Midas-V2: Optimized for Mobile Deployment
Deep Convolutional Neural Network model for depth estimation
Midas is designed for estimating depth at each point in an image.
This model is an implementation of Midas-V2 found here.
This repository provides scripts to run Midas-V2 on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.depth_estimation
- Model Stats:
- Model checkpoint: MiDaS_small
- Input resolution: 256x256
- Number of parameters: 16.6M
- Model size (float): 63.2 MB
- Model size (w8a8): 16.9 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| Midas-V2 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 13.172 ms | 0 - 43 MB | NPU | Midas-V2.tflite |
| Midas-V2 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 11.934 ms | 1 - 30 MB | NPU | Midas-V2.dlc |
| Midas-V2 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 4.924 ms | 0 - 62 MB | NPU | Midas-V2.tflite |
| Midas-V2 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 7.417 ms | 0 - 38 MB | NPU | Midas-V2.dlc |
| Midas-V2 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 3.301 ms | 0 - 293 MB | NPU | Midas-V2.tflite |
| Midas-V2 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.009 ms | 1 - 19 MB | NPU | Midas-V2.dlc |
| Midas-V2 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 3.08 ms | 0 - 123 MB | NPU | Midas-V2.onnx.zip |
| Midas-V2 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 4.645 ms | 0 - 45 MB | NPU | Midas-V2.tflite |
| Midas-V2 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 17.814 ms | 1 - 30 MB | NPU | Midas-V2.dlc |
| Midas-V2 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 13.172 ms | 0 - 43 MB | NPU | Midas-V2.tflite |
| Midas-V2 | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 11.934 ms | 1 - 30 MB | NPU | Midas-V2.dlc |
| Midas-V2 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 3.302 ms | 0 - 301 MB | NPU | Midas-V2.tflite |
| Midas-V2 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 3.001 ms | 0 - 11 MB | NPU | Midas-V2.dlc |
| Midas-V2 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 5.817 ms | 0 - 33 MB | NPU | Midas-V2.tflite |
| Midas-V2 | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 5.336 ms | 1 - 32 MB | NPU | Midas-V2.dlc |
| Midas-V2 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 3.287 ms | 0 - 321 MB | NPU | Midas-V2.tflite |
| Midas-V2 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 3.007 ms | 1 - 14 MB | NPU | Midas-V2.dlc |
| Midas-V2 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 4.645 ms | 0 - 45 MB | NPU | Midas-V2.tflite |
| Midas-V2 | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 17.814 ms | 1 - 30 MB | NPU | Midas-V2.dlc |
| Midas-V2 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 2.327 ms | 0 - 71 MB | NPU | Midas-V2.tflite |
| Midas-V2 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.081 ms | 1 - 38 MB | NPU | Midas-V2.dlc |
| Midas-V2 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 2.107 ms | 0 - 46 MB | NPU | Midas-V2.onnx.zip |
| Midas-V2 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 1.827 ms | 0 - 51 MB | NPU | Midas-V2.tflite |
| Midas-V2 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 1.539 ms | 1 - 37 MB | NPU | Midas-V2.dlc |
| Midas-V2 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 1.684 ms | 0 - 33 MB | NPU | Midas-V2.onnx.zip |
| Midas-V2 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 1.442 ms | 0 - 50 MB | NPU | Midas-V2.tflite |
| Midas-V2 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 1.319 ms | 1 - 37 MB | NPU | Midas-V2.dlc |
| Midas-V2 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 1.415 ms | 0 - 31 MB | NPU | Midas-V2.onnx.zip |
| Midas-V2 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 3.211 ms | 194 - 194 MB | NPU | Midas-V2.dlc |
| Midas-V2 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.907 ms | 36 - 36 MB | NPU | Midas-V2.onnx.zip |
| Midas-V2 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 2.583 ms | 0 - 33 MB | NPU | Midas-V2.tflite |
| Midas-V2 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 2.9 ms | 0 - 34 MB | NPU | Midas-V2.dlc |
| Midas-V2 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.413 ms | 0 - 54 MB | NPU | Midas-V2.tflite |
| Midas-V2 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.847 ms | 0 - 50 MB | NPU | Midas-V2.dlc |
| Midas-V2 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1.07 ms | 0 - 149 MB | NPU | Midas-V2.tflite |
| Midas-V2 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.275 ms | 0 - 134 MB | NPU | Midas-V2.dlc |
| Midas-V2 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 5.209 ms | 0 - 34 MB | NPU | Midas-V2.tflite |
| Midas-V2 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.588 ms | 0 - 34 MB | NPU | Midas-V2.dlc |
| Midas-V2 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 3.817 ms | 0 - 49 MB | NPU | Midas-V2.tflite |
| Midas-V2 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 5.605 ms | 0 - 50 MB | NPU | Midas-V2.dlc |
| Midas-V2 | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 16.156 ms | 0 - 7 MB | NPU | Midas-V2.tflite |
| Midas-V2 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 2.583 ms | 0 - 33 MB | NPU | Midas-V2.tflite |
| Midas-V2 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 2.9 ms | 0 - 34 MB | NPU | Midas-V2.dlc |
| Midas-V2 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1.073 ms | 0 - 146 MB | NPU | Midas-V2.tflite |
| Midas-V2 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.283 ms | 0 - 140 MB | NPU | Midas-V2.dlc |
| Midas-V2 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.018 ms | 0 - 38 MB | NPU | Midas-V2.tflite |
| Midas-V2 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.19 ms | 0 - 40 MB | NPU | Midas-V2.dlc |
| Midas-V2 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1.081 ms | 0 - 147 MB | NPU | Midas-V2.tflite |
| Midas-V2 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.28 ms | 0 - 135 MB | NPU | Midas-V2.dlc |
| Midas-V2 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 5.209 ms | 0 - 34 MB | NPU | Midas-V2.tflite |
| Midas-V2 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.588 ms | 0 - 34 MB | NPU | Midas-V2.dlc |
| Midas-V2 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.772 ms | 0 - 58 MB | NPU | Midas-V2.tflite |
| Midas-V2 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.9 ms | 0 - 61 MB | NPU | Midas-V2.dlc |
| Midas-V2 | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 0.597 ms | 0 - 37 MB | NPU | Midas-V2.tflite |
| Midas-V2 | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.676 ms | 0 - 40 MB | NPU | Midas-V2.dlc |
| Midas-V2 | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | TFLITE | 1.464 ms | 0 - 48 MB | NPU | Midas-V2.tflite |
| Midas-V2 | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | QNN_DLC | 1.577 ms | 0 - 52 MB | NPU | Midas-V2.dlc |
| Midas-V2 | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 0.524 ms | 0 - 35 MB | NPU | Midas-V2.tflite |
| Midas-V2 | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.555 ms | 0 - 42 MB | NPU | Midas-V2.dlc |
| Midas-V2 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.446 ms | 143 - 143 MB | NPU | Midas-V2.dlc |
Installation
Install the package via pip:
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[midas]"
Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub Workbench with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.midas.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.midas.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.midas.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.midas import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.midas.demo --eval-mode on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.midas.demo -- --eval-mode on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Midas-V2's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Midas-V2 can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
- Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 915
