File size: 14,118 Bytes
efb390e
 
 
 
 
 
 
90eb828
 
efb390e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07323af
efb390e
 
 
 
 
 
90eb828
 
07323af
efb390e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90eb828
efb390e
07323af
efb390e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90eb828
 
 
 
efb390e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90eb828
 
 
 
efb390e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
---
language:
- en
license: apache-2.0
tags:
- colbert
- PyLate
- feature-extraction
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:1452533
- loss:Contrastive
base_model: lightonai/GTE-ModernColBERT-v1
datasets:
- redis/langcache-sentencepairs-v1
pipeline_tag: sentence-similarity
library_name: PyLate
---

# Redis fine-tuned late-interaction ColBERT model for semantic caching on LangCache

This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [lightonai/GTE-ModernColBERT-v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) on the [LangCache Sentence Pairs (subsets=['all'], train+val=True)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) dataset. It maps sentences & paragraphs to sequences of 768-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.

## Model Details

### Model Description
- **Model Type:** PyLate model
- **Base model:** [lightonai/GTE-ModernColBERT-v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) <!-- at revision 6605e431bed9b582d3eff7699911d2b64e8ccd3f -->
- **Document Length:** 512 tokens
- **Query Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** MaxSim
- **Training Dataset:**
    - [LangCache Sentence Pairs (subsets=['all'], train+val=True)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/)
- **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate)
- **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate)

### Full Model Architecture

```
ColBERT(
  (0): Transformer({'max_seq_length': 511, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
  (1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity', 'use_residual': False})
  (2): Dense({'in_features': 128, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity', 'use_residual': False})
)
```

## Usage
First install the PyLate library:

```bash
pip install -U pylate
```

### Retrieval

Use this model with PyLate to index and retrieve documents. The index uses [FastPLAID](https://github.com/lightonai/fast-plaid) for efficient similarity search.

#### Indexing documents

Load the ColBERT model and initialize the PLAID index, then encode and index your documents:

```python
from pylate import indexes, models, retrieve

# Step 1: Load the ColBERT model
model = models.ColBERT(
    model_name_or_path="redis/langcache-colbert-v1",
)

# Step 2: Initialize the PLAID index
index = indexes.PLAID(
    index_folder="pylate-index",
    index_name="index",
    override=True,  # This overwrites the existing index if any
)

# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]

documents_embeddings = model.encode(
    documents,
    batch_size=32,
    is_query=False,  # Ensure that it is set to False to indicate that these are documents, not queries
    show_progress_bar=True,
)

# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
    documents_ids=documents_ids,
    documents_embeddings=documents_embeddings,
)
```

Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:

```python
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.PLAID(
    index_folder="pylate-index",
    index_name="index",
)
```

#### Retrieving top-k documents for queries

Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:

```python
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)

# Step 2: Encode the queries
queries_embeddings = model.encode(
    ["query for document 3", "query for document 1"],
    batch_size=32,
    is_query=True,  #  # Ensure that it is set to False to indicate that these are queries
    show_progress_bar=True,
)

# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
    queries_embeddings=queries_embeddings,
    k=10,  # Retrieve the top 10 matches for each query
)
```

### Reranking
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:

```python
from pylate import rank, models

queries = [
    "query A",
    "query B",
]

documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]

documents_ids = [
    [1, 2],
    [1, 3, 2],
]

model = models.ColBERT(
    model_name_or_path="redis/langcache-colbert-v1",
)

queries_embeddings = model.encode(
    queries,
    is_query=True,
)

documents_embeddings = model.encode(
    documents,
    is_query=False,
)

reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### LangCache Sentence Pairs (subsets=['all'], train+val=True)

* Dataset: [LangCache Sentence Pairs (subsets=['all'], train+val=True)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
* Size: 1,452,533 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative_1</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative_1                                                                        |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 9 tokens</li><li>mean: 28.67 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 28.51 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 24.02 tokens</li><li>max: 50 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                   | positive                                                                                                                                 | negative_1                                                                               |
  |:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------|
  | <code> Any Canadian teachers (B.Ed. holders) teaching in U.S. schools?</code>                                                            | <code> Any Canadian teachers (B.Ed. holders) teaching in U.S. schools?</code>                                                            | <code>Are there many Canadians living and working illegally in the United States?</code> |
  | <code> Are there any underlying psychological tricks/tactics that are used when designing the lines for rides at amusement parks?</code> | <code> Are there any underlying psychological tricks/tactics that are used when designing the lines for rides at amusement parks?</code> | <code>Is there any tricks for straight lines mcqs?</code>                                |
  | <code> Can I pay with a debit card on PayPal?</code>                                                                                     | <code> Can I pay with a debit card on PayPal?</code>                                                                                     | <code>Can you transfer PayPal funds onto a debit card/credit card?</code>                |
* Loss: <code>pylate.losses.contrastive.Contrastive</code>

### Evaluation Dataset

#### LangCache Sentence Pairs (split=test)

* Dataset: [LangCache Sentence Pairs (split=test)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
* Size: 110,066 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative_1</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                           | negative_1                                                                        |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | string                                                                            |
  | details | <ul><li>min: 5 tokens</li><li>mean: 26.68 tokens</li><li>max: 104 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 26.34 tokens</li><li>max: 104 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 20.39 tokens</li><li>max: 69 tokens</li></ul> |
* Samples:
  | anchor                                                                                        | positive                                                                                      | negative_1                                                                                     |
  |:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
  | <code> What high potential jobs are there other than computer science?</code>                 | <code> What high potential jobs are there other than computer science?</code>                 | <code>Why IT or Computer Science jobs are being over rated than other Engineering jobs?</code> |
  | <code> Would India ever be able to develop a missile system like S300 or S400 missile?</code> | <code> Would India ever be able to develop a missile system like S300 or S400 missile?</code> | <code>Should India buy the Russian S400 air defence missile system?</code>                     |
  | <code> water from the faucet is being drunk by a yellow dog</code>                            | <code>A yellow dog is drinking water from the faucet</code>                                   | <code>Do you get more homework in 9th grade than 8th?</code>                                   |
* Loss: <code>pylate.losses.contrastive.Contrastive</code>

### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.1
- PyLate: 1.3.4
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0


## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084"
}
```

#### PyLate
```bibtex
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->