Training in progress, step 5000
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +3 -3
- Information-Retrieval_evaluation_val_results.csv +1 -0
- README.md +80 -251
- config.json +51 -15
- eval/Information-Retrieval_evaluation_val_results.csv +21 -0
- final_metrics.json +14 -14
- model.safetensors +2 -2
- modules.json +0 -6
- special_tokens_map.json +9 -13
- tokenizer.json +0 -0
- tokenizer_config.json +0 -0
- training_args.bin +1 -1
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
{
|
| 2 |
-
"word_embedding_dimension":
|
| 3 |
-
"pooling_mode_cls_token":
|
| 4 |
-
"pooling_mode_mean_tokens":
|
| 5 |
"pooling_mode_max_tokens": false,
|
| 6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
"pooling_mode_weightedmean_tokens": false,
|
|
|
|
| 1 |
{
|
| 2 |
+
"word_embedding_dimension": 512,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
"pooling_mode_max_tokens": false,
|
| 6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
"pooling_mode_weightedmean_tokens": false,
|
Information-Retrieval_evaluation_val_results.csv
CHANGED
|
@@ -9,3 +9,4 @@ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Precisi
|
|
| 9 |
-1,-1,0.83665,0.91045,0.9361,0.83665,0.83665,0.3034833333333333,0.91045,0.18722000000000003,0.9361,0.83665,0.8753945833333286,0.8793089583333286,0.9000254411118587,0.8812821493075779
|
| 10 |
-1,-1,0.827675,0.903,0.928425,0.827675,0.827675,0.30099999999999993,0.903,0.18568500000000004,0.928425,0.827675,0.8671804166666619,0.8711970039682481,0.8922532953454642,0.87334664003711
|
| 11 |
-1,-1,0.83295,0.9071,0.9329,0.83295,0.83295,0.3023666666666666,0.9071,0.18658000000000005,0.9329,0.83295,0.872013749999996,0.8760916468253912,0.8970951855878305,0.8781372459990227
|
|
|
|
|
|
| 9 |
-1,-1,0.83665,0.91045,0.9361,0.83665,0.83665,0.3034833333333333,0.91045,0.18722000000000003,0.9361,0.83665,0.8753945833333286,0.8793089583333286,0.9000254411118587,0.8812821493075779
|
| 10 |
-1,-1,0.827675,0.903,0.928425,0.827675,0.827675,0.30099999999999993,0.903,0.18568500000000004,0.928425,0.827675,0.8671804166666619,0.8711970039682481,0.8922532953454642,0.87334664003711
|
| 11 |
-1,-1,0.83295,0.9071,0.9329,0.83295,0.83295,0.3023666666666666,0.9071,0.18658000000000005,0.9329,0.83295,0.872013749999996,0.8760916468253912,0.8970951855878305,0.8781372459990227
|
| 12 |
+
-1,-1,0.83545,0.911175,0.9366,0.83545,0.83545,0.303725,0.911175,0.18732000000000001,0.9366,0.83545,0.8751591666666616,0.8790415476190412,0.8999318372974409,0.8810239994800558
|
README.md
CHANGED
|
@@ -5,123 +5,51 @@ tags:
|
|
| 5 |
- feature-extraction
|
| 6 |
- dense
|
| 7 |
- generated_from_trainer
|
| 8 |
-
- dataset_size:
|
| 9 |
- loss:MultipleNegativesRankingLoss
|
| 10 |
-
base_model:
|
| 11 |
widget:
|
| 12 |
-
- source_sentence:
|
| 13 |
sentences:
|
| 14 |
-
-
|
| 15 |
-
-
|
| 16 |
-
- What
|
| 17 |
-
- source_sentence:
|
| 18 |
-
been underestimated?
|
| 19 |
sentences:
|
| 20 |
-
- How
|
| 21 |
-
-
|
| 22 |
-
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
sentences:
|
| 26 |
-
-
|
| 27 |
-
|
| 28 |
-
-
|
| 29 |
-
|
| 30 |
-
- Are there any platforms that provides end-to-end encryption for file transfer/
|
| 31 |
-
sharing?
|
| 32 |
-
- source_sentence: Why AAP’s MLA Dinesh Mohaniya has been arrested?
|
| 33 |
sentences:
|
| 34 |
-
- What are
|
| 35 |
-
-
|
| 36 |
-
-
|
| 37 |
-
- source_sentence: What is the
|
| 38 |
sentences:
|
| 39 |
-
-
|
| 40 |
-
|
| 41 |
-
- the
|
| 42 |
-
- What is the difference between economic growth and economic development?
