate": 2.186666916089239e-06,
|
| 1471 |
+
"logits/chosen": 2.7499587535858154,
|
| 1472 |
+
"logits/rejected": 2.6932997703552246,
|
| 1473 |
+
"logps/chosen": -3.2679648399353027,
|
| 1474 |
+
"logps/rejected": -8.038375854492188,
|
| 1475 |
+
"loss": 0.2647,
|
| 1476 |
+
"rewards/accuracies": 0.925000011920929,
|
| 1477 |
+
"rewards/chosen": -4.901947975158691,
|
| 1478 |
+
"rewards/margins": 7.155615329742432,
|
| 1479 |
+
"rewards/rejected": -12.057561874389648,
|
| 1480 |
+
"step": 810
|
| 1481 |
+
},
|
| 1482 |
+
{
|
| 1483 |
+
"epoch": 0.7047700902449506,
|
| 1484 |
+
"grad_norm": 4.1279215812683105,
|
| 1485 |
+
"learning_rate": 2.134792428593971e-06,
|
| 1486 |
+
"logits/chosen": 3.1286826133728027,
|
| 1487 |
+
"logits/rejected": 3.3689827919006348,
|
| 1488 |
+
"logps/chosen": -3.5489754676818848,
|
| 1489 |
+
"logps/rejected": -8.034095764160156,
|
| 1490 |
+
"loss": 0.1888,
|
| 1491 |
+
"rewards/accuracies": 0.8999999761581421,
|
| 1492 |
+
"rewards/chosen": -5.323462963104248,
|
| 1493 |
+
"rewards/margins": 6.727679252624512,
|
| 1494 |
+
"rewards/rejected": -12.051143646240234,
|
| 1495 |
+
"step": 820
|
| 1496 |
+
},
|
| 1497 |
+
{
|
| 1498 |
+
"epoch": 0.7133648474430597,
|
| 1499 |
+
"grad_norm": 4.562918186187744,
|
| 1500 |
+
"learning_rate": 2.0830781332097446e-06,
|
| 1501 |
+
"logits/chosen": 2.635140895843506,
|
| 1502 |
+
"logits/rejected": 2.909487247467041,
|
| 1503 |
+
"logps/chosen": -3.598254442214966,
|
| 1504 |
+
"logps/rejected": -8.546786308288574,
|
| 1505 |
+
"loss": 0.2141,
|
| 1506 |
+
"rewards/accuracies": 0.949999988079071,
|
| 1507 |
+
"rewards/chosen": -5.39738130569458,
|
| 1508 |
+
"rewards/margins": 7.422798156738281,
|
| 1509 |
+
"rewards/rejected": -12.820180892944336,
|
| 1510 |
+
"step": 830
|
| 1511 |
+
},
|
| 1512 |
+
{
|
| 1513 |
+
"epoch": 0.7219596046411689,
|
| 1514 |
+
"grad_norm": 5.229101657867432,
|
| 1515 |
+
"learning_rate": 2.031546713535688e-06,
|
| 1516 |
+
"logits/chosen": 3.0485472679138184,
|
| 1517 |
+
"logits/rejected": 3.2676749229431152,
|
| 1518 |
+
"logps/chosen": -3.5765304565429688,
|
| 1519 |
+
"logps/rejected": -8.731932640075684,
|
| 1520 |
+
"loss": 0.1953,
|
| 1521 |
+
"rewards/accuracies": 0.949999988079071,
|
| 1522 |
+
"rewards/chosen": -5.364795207977295,
|
| 1523 |
+
"rewards/margins": 7.7331037521362305,
|
| 1524 |
+
"rewards/rejected": -13.097898483276367,
|
| 1525 |
+
"step": 840
|
| 1526 |
+
},
|
| 1527 |
+
{
|
| 1528 |
+
"epoch": 0.730554361839278,
|
| 1529 |
+
"grad_norm": 3.0395517349243164,
|
| 1530 |
+
"learning_rate": 1.9802207729556023e-06,
|
| 1531 |
+
"logits/chosen": 3.242750644683838,
|
| 1532 |
+
"logits/rejected": 3.410076141357422,
|
| 1533 |
+
"logps/chosen": -3.5732295513153076,
|
| 1534 |
+
"logps/rejected": -7.774885654449463,
|
| 1535 |
+
"loss": 0.2395,
|
| 1536 |
+
"rewards/accuracies": 0.8999999761581421,
|
| 1537 |
+
"rewards/chosen": -5.359843730926514,
|
| 1538 |
+
"rewards/margins": 6.302483558654785,
|
| 1539 |
+
"rewards/rejected": -11.662328720092773,
|
| 1540 |
+
"step": 850
|
| 1541 |
+
},
|
| 1542 |
+
{
|
| 1543 |
+
"epoch": 0.730554361839278,
|
| 1544 |
+
"eval_logits/chosen": 2.9314279556274414,
|
| 1545 |
+
"eval_logits/rejected": 3.276207208633423,
|
| 1546 |
+
"eval_logps/chosen": -3.8869926929473877,
|
| 1547 |
+
"eval_logps/rejected": -9.050567626953125,
|
| 1548 |
+
"eval_loss": 0.2363433688879013,
|
| 1549 |
+
"eval_rewards/accuracies": 0.9263157844543457,
|
| 1550 |
+
"eval_rewards/chosen": -5.830489158630371,
|
| 1551 |
+
"eval_rewards/margins": 7.745361328125,
|
| 1552 |
+
"eval_rewards/rejected": -13.575852394104004,
|
| 1553 |
+
"eval_runtime": 25.8152,
|
| 1554 |
+
"eval_samples_per_second": 29.169,
|
| 1555 |
+
"eval_steps_per_second": 3.68,
|
| 1556 |
+
"step": 850
|
| 1557 |
+
}
|
| 1558 |
+
],
|
| 1559 |
+
"logging_steps": 10,
|
| 1560 |
+
"max_steps": 1500,
|
| 1561 |
+
"num_input_tokens_seen": 0,
|
| 1562 |
+
"num_train_epochs": 2,
|
| 1563 |
+
"save_steps": 50,
|
| 1564 |
+
"stateful_callbacks": {
|
| 1565 |
+
"TrainerControl": {
|
| 1566 |
+
"args": {
|
| 1567 |
+
"should_epoch_stop": false,
|
| 1568 |
+
"should_evaluate": false,
|
| 1569 |
+
"should_log": false,
|
| 1570 |
+
"should_save": true,
|
| 1571 |
+
"should_training_stop": false
|
| 1572 |
+
},
|
| 1573 |
+
"attributes": {}
|
| 1574 |
+
}
|
| 1575 |
+
},
|
| 1576 |
+
"total_flos": 1.934492070852952e+18,
|
| 1577 |
+
"train_batch_size": 1,
|
| 1578 |
+
"trial_name": null,
|
| 1579 |
+
"trial_params": null
|
| 1580 |
+
}
|
checkpoint-850/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2cc4cd97bd7e66b9f8e8e61852db449abcbbbd1c049a5ad37ec259f9f39597e8
|
| 3 |
+
size 7224
|
checkpoint-850/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import json
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
from collections import OrderedDict
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
|
| 29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 31 |
+
from deepspeed.utils import logger
|
| 32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class zero_model_state:
|
| 39 |
+
buffers: dict()
|
| 40 |
+
param_shapes: dict()
|
| 41 |
+
shared_params: list
|
| 42 |
+
ds_version: int
|
| 43 |
+
frozen_param_shapes: dict()
|
| 44 |
+
frozen_param_fragments: dict()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
debug = 0
|
| 48 |
+
|
| 49 |
+
# load to cpu
|
| 50 |
+
device = torch.device('cpu')
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def atoi(text):
|
| 54 |
+
return int(text) if text.isdigit() else text
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def natural_keys(text):
|
| 58 |
+
'''
|
| 59 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 61 |
+
(See Toothy's implementation in the comments)
|
| 62 |
+
'''
|
| 63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 67 |
+
if not os.path.isdir(checkpoint_dir):
|
| 68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 69 |
+
|
| 70 |
+
# there should be only one file
|
| 71 |
+
if zero_stage <= 2:
|
| 72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 73 |
+
elif zero_stage == 3:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(file):
|
| 77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 78 |
+
|
| 79 |
+
return file
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 85 |
+
|
| 86 |
+
if len(ckpt_files) == 0:
|
| 87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 88 |
+
|
| 89 |
+
return ckpt_files
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_optim_files(checkpoint_dir):
|
| 93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def get_model_state_files(checkpoint_dir):
|
| 97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def parse_model_states(files):
|
| 101 |
+
zero_model_states = []
|
| 102 |
+
for file in files:
|
| 103 |
+
state_dict = torch.load(file, map_location=device)
|
| 104 |
+
|
| 105 |
+
if BUFFER_NAMES not in state_dict:
|
| 106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 108 |
+
if debug:
|
| 109 |
+
print("Found buffers:", buffer_names)
|
| 110 |
+
|
| 111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 114 |
+
|
| 115 |
+
# collect parameters that are included in param_shapes
|
| 116 |
+
param_names = []
|
| 117 |
+
for s in param_shapes:
|
| 118 |
+
for name in s.keys():
|
| 119 |
+
param_names.append(name)
|
| 120 |
+
|
| 121 |
+
# update with frozen parameters
|
| 122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 123 |
+
if frozen_param_shapes is not None:
|
| 124 |
+
if debug:
|
| 125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 126 |
+
param_names += list(frozen_param_shapes.keys())
|
| 127 |
+
|
| 128 |
+
# handle shared params
|
| 129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 130 |
+
|
| 131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 132 |
+
|
| 133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 134 |
+
|
| 135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 136 |
+
param_shapes=param_shapes,
|
| 137 |
+
shared_params=shared_params,
|
| 138 |
+
ds_version=ds_version,
|
| 139 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 140 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 141 |
+
zero_model_states.append(z_model_state)
|
| 142 |
+
|
| 143 |
+
return zero_model_states
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 147 |
+
total_files = len(files)
|
| 148 |
+
state_dicts = []
|
| 149 |
+
for f in files:
|
| 150 |
+
state_dict = torch.load(f, map_location=device)
|
| 151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 152 |
+
# and also handle the case where it was already removed by another helper script
|
| 153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 154 |
+
state_dicts.append(state_dict)
|
| 155 |
+
|
| 156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
+
|
| 161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
+
# use the max of the partition_count to get the dp world_size.
|
| 164 |
+
|
| 165 |
+
if type(world_size) is list:
|
| 166 |
+
world_size = max(world_size)
|
| 167 |
+
|
| 168 |
+
if world_size != total_files:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# the groups are named differently in each stage
|
| 175 |
+
if zero_stage <= 2:
|
| 176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
+
elif zero_stage == 3:
|
| 178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
+
else:
|
| 180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
+
|
| 182 |
+
if zero_stage <= 2:
|
| 183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
+
elif zero_stage == 3:
|
| 185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
+
#
|
| 188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
+
|
| 191 |
+
fp32_flat_groups = [
|
| 192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 199 |
+
"""
|
| 200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
+
|
| 208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
+
|
| 212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
+
|
| 214 |
+
zero_model_states = parse_model_states(model_files)
|
| 215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
+
|
| 217 |
+
if zero_stage <= 2:
|
| 218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 219 |
+
exclude_frozen_parameters)
|
| 220 |
+
elif zero_stage == 3:
|
| 221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 222 |
+
exclude_frozen_parameters)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 231 |
+
|
| 232 |
+
if debug:
|
| 233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 235 |
+
|
| 236 |
+
wanted_params = len(frozen_param_shapes)
|
| 237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 241 |
+
|
| 242 |
+
total_params = 0
|
| 243 |
+
total_numel = 0
|
| 244 |
+
for name, shape in frozen_param_shapes.items():
|
| 245 |
+
total_params += 1
|
| 246 |
+
unpartitioned_numel = shape.numel()
|
| 247 |
+
total_numel += unpartitioned_numel
|
| 248 |
+
|
| 249 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 250 |
+
|
| 251 |
+
if debug:
|
| 252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 253 |
+
|
| 254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def _has_callable(obj, fn):
|
| 258 |
+
attr = getattr(obj, fn, None)
|
| 259 |
+
return callable(attr)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 263 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 264 |
+
|
| 265 |
+
# Reconstruction protocol:
|
| 266 |
+
#
|
| 267 |
+
# XXX: document this
|
| 268 |
+
|
| 269 |
+
if debug:
|
| 270 |
+
for i in range(world_size):
|
| 271 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 273 |
+
|
| 274 |
+
# XXX: memory usage doubles here (zero2)
|
| 275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 276 |
+
merged_single_partition_of_fp32_groups = []
|
| 277 |
+
for i in range(num_param_groups):
|
| 278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 281 |
