File size: 16,530 Bytes
bf6560a
 
55284e4
bf6560a
 
 
3485f04
bf6560a
 
 
6b91e20
bf6560a
 
 
 
e4907b7
bf6560a
 
113f4e6
e4907b7
 
bf6560a
 
 
 
 
36e8eff
bf6560a
 
55284e4
bf6560a
 
 
 
55284e4
e378b37
bf6560a
55284e4
56eb10b
10e889c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf6560a
a31f8ae
 
bf6560a
 
 
 
423e7f9
bf6560a
 
 
 
 
10e889c
bf6560a
10e889c
bf6560a
 
 
 
 
 
 
10e889c
bf6560a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36e8eff
a31f8ae
 
bf6560a
 
a31f8ae
bf6560a
 
 
 
 
 
 
 
 
 
 
 
71318ee
bf6560a
 
71318ee
bf6560a
 
1d6118b
bf6560a
71318ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf6560a
 
 
 
 
 
 
 
 
 
 
 
aebc367
 
 
84a7d98
bf6560a
 
 
 
 
 
 
 
 
aebc367
 
 
 
84a7d98
bf6560a
 
 
 
 
 
10e889c
bf6560a
 
a31f8ae
bf6560a
 
 
 
 
aa15323
bf6560a
 
 
 
 
aa15323
bf6560a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56eb10b
bf6560a
423e7f9
 
56eb10b
 
 
bf6560a
 
 
 
 
56eb10b
 
bf6560a
e273191
bf6560a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
---
library_name: pytorch
license: other
tags:
- backbone
- android
pipeline_tag: image-classification

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/swin_base/web-assets/model_demo.png)

# Swin-Base: Optimized for Mobile Deployment
## Imagenet classifier and general purpose backbone


SwinBase is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This model is an implementation of Swin-Base found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py).


This repository provides scripts to run Swin-Base on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/swin_base).



### Model Details

- **Model Type:** Model_use_case.image_classification
- **Model Stats:**
  - Model checkpoint: Imagenet
  - Input resolution: 224x224
  - Number of parameters: 88.8M
  - Model size (float): 339 MB
  - Model size (w8a16): 90.2 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Swin-Base | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 60.881 ms | 0 - 357 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 54.521 ms | 1 - 314 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 28.192 ms | 0 - 355 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 28.389 ms | 0 - 334 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 21.723 ms | 0 - 32 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 19.277 ms | 0 - 68 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 19.159 ms | 1 - 56 MB | NPU | [Swin-Base.onnx.zip](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.onnx.zip) |
| Swin-Base | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 25.116 ms | 0 - 357 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 22.069 ms | 0 - 316 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 60.881 ms | 0 - 357 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 54.521 ms | 1 - 314 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 21.618 ms | 0 - 45 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 19.299 ms | 0 - 69 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 31.874 ms | 0 - 348 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 28.414 ms | 0 - 309 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 21.717 ms | 0 - 38 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 19.364 ms | 0 - 52 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 25.116 ms | 0 - 357 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 22.069 ms | 0 - 316 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 15.006 ms | 46 - 408 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 13.032 ms | 1 - 346 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 12.846 ms | 1 - 345 MB | NPU | [Swin-Base.onnx.zip](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.onnx.zip) |
| Swin-Base | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 11.845 ms | 0 - 351 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 9.895 ms | 1 - 313 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 9.591 ms | 1 - 314 MB | NPU | [Swin-Base.onnx.zip](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.onnx.zip) |
| Swin-Base | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 9.823 ms | 0 - 351 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 8.018 ms | 0 - 330 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 8.042 ms | 0 - 327 MB | NPU | [Swin-Base.onnx.zip](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.onnx.zip) |
| Swin-Base | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 19.906 ms | 1035 - 1035 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 19.472 ms | 175 - 175 MB | NPU | [Swin-Base.onnx.zip](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.onnx.zip) |
| Swin-Base | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 38.0 ms | 0 - 264 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 20.045 ms | 0 - 67 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 20.221 ms | 0 - 264 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 553.678 ms | 142 - 170 MB | CPU | [Swin-Base.onnx.zip](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.onnx.zip) |
| Swin-Base | w8a16 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 562.489 ms | 135 - 156 MB | CPU | [Swin-Base.onnx.zip](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.onnx.zip) |
| Swin-Base | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 38.0 ms | 0 - 264 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 19.967 ms | 0 - 67 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 19.984 ms | 0 - 74 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 20.221 ms | 0 - 264 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 13.369 ms | 0 - 270 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 10.371 ms | 0 - 259 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 207.429 ms | 93 - 166 MB | NPU | [Swin-Base.onnx.zip](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.onnx.zip) |
| Swin-Base | w8a16 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | QNN_DLC | 23.508 ms | 0 - 321 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | ONNX | 595.51 ms | 119 - 141 MB | CPU | [Swin-Base.onnx.zip](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.onnx.zip) |
| Swin-Base | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 8.022 ms | 4 - 277 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 21.391 ms | 415 - 415 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 197.49 ms | 133 - 133 MB | NPU | [Swin-Base.onnx.zip](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.onnx.zip) |




## Installation


Install the package via pip:
```bash
pip install qai-hub-models
```


## Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub Workbench](https://workbench.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://workbench.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.swin_base.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.swin_base.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.swin_base.export
```



## How does this work?

This [export script](https://aihub.qualcomm.com/models/swin_base/qai_hub_models/models/Swin-Base/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.swin_base import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub Workbench. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.swin_base.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.swin_base.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on Swin-Base's performance across various devices [here](https://aihub.qualcomm.com/models/swin_base).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of Swin-Base can be found
  [here](https://github.com/pytorch/vision/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).