|
| 43 |
pipeline_tag: sentence-similarity
|
| 44 |
library_name: sentence-transformers
|
| 45 |
-
metrics:
|
| 46 |
-
- cosine_accuracy@1
|
| 47 |
-
- cosine_accuracy@3
|
| 48 |
-
- cosine_accuracy@5
|
| 49 |
-
- cosine_precision@1
|
| 50 |
-
- cosine_precision@3
|
| 51 |
-
- cosine_precision@5
|
| 52 |
-
- cosine_recall@1
|
| 53 |
-
- cosine_recall@3
|
| 54 |
-
- cosine_recall@5
|
| 55 |
-
- cosine_ndcg@10
|
| 56 |
-
- cosine_mrr@1
|
| 57 |
-
- cosine_mrr@5
|
| 58 |
-
- cosine_mrr@10
|
| 59 |
-
- cosine_map@100
|
| 60 |
-
model-index:
|
| 61 |
-
- name: SentenceTransformer based on thenlper/gte-small
|
| 62 |
-
results:
|
| 63 |
-
- task:
|
| 64 |
-
type: information-retrieval
|
| 65 |
-
name: Information Retrieval
|
| 66 |
-
dataset:
|
| 67 |
-
name: val
|
| 68 |
-
type: val
|
| 69 |
-
metrics:
|
| 70 |
-
- type: cosine_accuracy@1
|
| 71 |
-
value: 0.83545
|
| 72 |
-
name: Cosine Accuracy@1
|
| 73 |
-
- type: cosine_accuracy@3
|
| 74 |
-
value: 0.911175
|
| 75 |
-
name: Cosine Accuracy@3
|
| 76 |
-
- type: cosine_accuracy@5
|
| 77 |
-
value: 0.9366
|
| 78 |
-
name: Cosine Accuracy@5
|
| 79 |
-
- type: cosine_precision@1
|
| 80 |
-
value: 0.83545
|
| 81 |
-
name: Cosine Precision@1
|
| 82 |
-
- type: cosine_precision@3
|
| 83 |
-
value: 0.303725
|
| 84 |
-
name: Cosine Precision@3
|
| 85 |
-
- type: cosine_precision@5
|
| 86 |
-
value: 0.18732000000000001
|
| 87 |
-
name: Cosine Precision@5
|
| 88 |
-
- type: cosine_recall@1
|
| 89 |
-
value: 0.83545
|
| 90 |
-
name: Cosine Recall@1
|
| 91 |
-
- type: cosine_recall@3
|
| 92 |
-
value: 0.911175
|
| 93 |
-
name: Cosine Recall@3
|
| 94 |
-
- type: cosine_recall@5
|
| 95 |
-
value: 0.9366
|
| 96 |
-
name: Cosine Recall@5
|
| 97 |
-
- type: cosine_ndcg@10
|
| 98 |
-
value: 0.8999318372974409
|
| 99 |
-
name: Cosine Ndcg@10
|
| 100 |
-
- type: cosine_mrr@1
|
| 101 |
-
value: 0.83545
|
| 102 |
-
name: Cosine Mrr@1
|
| 103 |
-
- type: cosine_mrr@5
|
| 104 |
-
value: 0.8751591666666616
|
| 105 |
-
name: Cosine Mrr@5
|
| 106 |
-
- type: cosine_mrr@10
|
| 107 |
-
value: 0.8790415476190412
|
| 108 |
-
name: Cosine Mrr@10
|
| 109 |
-
- type: cosine_map@100
|
| 110 |
-
value: 0.8810239994800558
|
| 111 |
-
name: Cosine Map@100
|
| 112 |
---
|
| 113 |
|
| 114 |
-
# SentenceTransformer based on
|
| 115 |
|
| 116 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [
|
| 117 |
|
| 118 |
## Model Details
|
| 119 |
|
| 120 |
### Model Description
|
| 121 |
- **Model Type:** Sentence Transformer
|
| 122 |
-
- **Base model:** [
|
| 123 |
- **Maximum Sequence Length:** 128 tokens
|
| 124 |
-
- **Output Dimensionality:**
|
| 125 |
- **Similarity Function:** Cosine Similarity
|
| 126 |
<!-- - **Training Dataset:** Unknown -->
|
| 127 |
<!-- - **Language:** Unknown -->
|
|
@@ -138,8 +66,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [t
|
|
| 138 |
```
|
| 139 |
SentenceTransformer(
|
| 140 |
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
|
| 141 |
-
(1): Pooling({'word_embedding_dimension':
|
| 142 |
-
(2): Normalize()
|
| 143 |
)
|
| 144 |
```
|
| 145 |
|
|
@@ -158,23 +85,23 @@ Then you can load this model and run inference.