+
avail_numel = sum(
|
| 282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 283 |
+
|
| 284 |
+
if debug:
|
| 285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 287 |
+
# not asserting if there is a mismatch due to possible padding
|
| 288 |
+
print(f"Have {avail_numel} numels to process.")
|
| 289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 290 |
+
|
| 291 |
+
# params
|
| 292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 293 |
+
# out-of-core computing solution
|
| 294 |
+
total_numel = 0
|
| 295 |
+
total_params = 0
|
| 296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 297 |
+
offset = 0
|
| 298 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 299 |
+
for name, shape in shapes.items():
|
| 300 |
+
|
| 301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 302 |
+
total_numel += unpartitioned_numel
|
| 303 |
+
total_params += 1
|
| 304 |
+
|
| 305 |
+
if debug:
|
| 306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 308 |
+
offset += unpartitioned_numel
|
| 309 |
+
|
| 310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 314 |
+
align_to = 2 * world_size
|
| 315 |
+
|
| 316 |
+
def zero2_align(x):
|
| 317 |
+
return align_to * math.ceil(x / align_to)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
offset = zero2_align(offset)
|
| 323 |
+
avail_numel = zero2_align(avail_numel)
|
| 324 |
+
|
| 325 |
+
if debug:
|
| 326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 327 |
+
|
| 328 |
+
# Sanity check
|
| 329 |
+
if offset != avail_numel:
|
| 330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 331 |
+
|
| 332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 336 |
+
exclude_frozen_parameters):
|
| 337 |
+
state_dict = OrderedDict()
|
| 338 |
+
|
| 339 |
+
# buffers
|
| 340 |
+
buffers = zero_model_states[0].buffers
|
| 341 |
+
state_dict.update(buffers)
|
| 342 |
+
if debug:
|
| 343 |
+
print(f"added {len(buffers)} buffers")
|
| 344 |
+
|
| 345 |
+
if not exclude_frozen_parameters:
|
| 346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 347 |
+
|
| 348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 349 |
+
|
| 350 |
+
# recover shared parameters
|
| 351 |
+
for pair in zero_model_states[0].shared_params:
|
| 352 |
+
if pair[1] in state_dict:
|
| 353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 354 |
+
|
| 355 |
+
return state_dict
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 359 |
+
remainder = unpartitioned_numel % world_size
|
| 360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 362 |
+
return partitioned_numel, padding_numel
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 367 |
+
return
|
| 368 |
+
|
| 369 |
+
if debug:
|
| 370 |
+
for i in range(world_size):
|
| 371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 373 |
+
|
| 374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 375 |
+
wanted_params = len(frozen_param_shapes)
|
| 376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 380 |
+
|
| 381 |
+
total_params = 0
|
| 382 |
+
total_numel = 0
|
| 383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 384 |
+
total_params += 1
|
| 385 |
+
unpartitioned_numel = shape.numel()
|
| 386 |
+
total_numel += unpartitioned_numel
|
| 387 |
+
|
| 388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 390 |
+
|
| 391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 392 |
+
|
| 393 |
+
if debug:
|
| 394 |
+
print(
|
| 395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 402 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 406 |
+
|
| 407 |
+
# merge list of dicts, preserving order
|
| 408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 409 |
+
|
| 410 |
+
if debug:
|
| 411 |
+
for i in range(world_size):
|
| 412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 413 |
+
|
| 414 |
+
wanted_params = len(param_shapes)
|
| 415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 416 |
+
# not asserting if there is a mismatch due to possible padding
|
| 417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 420 |
+
|
| 421 |
+
# params
|
| 422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 423 |
+
# out-of-core computing solution
|
| 424 |
+
offset = 0
|
| 425 |
+
total_numel = 0
|
| 426 |
+
total_params = 0
|
| 427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
| 428 |
+
unpartitioned_numel = shape.numel()
|
| 429 |
+
total_numel += unpartitioned_numel
|
| 430 |
+
total_params += 1
|
| 431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 432 |
+
|
| 433 |
+
if debug:
|
| 434 |
+
print(
|
| 435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# XXX: memory usage doubles here
|
| 439 |
+
state_dict[name] = torch.cat(
|
| 440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 442 |
+
offset += partitioned_numel
|
| 443 |
+
|
| 444 |
+
offset *= world_size
|
| 445 |
+
|
| 446 |
+
# Sanity check
|
| 447 |
+
if offset != avail_numel:
|
| 448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 449 |
+
|
| 450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 454 |
+
exclude_frozen_parameters):
|
| 455 |
+
state_dict = OrderedDict()
|
| 456 |
+
|
| 457 |
+
# buffers
|
| 458 |
+
buffers = zero_model_states[0].buffers
|
| 459 |
+
state_dict.update(buffers)
|
| 460 |
+
if debug:
|
| 461 |
+
print(f"added {len(buffers)} buffers")
|
| 462 |
+
|
| 463 |
+
if not exclude_frozen_parameters:
|
| 464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 465 |
+
|
| 466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 467 |
+
|
| 468 |
+
# recover shared parameters
|
| 469 |
+
for pair in zero_model_states[0].shared_params:
|
| 470 |
+
if pair[1] in state_dict:
|
| 471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 472 |
+
|
| 473 |
+
return state_dict
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 477 |
+
"""
|
| 478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 480 |
+
via a model hub.
|
| 481 |
+
|
| 482 |
+
Args:
|
| 483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
- pytorch ``state_dict``
|
| 489 |
+
|
| 490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 492 |
+
the checkpoint.
|
| 493 |
+
|
| 494 |
+
A typical usage might be ::
|
| 495 |
+
|
| 496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 497 |
+
# do the training and checkpoint saving
|
| 498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 499 |
+
model = model.cpu() # move to cpu
|
| 500 |
+
model.load_state_dict(state_dict)
|
| 501 |
+
# submit to model hub or save the model to share with others
|
| 502 |
+
|
| 503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 506 |
+
|
| 507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 508 |
+
|
| 509 |
+
"""
|
| 510 |
+
if tag is None:
|
| 511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 512 |
+
if os.path.isfile(latest_path):
|
| 513 |
+
with open(latest_path, 'r') as fd:
|
| 514 |
+
tag = fd.read().strip()
|
| 515 |
+
else:
|
| 516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 517 |
+
|
| 518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 519 |
+
|
| 520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 522 |
+
|
| 523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 527 |
+
output_dir,
|
| 528 |
+
max_shard_size="5GB",
|
| 529 |
+
safe_serialization=False,
|
| 530 |
+
tag=None,
|
| 531 |
+
exclude_frozen_parameters=False):
|
| 532 |
+
"""
|
| 533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 535 |
+
|
| 536 |
+
Args:
|
| 537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 543 |
+
"""
|
| 544 |
+
# Dependency pre-check
|
| 545 |
+
if safe_serialization:
|
| 546 |
+
try:
|
| 547 |
+
from safetensors.torch import save_file
|
| 548 |
+
except ImportError:
|
| 549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 550 |
+
raise
|
| 551 |
+
if max_shard_size is not None:
|
| 552 |
+
try:
|
| 553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 554 |
+
except ImportError:
|
| 555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 556 |
+
raise
|
| 557 |
+
|
| 558 |
+
# Convert zero checkpoint to state_dict
|
| 559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 560 |
+
|
| 561 |
+
# Shard the model if it is too big.
|
| 562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 563 |
+
if max_shard_size is not None:
|
| 564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
| 566 |
+
filename_pattern=filename_pattern,
|
| 567 |
+
max_shard_size=max_shard_size)
|
| 568 |
+
else:
|
| 569 |
+
from collections import namedtuple
|
| 570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 573 |
+
|
| 574 |
+
# Save the model
|
| 575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
| 578 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 579 |
+
if safe_serialization:
|
| 580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
| 581 |
+
else:
|
| 582 |
+
torch.save(shard, output_path)
|
| 583 |
+
|
| 584 |
+
# Save index if sharded
|
| 585 |
+
if state_dict_split.is_sharded:
|
| 586 |
+
index = {
|
| 587 |
+
"metadata": state_dict_split.metadata,
|
| 588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 589 |
+
}
|
| 590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 594 |
+
f.write(content)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 598 |
+
"""
|
| 599 |
+
1. Put the provided model to cpu
|
| 600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 601 |
+
3. Load it into the provided model
|
| 602 |
+
|
| 603 |
+
Args:
|
| 604 |
+
- ``model``: the model object to update
|
| 605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 607 |
+
|
| 608 |
+
Returns:
|
| 609 |
+
- ``model`: modified model
|
| 610 |
+
|
| 611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 613 |
+
conveniently placed for you in the checkpoint folder.
|
| 614 |
+
|
| 615 |
+
A typical usage might be ::
|
| 616 |
+
|
| 617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 619 |
+
# submit to model hub or save the model to share with others
|
| 620 |
+
|
| 621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 624 |
+
|
| 625 |
+
"""
|
| 626 |
+
logger.info(f"Extracting fp32 weights")
|
| 627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 628 |
+
|
| 629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 630 |
+
model = model.cpu()
|
| 631 |
+
model.load_state_dict(state_dict, strict=False)
|
| 632 |
+
|
| 633 |
+
return model
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
if __name__ == "__main__":
|
| 637 |
+
parser = argparse.ArgumentParser()
|
| 638 |
+
parser.add_argument("checkpoint_dir",
|
| 639 |
+
type=str,
|
| 640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 641 |
+
parser.add_argument("output_dir",
|
| 642 |
+
type=str,
|
| 643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 644 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 645 |
+
parser.add_argument(
|
| 646 |
+
"--max_shard_size",
|
| 647 |
+
type=str,
|
| 648 |
+
default="5GB",
|
| 649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 652 |
+
"without CPU OOM issues.")
|
| 653 |
+
parser.add_argument(
|
| 654 |
+
"--safe_serialization",
|
| 655 |
+
default=False,
|
| 656 |
+
action='store_true',
|
| 657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 658 |
+
parser.add_argument("-t",
|
| 659 |
+
"--tag",
|
| 660 |
+
type=str,
|
| 661 |
+
default=None,
|
| 662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 665 |
+
args = parser.parse_args()
|
| 666 |
+
|
| 667 |
+
debug = args.debug
|
| 668 |
+
|
| 669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 670 |
+
args.output_dir,
|
| 671 |
+
max_shard_size=args.max_shard_size,
|
| 672 |
+
safe_serialization=args.safe_serialization,
|
| 673 |
+
tag=args.tag,
|
| 674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|