Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -35,24 +35,24 @@ More details on model performance across various devices, can be found
|
|
| 35 |
|
| 36 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 37 |
|---|---|---|---|---|---|---|---|---|
|
| 38 |
-
| DeepLabV3-ResNet50 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE |
|
| 39 |
-
| DeepLabV3-ResNet50 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE |
|
| 40 |
-
| DeepLabV3-ResNet50 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE |
|
| 41 |
-
| DeepLabV3-ResNet50 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 293.
|
| 42 |
-
| DeepLabV3-ResNet50 | SA7255P ADP | SA7255P | TFLITE |
|
| 43 |
-
| DeepLabV3-ResNet50 | SA8255 (Proxy) | SA8255P Proxy | TFLITE |
|
| 44 |
-
| DeepLabV3-ResNet50 | SA8295P ADP | SA8295P | TFLITE |
|
| 45 |
-
| DeepLabV3-ResNet50 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 292.
|
| 46 |
-
| DeepLabV3-ResNet50 | SA8775P ADP | SA8775P | TFLITE |
|
| 47 |
-
| DeepLabV3-ResNet50 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE |
|
| 48 |
|
| 49 |
|
| 50 |
|
| 51 |
|
| 52 |
## Installation
|
| 53 |
|
| 54 |
-
This model can be installed as a Python package via pip.
|
| 55 |
|
|
|
|
| 56 |
```bash
|
| 57 |
pip install qai-hub-models
|
| 58 |
```
|
|
@@ -108,8 +108,8 @@ Profiling Results
|
|
| 108 |
DeepLabV3-ResNet50
|
| 109 |
Device : Samsung Galaxy S23 (13)
|
| 110 |
Runtime : TFLITE
|
| 111 |
-
Estimated inference time (ms) :
|
| 112 |
-
Estimated peak memory usage (MB): [
|
| 113 |
Total # Ops : 100
|
| 114 |
Compute Unit(s) : GPU (98 ops) CPU (2 ops)
|
| 115 |
```
|
|
@@ -136,7 +136,7 @@ from qai_hub_models.models.deeplabv3_resnet50 import Model
|
|
| 136 |
torch_model = Model.from_pretrained()
|
| 137 |
|
| 138 |
# Device
|
| 139 |
-
device = hub.Device("Samsung Galaxy
|
| 140 |
|
| 141 |
# Trace model
|
| 142 |
input_shape = torch_model.get_input_spec()
|
|
@@ -228,7 +228,8 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
| 228 |
|
| 229 |
|
| 230 |
## License
|
| 231 |
-
* The license for the original implementation of DeepLabV3-ResNet50 can be found
|
|
|
|
| 232 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
| 233 |
|
| 234 |
|
|
|
|
| 35 |
|
| 36 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 37 |
|---|---|---|---|---|---|---|---|---|
|
| 38 |
+
| DeepLabV3-ResNet50 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 292.941 ms | 0 - 181 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 39 |
+
| DeepLabV3-ResNet50 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 214.81 ms | 22 - 51 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 40 |
+
| DeepLabV3-ResNet50 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 222.393 ms | 22 - 42 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 41 |
+
| DeepLabV3-ResNet50 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 293.817 ms | 0 - 200 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 42 |
+
| DeepLabV3-ResNet50 | SA7255P ADP | SA7255P | TFLITE | 2148.816 ms | 21 - 41 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 43 |
+
| DeepLabV3-ResNet50 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 294.006 ms | 0 - 190 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 44 |
+
| DeepLabV3-ResNet50 | SA8295P ADP | SA8295P | TFLITE | 283.104 ms | 23 - 45 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 45 |
+
| DeepLabV3-ResNet50 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 292.801 ms | 0 - 233 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 46 |
+
| DeepLabV3-ResNet50 | SA8775P ADP | SA8775P | TFLITE | 593.557 ms | 23 - 39 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 47 |
+
| DeepLabV3-ResNet50 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 749.786 ms | 22 - 53 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 48 |
|
| 49 |
|
| 50 |
|
| 51 |
|
| 52 |
## Installation
|
| 53 |
|
|
|
|
| 54 |
|
| 55 |
+
Install the package via pip:
|
| 56 |
```bash
|
| 57 |
pip install qai-hub-models
|
| 58 |
```
|
|
|
|
| 108 |
DeepLabV3-ResNet50
|
| 109 |
Device : Samsung Galaxy S23 (13)
|
| 110 |
Runtime : TFLITE
|
| 111 |
+
Estimated inference time (ms) : 292.9
|
| 112 |
+
Estimated peak memory usage (MB): [0, 181]
|
| 113 |
Total # Ops : 100
|
| 114 |
Compute Unit(s) : GPU (98 ops) CPU (2 ops)
|
| 115 |
```
|
|
|
|
| 136 |
torch_model = Model.from_pretrained()
|
| 137 |
|
| 138 |
# Device
|
| 139 |
+
device = hub.Device("Samsung Galaxy S24")
|
| 140 |
|
| 141 |
# Trace model
|
| 142 |
input_shape = torch_model.get_input_spec()
|
|
|
|
| 228 |
|
| 229 |
|
| 230 |
## License
|
| 231 |
+
* The license for the original implementation of DeepLabV3-ResNet50 can be found
|
| 232 |
+
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
| 233 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
| 234 |
|
| 235 |
|