|
|
| 158 |
from sentence_transformers import SentenceTransformer
|
| 159 |
|
| 160 |
# Download from the 🤗 Hub
|
| 161 |
-
model = SentenceTransformer("
|
| 162 |
# Run inference
|
| 163 |
sentences = [
|
| 164 |
-
'What is the
|
| 165 |
-
'
|
| 166 |
-
'
|
| 167 |
]
|
| 168 |
embeddings = model.encode(sentences)
|
| 169 |
print(embeddings.shape)
|
| 170 |
-
# [3,
|
| 171 |
|
| 172 |
# Get the similarity scores for the embeddings
|
| 173 |
similarities = model.similarity(embeddings, embeddings)
|
| 174 |
print(similarities)
|
| 175 |
-
# tensor([[
|
| 176 |
-
# [
|
| 177 |
-
# [
|
| 178 |
```
|
| 179 |
|
| 180 |
<!--
|
|
@@ -201,32 +128,6 @@ You can finetune this model on your own dataset.
|
|
| 201 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 202 |
-->
|
| 203 |
|
| 204 |
-
## Evaluation
|
| 205 |
-
|
| 206 |
-
### Metrics
|
| 207 |
-
|
| 208 |
-
#### Information Retrieval
|
| 209 |
-
|
| 210 |
-
* Dataset: `val`
|
| 211 |
-
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
| 212 |
-
|
| 213 |
-
| Metric | Value |
|
| 214 |
-
|:-------------------|:-----------|
|
| 215 |
-
| cosine_accuracy@1 | 0.8355 |
|
| 216 |
-
| cosine_accuracy@3 | 0.9112 |
|
| 217 |
-
| cosine_accuracy@5 | 0.9366 |
|
| 218 |
-
| cosine_precision@1 | 0.8355 |
|
| 219 |
-
| cosine_precision@3 | 0.3037 |
|
| 220 |
-
| cosine_precision@5 | 0.1873 |
|
| 221 |
-
| cosine_recall@1 | 0.8355 |
|
| 222 |
-
| cosine_recall@3 | 0.9112 |
|
| 223 |
-
| cosine_recall@5 | 0.9366 |
|
| 224 |
-
| **cosine_ndcg@10** | **0.8999** |
|
| 225 |
-
| cosine_mrr@1 | 0.8355 |
|
| 226 |
-
| cosine_mrr@5 | 0.8752 |
|
| 227 |
-
| cosine_mrr@10 | 0.879 |
|
| 228 |
-
| cosine_map@100 | 0.881 |
|
| 229 |
-
|
| 230 |
<!--
|
| 231 |
## Bias, Risks and Limitations
|
| 232 |
|
|
@@ -245,49 +146,23 @@ You can finetune this model on your own dataset.
|
|
| 245 |
|
| 246 |
#### Unnamed Dataset
|
| 247 |
|
| 248 |
-
* Size:
|
| 249 |
-
* Columns: <code>
|
| 250 |
* Approximate statistics based on the first 1000 samples:
|
| 251 |
-
| |
|
| 252 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 253 |
| type | string | string | string |
|
| 254 |
-
| details | <ul><li>min: 6 tokens</li><li>mean:
|
| 255 |
* Samples:
|
| 256 |
-
|
|
| 257 |
-
|
| 258 |
-
| <code>
|
| 259 |
-
| <code>
|
| 260 |
-
| <code>
|
| 261 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 262 |
```json
|
| 263 |
{
|
| 264 |
-
"scale":
|
| 265 |
-
"similarity_fct": "cos_sim",
|
| 266 |
-
"gather_across_devices": false
|
| 267 |
-
}
|
| 268 |
-
```
|
| 269 |
-
|
| 270 |
-
### Evaluation Dataset
|
| 271 |
-
|
| 272 |
-
#### Unnamed Dataset
|
| 273 |
-
|
| 274 |
-
* Size: 40,000 evaluation samples
|
| 275 |
-
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
| 276 |
-
* Approximate statistics based on the first 1000 samples:
|
| 277 |
-
| | anchor | positive | negative |
|
| 278 |
-
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 279 |
-
| type | string | string | string |
|
| 280 |
-
| details | <ul><li>min: 6 tokens</li><li>mean: 15.52 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.51 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.79 tokens</li><li>max: 69 tokens</li></ul> |
|
| 281 |
-
* Samples:
|
| 282 |
-
| anchor | positive | negative |
|
| 283 |
-
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 284 |
-
| <code>Why are all my questions on Quora marked needing improvement?</code> | <code>Why are all my questions immediately being marked as needing improvement?</code> | <code>For a post-graduate student in IIT, is it allowed to take an external scholarship as a top-up to his/her MHRD assistantship?</code> |
|
| 285 |
-
| <code>Can blue butter fly needle with vaccum tube be reused? Is it HIV risk? . Heard the needle is too small to be reused . Had blood draw at clinic?</code> | <code>Can blue butter fly needle with vaccum tube be reused? Is it HIV risk? . Heard the needle is too small to be reused . Had blood draw at clinic?</code> | <code>Can blue butter fly needle with vaccum tube be reused not ? Is it HIV risk ? . Heard the needle is too small to be reused . Had blood draw at clinic ?</code> |
|
| 286 |
-
| <code>Why do people still believe the world is flat?</code> | <code>Why are there still people who believe the world is flat?</code> | <code>I'm not able to buy Udemy course .it is not accepting mine and my friends debit card.my card can be used for Flipkart .how to purchase now?</code> |
|
| 287 |
-
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 288 |
-
```json
|
| 289 |
-
{
|
| 290 |
-
"scale": 7.0,
|
| 291 |
"similarity_fct": "cos_sim",
|
| 292 |
"gather_across_devices": false
|
| 293 |
}
|
|
@@ -296,49 +171,36 @@ You can finetune this model on your own dataset.
|
|
| 296 |
### Training Hyperparameters
|
| 297 |
#### Non-Default Hyperparameters
|
| 298 |
|
| 299 |
-
- `
|
| 300 |
-
- `
|
| 301 |
-
- `per_device_eval_batch_size`: 128
|
| 302 |
-
- `learning_rate`: 0.0002
|
| 303 |
-
- `weight_decay`: 0.0001
|
| 304 |
-
- `max_steps`: 10000
|
| 305 |
-
- `warmup_ratio`: 0.1
|
| 306 |
- `fp16`: True
|
| 307 |
-
- `
|
| 308 |
-
- `dataloader_num_workers`: 1
|
| 309 |
-
- `dataloader_prefetch_factor`: 1
|
| 310 |
-
- `load_best_model_at_end`: True
|
| 311 |
-
- `optim`: adamw_torch
|
| 312 |
-
- `ddp_find_unused_parameters`: False
|
| 313 |
-
- `push_to_hub`: True
|
| 314 |
-
- `hub_model_id`: redis/model-b-structured
|
| 315 |
-
- `eval_on_start`: True
|
| 316 |
|
| 317 |
#### All Hyperparameters
|
| 318 |
<details><summary>Click to expand</summary>
|
| 319 |
|
| 320 |
- `overwrite_output_dir`: False
|
| 321 |
- `do_predict`: False
|
| 322 |
-
- `eval_strategy`:
|
| 323 |
- `prediction_loss_only`: True
|
| 324 |
-
- `per_device_train_batch_size`:
|
| 325 |
-
- `per_device_eval_batch_size`:
|
| 326 |
- `per_gpu_train_batch_size`: None
|
| 327 |
- `per_gpu_eval_batch_size`: None
|
| 328 |
- `gradient_accumulation_steps`: 1
|
| 329 |
- `eval_accumulation_steps`: None
|
| 330 |
- `torch_empty_cache_steps`: None
|
| 331 |
-
- `learning_rate`:
|
| 332 |
-
- `weight_decay`: 0.
|
| 333 |
- `adam_beta1`: 0.9
|
| 334 |
- `adam_beta2`: 0.999
|
| 335 |
- `adam_epsilon`: 1e-08
|
| 336 |
-
- `max_grad_norm`: 1
|
| 337 |
-
- `num_train_epochs`: 3
|
| 338 |
-
- `max_steps`:
|
| 339 |
- `lr_scheduler_type`: linear
|
| 340 |
- `lr_scheduler_kwargs`: {}
|
| 341 |
-
- `warmup_ratio`: 0.
|
| 342 |
- `warmup_steps`: 0
|
| 343 |
- `log_level`: passive
|
| 344 |
- `log_level_replica`: warning
|
|
@@ -366,14 +228,14 @@ You can finetune this model on your own dataset.
|
|
| 366 |
- `tpu_num_cores`: None
|
| 367 |
- `tpu_metrics_debug`: False
|
| 368 |
- `debug`: []
|
| 369 |
-
- `dataloader_drop_last`:
|
| 370 |
-
- `dataloader_num_workers`:
|
| 371 |
-
- `dataloader_prefetch_factor`:
|
| 372 |
- `past_index`: -1
|
| 373 |
- `disable_tqdm`: False
|
| 374 |
- `remove_unused_columns`: True
|
| 375 |
- `label_names`: None
|
| 376 |
-
- `load_best_model_at_end`:
|
| 377 |
- `ignore_data_skip`: False
|
| 378 |
- `fsdp`: []
|
| 379 |
- `fsdp_min_num_params`: 0
|
|
@@ -383,23 +245,23 @@ You can finetune this model on your own dataset.
|
|
| 383 |
- `parallelism_config`: None
|
| 384 |
- `deepspeed`: None
|
| 385 |
- `label_smoothing_factor`: 0.0
|
| 386 |
-
- `optim`:
|
| 387 |
- `optim_args`: None
|
| 388 |
- `adafactor`: False
|
| 389 |
- `group_by_length`: False
|
| 390 |
- `length_column_name`: length
|
| 391 |
- `project`: huggingface
|
| 392 |
- `trackio_space_id`: trackio
|
| 393 |
-
- `ddp_find_unused_parameters`:
|
| 394 |
- `ddp_bucket_cap_mb`: None
|
| 395 |
- `ddp_broadcast_buffers`: False
|
| 396 |
- `dataloader_pin_memory`: True
|
| 397 |
- `dataloader_persistent_workers`: False
|
| 398 |
- `skip_memory_metrics`: True
|
| 399 |
- `use_legacy_prediction_loop`: False
|
| 400 |
-
- `push_to_hub`:
|
| 401 |
- `resume_from_checkpoint`: None
|
| 402 |
-
- `hub_model_id`:
|
| 403 |
- `hub_strategy`: every_save
|
| 404 |
- `hub_private_repo`: None
|
| 405 |
- `hub_always_push`: False
|
|
@@ -426,65 +288,32 @@ You can finetune this model on your own dataset.
