File size: 14,118 Bytes
efb390e 90eb828 efb390e 07323af efb390e 90eb828 07323af efb390e 90eb828 efb390e 07323af efb390e 90eb828 efb390e 90eb828 efb390e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
---
language:
- en
license: apache-2.0
tags:
- colbert
- PyLate
- feature-extraction
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:1452533
- loss:Contrastive
base_model: lightonai/GTE-ModernColBERT-v1
datasets:
- redis/langcache-sentencepairs-v1
pipeline_tag: sentence-similarity
library_name: PyLate
---
# Redis fine-tuned late-interaction ColBERT model for semantic caching on LangCache
This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [lightonai/GTE-ModernColBERT-v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) on the [LangCache Sentence Pairs (subsets=['all'], train+val=True)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) dataset. It maps sentences & paragraphs to sequences of 768-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
## Model Details
### Model Description
- **Model Type:** PyLate model
- **Base model:** [lightonai/GTE-ModernColBERT-v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) <!-- at revision 6605e431bed9b582d3eff7699911d2b64e8ccd3f -->
- **Document Length:** 512 tokens
- **Query Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** MaxSim
- **Training Dataset:**
- [LangCache Sentence Pairs (subsets=['all'], train+val=True)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/)
- **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate)
- **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate)
### Full Model Architecture
```
ColBERT(
(0): Transformer({'max_seq_length': 511, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity', 'use_residual': False})
(2): Dense({'in_features': 128, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity', 'use_residual': False})
)
```
## Usage
First install the PyLate library:
```bash
pip install -U pylate
```
### Retrieval
Use this model with PyLate to index and retrieve documents. The index uses [FastPLAID](https://github.com/lightonai/fast-plaid) for efficient similarity search.
#### Indexing documents
Load the ColBERT model and initialize the PLAID index, then encode and index your documents:
```python
from pylate import indexes, models, retrieve
# Step 1: Load the ColBERT model
model = models.ColBERT(
model_name_or_path="redis/langcache-colbert-v1",
)
# Step 2: Initialize the PLAID index
index = indexes.PLAID(
index_folder="pylate-index",
index_name="index",
override=True, # This overwrites the existing index if any
)
# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]
documents_embeddings = model.encode(
documents,
batch_size=32,
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
show_progress_bar=True,
)
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
documents_ids=documents_ids,
documents_embeddings=documents_embeddings,
)
```
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
```python
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.PLAID(
index_folder="pylate-index",
index_name="index",
)
```
#### Retrieving top-k documents for queries
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
```python
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)
# Step 2: Encode the queries
queries_embeddings = model.encode(
["query for document 3", "query for document 1"],
batch_size=32,
is_query=True, # # Ensure that it is set to False to indicate that these are queries
show_progress_bar=True,
)
# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
queries_embeddings=queries_embeddings,
k=10, # Retrieve the top 10 matches for each query
)
```
### Reranking
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
```python
from pylate import rank, models
queries = [
"query A",
"query B",
]
documents = [
["document A", "document B"],
["document 1", "document C", "document B"],
]
documents_ids = [
[1, 2],
[1, 3, 2],
]
model = models.ColBERT(
model_name_or_path="redis/langcache-colbert-v1",
)
queries_embeddings = model.encode(
queries,
is_query=True,
)
documents_embeddings = model.encode(
documents,
is_query=False,
)
reranked_documents = rank.rerank(
documents_ids=documents_ids,
queries_embeddings=queries_embeddings,
documents_embeddings=documents_embeddings,
)
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### LangCache Sentence Pairs (subsets=['all'], train+val=True)
* Dataset: [LangCache Sentence Pairs (subsets=['all'], train+val=True)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
* Size: 1,452,533 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative_1</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative_1 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 28.67 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 28.51 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 24.02 tokens</li><li>max: 50 tokens</li></ul> |
* Samples:
| anchor | positive | negative_1 |
|:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------|
| <code> Any Canadian teachers (B.Ed. holders) teaching in U.S. schools?</code> | <code> Any Canadian teachers (B.Ed. holders) teaching in U.S. schools?</code> | <code>Are there many Canadians living and working illegally in the United States?</code> |
| <code> Are there any underlying psychological tricks/tactics that are used when designing the lines for rides at amusement parks?</code> | <code> Are there any underlying psychological tricks/tactics that are used when designing the lines for rides at amusement parks?</code> | <code>Is there any tricks for straight lines mcqs?</code> |
| <code> Can I pay with a debit card on PayPal?</code> | <code> Can I pay with a debit card on PayPal?</code> | <code>Can you transfer PayPal funds onto a debit card/credit card?</code> |
* Loss: <code>pylate.losses.contrastive.Contrastive</code>
### Evaluation Dataset
#### LangCache Sentence Pairs (split=test)
* Dataset: [LangCache Sentence Pairs (split=test)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
* Size: 110,066 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative_1</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative_1 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 26.68 tokens</li><li>max: 104 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 26.34 tokens</li><li>max: 104 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 20.39 tokens</li><li>max: 69 tokens</li></ul> |
* Samples:
| anchor | positive | negative_1 |
|:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
| <code> What high potential jobs are there other than computer science?</code> | <code> What high potential jobs are there other than computer science?</code> | <code>Why IT or Computer Science jobs are being over rated than other Engineering jobs?</code> |
| <code> Would India ever be able to develop a missile system like S300 or S400 missile?</code> | <code> Would India ever be able to develop a missile system like S300 or S400 missile?</code> | <code>Should India buy the Russian S400 air defence missile system?</code> |
| <code> water from the faucet is being drunk by a yellow dog</code> | <code>A yellow dog is drinking water from the faucet</code> | <code>Do you get more homework in 9th grade than 8th?</code> |
* Loss: <code>pylate.losses.contrastive.Contrastive</code>
### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.1
- PyLate: 1.3.4
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084"
}
```
#### PyLate
```bibtex
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |