Commit
·
5ad08d7
1
Parent(s):
9ec05c6
Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Octo small
|
| 2 |
+
This model is trained with a window size of 2, predicting 7-dimensional actions 4 steps into the future using a diffusion policy.
|
| 3 |
+
Observations and tasks conform to the following spec:
|
| 4 |
+
|
| 5 |
+
Observations:
|
| 6 |
+
|
| 7 |
+
```
|
| 8 |
+
{
|
| 9 |
+
image_primary: ('batch', 'history_window', 256, 256, 3),
|
| 10 |
+
image_wrist: ('batch', 'history_window', 128, 128, 3),
|
| 11 |
+
}
|
| 12 |
+
```
|
| 13 |
+
|
| 14 |
+
Tasks:
|
| 15 |
+
```
|
| 16 |
+
{
|
| 17 |
+
image_primary: ('batch', 256, 256, 3),
|
| 18 |
+
image_wrist: ('batch', 128, 128, 3),
|
| 19 |
+
language_instruction: {
|
| 20 |
+
attention_mask: ('batch', 16),
|
| 21 |
+
input_ids: ('batch', 16),
|
| 22 |
+
},
|
| 23 |
+
}
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
At inference, you may pass in any subset of these observation and task keys, with a history window up to 2 timesteps.
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
This model was trained on a mix of datasets from the Open X-Embodiment dataset
|
| 30 |
+
|
| 31 |
+
| Dataset | Proportion of batch |
|
| 32 |
+
|------------------------------------------------------------|---------------------|
|
| 33 |
+
| Fractal (Brohan et al, 2022) | 17.0\% |
|
| 34 |
+
| Kuka (Kalashnikov et al, 2018) | 17.0\% |
|
| 35 |
+
| Bridge (Walke et al, 2023) | 17.0\% |
|
| 36 |
+
| BC-Z (Jang et al, 2022) | 9.1\% |
|
| 37 |
+
| Stanford Hydra Dataset (Belkhale et al, 2023) | 6.0\% |
|
| 38 |
+
| Language Table~ (Lynch et al, 2023) | 5.9\% |
|
| 39 |
+
| Taco Play (Rosete-Beas et al, 2022, Mees et al., 2023) | 3.6\% |
|
| 40 |
+
| Furniture Bench Dataset (Heo et al, 2023) | 3.3\% |
|
| 41 |
+
| UTAustin Mutex (Shah et al, 2023) | 3.0\% |
|
| 42 |
+
| Austin Sailor Dataset (Nasiriany et al, 2022) | 2.9\% |
|
| 43 |
+
| Roboturk (Mandlekar et al, 2018) | 2.8\% |
|
| 44 |
+
| Toto (Zhou et al, 2023) | 2.4\% |
|
| 45 |
+
| Austin Sirius Dataset (Liu et al, 2023) | 2.3\% |
|
| 46 |
+
| Berkeley Autolab UR5 (Chen et al) | 1.5\% |
|
| 47 |
+
| IAMLab CMU Pickup Insert (Saxena et al, 2023) | 1.2\% |
|
| 48 |
+
| Viola (Zhu et al, 2023) | 1.2\% |
|
| 49 |
+
| Berkeley Fanuc Manipulation (Zhu et al, 2023) | 1.0\% |
|
| 50 |
+
| NYU Franka Play Dataset (Cui et al, 2022) | 0.9\% |
|
| 51 |
+
| UCSD Kitchen Dataset (Ge Yan and Wang, 2023) | <0.1\% |
|
| 52 |
+
| Jaco Play (Dass et al, 2023) | 0.6\% |
|
| 53 |
+
| Berkeley Cable Routing (Luo et al, 2023) | 0.3\% |
|
| 54 |
+
| Austin Buds Dataset (Zhu et al, 2022) | 0.3\% |
|
| 55 |
+
| CMU Stretch (Mendonca et al, 2023) | 0.2\% |
|
| 56 |
+
| NYU Door Opening (Pari et al, 2021) | 0.1\% |
|
| 57 |
+
| DLR EDAN Shared Control (Quere et al, 2020) | 0.1\% |
|