|
|
| 426 |
- `neftune_noise_alpha`: None
|
| 427 |
- `optim_target_modules`: None
|
| 428 |
- `batch_eval_metrics`: False
|
| 429 |
-
- `eval_on_start`:
|
| 430 |
- `use_liger_kernel`: False
|
| 431 |
- `liger_kernel_config`: None
|
| 432 |
- `eval_use_gather_object`: False
|
| 433 |
- `average_tokens_across_devices`: True
|
| 434 |
- `prompts`: None
|
| 435 |
- `batch_sampler`: batch_sampler
|
| 436 |
-
- `multi_dataset_batch_sampler`:
|
| 437 |
- `router_mapping`: {}
|
| 438 |
- `learning_rate_mapping`: {}
|
| 439 |
|
| 440 |
</details>
|
| 441 |
|
| 442 |
### Training Logs
|
| 443 |
-
| Epoch
|
| 444 |
-
|
| 445 |
-
| 0
|
| 446 |
-
| 0.
|
| 447 |
-
| 0.
|
| 448 |
-
|
|
| 449 |
-
|
|
| 450 |
-
|
|
| 451 |
-
|
|
| 452 |
-
|
|
| 453 |
-
|
|
| 454 |
-
|
| 455 |
-
| 0.4484 | 2500 | 0.4118 | 0.3459 | 0.8918 |
|
| 456 |
-
| 0.4932 | 2750 | 0.4082 | 0.3437 | 0.8929 |
|
| 457 |
-
| 0.5380 | 3000 | 0.4017 | 0.3413 | 0.8930 |
|
| 458 |
-
| 0.5829 | 3250 | 0.3987 | 0.3380 | 0.8930 |
|
| 459 |
-
| 0.6277 | 3500 | 0.3955 | 0.3355 | 0.8945 |
|
| 460 |
-
| 0.6725 | 3750 | 0.3899 | 0.3324 | 0.8945 |
|
| 461 |
-
| 0.7174 | 4000 | 0.3885 | 0.3307 | 0.8943 |
|
| 462 |
-
| 0.7622 | 4250 | 0.3852 | 0.3272 | 0.8944 |
|
| 463 |
-
| 0.8070 | 4500 | 0.3798 | 0.3276 | 0.8952 |
|
| 464 |
-
| 0.8519 | 4750 | 0.3791 | 0.3240 | 0.8958 |
|
| 465 |
-
| 0.8967 | 5000 | 0.3762 | 0.3230 | 0.8962 |
|
| 466 |
-
| 0.9415 | 5250 | 0.3744 | 0.3209 | 0.8966 |
|
| 467 |
-
| 0.9864 | 5500 | 0.3706 | 0.3193 | 0.8962 |
|
| 468 |
-
| 1.0312 | 5750 | 0.3591 | 0.3164 | 0.8964 |
|
| 469 |
-
| 1.0760 | 6000 | 0.3541 | 0.3158 | 0.8970 |
|
| 470 |
-
| 1.1209 | 6250 | 0.3531 | 0.3132 | 0.8968 |
|
| 471 |
-
| 1.1657 | 6500 | 0.3516 | 0.3129 | 0.8974 |
|
| 472 |
-
| 1.2105 | 6750 | 0.3511 | 0.3108 | 0.8973 |
|
| 473 |
-
| 1.2554 | 7000 | 0.3494 | 0.3098 | 0.8975 |
|
| 474 |
-
| 1.3002 | 7250 | 0.35 | 0.3086 | 0.8976 |
|
| 475 |
-
| 1.3451 | 7500 | 0.3458 | 0.3081 | 0.8983 |
|
| 476 |
-
| 1.3899 | 7750 | 0.3453 | 0.3072 | 0.8980 |
|
| 477 |
-
| 1.4347 | 8000 | 0.3426 | 0.3066 | 0.8984 |
|
| 478 |
-
| 1.4796 | 8250 | 0.3427 | 0.3042 | 0.8987 |
|
| 479 |
-
| 1.5244 | 8500 | 0.342 | 0.3046 | 0.8992 |
|
| 480 |
-
| 1.5692 | 8750 | 0.3404 | 0.3037 | 0.8994 |
|
| 481 |
-
| 1.6141 | 9000 | 0.339 | 0.3027 | 0.8996 |
|
| 482 |
-
| 1.6589 | 9250 | 0.3392 | 0.3015 | 0.8996 |
|
| 483 |
-
| 1.7037 | 9500 | 0.3377 | 0.3012 | 0.8999 |
|
| 484 |
-
| 1.7486 | 9750 | 0.3391 | 0.3007 | 0.8999 |
|
| 485 |
-
| **1.7934** | **10000** | **0.3365** | **0.3004** | **0.8999** |
|
| 486 |
-
|
| 487 |
-
* The bold row denotes the saved checkpoint.
|
| 488 |
|
| 489 |
### Framework Versions
|
| 490 |
- Python: 3.10.18
|
|
|
|
| 5 |
- feature-extraction
|
| 6 |
- dense
|
| 7 |
- generated_from_trainer
|
| 8 |
+
- dataset_size:100000
|
| 9 |
- loss:MultipleNegativesRankingLoss
|
| 10 |
+
base_model: prajjwal1/bert-small
|
| 11 |
widget:
|
| 12 |
+
- source_sentence: How do I calculate IQ?
|
| 13 |
sentences:
|
| 14 |
+
- What is the easiest way to know my IQ?
|
| 15 |
+
- How do I calculate not IQ ?
|
| 16 |
+
- What are some creative and innovative business ideas with less investment in India?
|
| 17 |
+
- source_sentence: How can I learn martial arts in my home?
|
|
|
|
| 18 |
sentences:
|
| 19 |
+
- How can I learn martial arts by myself?
|
| 20 |
+
- What are the advantages and disadvantages of investing in gold?
|
| 21 |
+
- Can people see that I have looked at their pictures on instagram if I am not following
|
| 22 |
+
them?
|
| 23 |
+
- source_sentence: When Enterprise picks you up do you have to take them back?
|
| 24 |
sentences:
|
| 25 |
+
- Are there any software Training institute in Tuticorin?
|
| 26 |
+
- When Enterprise picks you up do you have to take them back?
|
| 27 |
+
- When Enterprise picks you up do them have to take youback?
|
| 28 |
+
- source_sentence: What are some non-capital goods?
|
|
|
|
|
|
|
|
|
|
| 29 |
sentences:
|
| 30 |
+
- What are capital goods?
|
| 31 |
+
- How is the value of [math]\pi[/math] calculated?
|
| 32 |
+
- What are some non-capital goods?
|
| 33 |
+
- source_sentence: What is the QuickBooks technical support phone number in New York?
|
| 34 |
sentences:
|
| 35 |
+
- What caused the Great Depression?
|
| 36 |
+
- Can I apply for PR in Canada?
|
| 37 |
+
- Which is the best QuickBooks Hosting Support Number in New York?
|
|
|
|
| 38 |
pipeline_tag: sentence-similarity
|
| 39 |
library_name: sentence-transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
---
|
| 41 |
|
| 42 |
+
# SentenceTransformer based on prajjwal1/bert-small
|
| 43 |
|
| 44 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small). It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 45 |
|
| 46 |
## Model Details
|
| 47 |
|
| 48 |
### Model Description
|
| 49 |
- **Model Type:** Sentence Transformer
|
| 50 |
+
- **Base model:** [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small) <!-- at revision 0ec5f86f27c1a77d704439db5e01c307ea11b9d4 -->
|
| 51 |
- **Maximum Sequence Length:** 128 tokens
|
| 52 |
+
- **Output Dimensionality:** 512 dimensions
|
| 53 |
- **Similarity Function:** Cosine Similarity
|
| 54 |
<!-- - **Training Dataset:** Unknown -->
|
| 55 |
<!-- - **Language:** Unknown -->
|
|
|
|
| 66 |
```
|
| 67 |
SentenceTransformer(
|
| 68 |
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
|
| 69 |
+
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
|
|
| 70 |
)
|
| 71 |
```
|
| 72 |
|
|
|
|
| 85 |
from sentence_transformers import SentenceTransformer
|
| 86 |
|
| 87 |
# Download from the 🤗 Hub
|
| 88 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 89 |
# Run inference
|
| 90 |
sentences = [
|
| 91 |
+
'What is the QuickBooks technical support phone number in New York?',
|
| 92 |
+
'Which is the best QuickBooks Hosting Support Number in New York?',
|
| 93 |
+
'Can I apply for PR in Canada?',
|
| 94 |
]
|
| 95 |
embeddings = model.encode(sentences)
|
| 96 |
print(embeddings.shape)
|
| 97 |
+
# [3, 512]
|
| 98 |
|
| 99 |
# Get the similarity scores for the embeddings
|
| 100 |
similarities = model.similarity(embeddings, embeddings)
|
| 101 |
print(similarities)
|
| 102 |
+
# tensor([[1.0000, 0.8563, 0.0594],
|
| 103 |
+
# [0.8563, 1.0000, 0.1245],
|
| 104 |
+
# [0.0594, 0.1245, 1.0000]])
|
| 105 |
```
|
| 106 |
|
| 107 |
<!--
|
|
|
|
| 128 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 129 |
-->
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
<!--
|
| 132 |
## Bias, Risks and Limitations
|
| 133 |
|
|
|
|
| 146 |
|
| 147 |
#### Unnamed Dataset
|
| 148 |
|
| 149 |
+
* Size: 100,000 training samples
|
| 150 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
|
| 151 |
* Approximate statistics based on the first 1000 samples:
|
| 152 |
+
| | sentence_0 | sentence_1 | sentence_2 |
|
| 153 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 154 |
| type | string | string | string |
|
| 155 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 15.79 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.68 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.37 tokens</li><li>max: 67 tokens</li></ul> |
|
| 156 |
* Samples:
|
| 157 |
+
| sentence_0 | sentence_1 | sentence_2 |
|
| 158 |
+
|:-----------------------------------------------------------------|:-----------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 159 |
+
| <code>Is masturbating bad for boys?</code> | <code>Is masturbating bad for boys?</code> | <code>How harmful or unhealthy is masturbation?</code> |
|
| 160 |
+
| <code>Does a train engine move in reverse?</code> | <code>Does a train engine move in reverse?</code> | <code>Time moves forward, not in reverse. Doesn't that make time a vector?</code> |
|
| 161 |
+
| <code>What is the most badass thing anyone has ever done?</code> | <code>What is the most badass thing anyone has ever done?</code> | <code>anyone is the most badass thing Whathas ever done?</code> |
|
| 162 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 163 |
```json
|
| 164 |
{
|
| 165 |
+
"scale": 20.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
"similarity_fct": "cos_sim",
|
| 167 |
"gather_across_devices": false
|
| 168 |
}
|
|
|
|
| 171 |
### Training Hyperparameters
|
| 172 |
#### Non-Default Hyperparameters
|
| 173 |
|
| 174 |
+
- `per_device_train_batch_size`: 64
|
| 175 |
+
- `per_device_eval_batch_size`: 64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
- `fp16`: True
|
| 177 |
+
- `multi_dataset_batch_sampler`: round_robin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
#### All Hyperparameters
|
| 180 |
<details><summary>Click to expand</summary>
|
| 181 |
|
| 182 |
- `overwrite_output_dir`: False
|
| 183 |
- `do_predict`: False
|
| 184 |
+
- `eval_strategy`: no
|
| 185 |
- `prediction_loss_only`: True
|
| 186 |
+
- `per_device_train_batch_size`: 64
|
| 187 |
+
- `per_device_eval_batch_size`: 64
|
| 188 |
- `per_gpu_train_batch_size`: None
|
| 189 |
- `per_gpu_eval_batch_size`: None
|
| 190 |
- `gradient_accumulation_steps`: 1
|
| 191 |
- `eval_accumulation_steps`: None
|
| 192 |
- `torch_empty_cache_steps`: None
|
| 193 |
+
- `learning_rate`: 5e-05
|
| 194 |
+
- `weight_decay`: 0.0
|
| 195 |
- `adam_beta1`: 0.9
|
| 196 |
- `adam_beta2`: 0.999
|
| 197 |
- `adam_epsilon`: 1e-08
|
| 198 |
+
- `max_grad_norm`: 1
|
| 199 |
+
- `num_train_epochs`: 3
|
| 200 |
+
- `max_steps`: -1
|
| 201 |
- `lr_scheduler_type`: linear
|
| 202 |
- `lr_scheduler_kwargs`: {}
|
| 203 |
+
- `warmup_ratio`: 0.0
|
| 204 |
- `warmup_steps`: 0
|
| 205 |
- `log_level`: passive
|
| 206 |
- `log_level_replica`: warning
|
|
|
|
| 228 |
- `tpu_num_cores`: None
|
| 229 |
- `tpu_metrics_debug`: False
|
| 230 |
- `debug`: []
|
| 231 |
+
- `dataloader_drop_last`: False
|
| 232 |
+
- `dataloader_num_workers`: 0
|
| 233 |
+
- `dataloader_prefetch_factor`: None
|
| 234 |
- `past_index`: -1
|
| 235 |
- `disable_tqdm`: False
|
| 236 |
- `remove_unused_columns`: True
|
| 237 |
- `label_names`: None
|
| 238 |
+
- `load_best_model_at_end`: False
|
| 239 |
- `ignore_data_skip`: False
|
| 240 |
- `fsdp`: []
|
| 241 |
- `fsdp_min_num_params`: 0
|
|
|
|
| 245 |
- `parallelism_config`: None
|
| 246 |
- `deepspeed`: None
|
| 247 |
- `label_smoothing_factor`: 0.0
|
| 248 |
+
- `optim`: adamw_torch_fused
|
| 249 |
- `optim_args`: None
|
| 250 |
- `adafactor`: False
|
| 251 |
- `group_by_length`: False
|
| 252 |
- `length_column_name`: length
|
| 253 |
- `project`: huggingface
|
| 254 |
- `trackio_space_id`: trackio
|
| 255 |
+
- `ddp_find_unused_parameters`: None
|
| 256 |
- `ddp_bucket_cap_mb`: None
|
| 257 |
- `ddp_broadcast_buffers`: False
|
| 258 |
- `dataloader_pin_memory`: True
|
| 259 |
- `dataloader_persistent_workers`: False
|
| 260 |
- `skip_memory_metrics`: True
|
| 261 |
- `use_legacy_prediction_loop`: False
|
| 262 |
+
- `push_to_hub`: False
|
| 263 |
- `resume_from_checkpoint`: None
|
| 264 |
+
- `hub_model_id`: None
|
| 265 |
- `hub_strategy`: every_save
|
| 266 |
- `hub_private_repo`: None
|
| 267 |
- `hub_always_push`: False
|
|
|
|
| 288 |
- `neftune_noise_alpha`: None
|
| 289 |
- `optim_target_modules`: None
|
| 290 |
- `batch_eval_metrics`: False
|
| 291 |
+
- `eval_on_start`: False
|
| 292 |
- `use_liger_kernel`: False
|
| 293 |
- `liger_kernel_config`: None
|
| 294 |
- `eval_use_gather_object`: False
|
| 295 |
- `average_tokens_across_devices`: True
|
| 296 |
- `prompts`: None
|
| 297 |
- `batch_sampler`: batch_sampler
|
| 298 |
+
- `multi_dataset_batch_sampler`: round_robin
|
| 299 |
- `router_mapping`: {}
|
| 300 |
- `learning_rate_mapping`: {}
|
| 301 |
|
| 302 |
</details>
|
| 303 |
|
| 304 |
### Training Logs
|
| 305 |
+
| Epoch | Step | Training Loss |
|
| 306 |
+
|:------:|:----:|:-------------:|
|
| 307 |
+
| 0.3199 | 500 | 0.4294 |
|
| 308 |
+
| 0.6398 | 1000 | 0.1268 |
|
| 309 |
+
| 0.9597 | 1500 | 0.1 |
|
| 310 |
+
| 1.2796 | 2000 | 0.0792 |
|
| 311 |
+
| 1.5995 | 2500 | 0.0706 |
|
| 312 |
+
| 1.9194 | 3000 | 0.0687 |
|
| 313 |
+
| 2.2393 | 3500 | 0.0584 |
|
| 314 |
+
| 2.5592 | 4000 | 0.057 |
|
| 315 |
+
| 2.8791 | 4500 | 0.0581 |
|
| 316 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
|
| 318 |
### Framework Versions
|
| 319 |
- Python: 3.10.18
|
config.json
CHANGED
|
@@ -1,24 +1,60 @@
|
|
| 1 |
{
|
|
|
|
| 2 |
"architectures": [
|
| 3 |
-
"
|
| 4 |
],
|
| 5 |
-
"
|
| 6 |
-
"
|
|
|
|
|
|
|
| 7 |
"dtype": "float32",
|
| 8 |
-
"
|
| 9 |
-
"
|
| 10 |
-
"
|
|
|
|
|
|
|
| 11 |
"initializer_range": 0.02,
|
| 12 |
-
"intermediate_size":
|
| 13 |
-
"
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
"pad_token_id": 0,
|
| 19 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
"transformers_version": "4.57.3",
|
| 21 |
-
"
|
| 22 |
"use_cache": true,
|
| 23 |
-
"vocab_size":
|
| 24 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"_sliding_window_pattern": 6,
|
| 3 |
"architectures": [
|
| 4 |
+
"Gemma3TextModel"
|
| 5 |
],
|
| 6 |
+
"attention_bias": false,
|
| 7 |
+
"attention_dropout": 0.0,
|
| 8 |
+
"attn_logit_softcapping": null,
|
| 9 |
+
"bos_token_id": 2,
|
| 10 |
"dtype": "float32",
|
| 11 |
+
"eos_token_id": 1,
|
| 12 |
+
"final_logit_softcapping": null,
|
| 13 |
+
"head_dim": 256,
|
| 14 |
+
"hidden_activation": "gelu_pytorch_tanh",
|
| 15 |
+
"hidden_size": 768,
|
| 16 |
"initializer_range": 0.02,
|
| 17 |
+
"intermediate_size": 1152,
|
| 18 |
+
"layer_types": [
|
| 19 |
+
"sliding_attention",
|
| 20 |
+
"sliding_attention",
|
| 21 |
+
"sliding_attention",
|
| 22 |
+
"sliding_attention",
|
| 23 |
+
"sliding_attention",
|
| 24 |
+
"full_attention",
|
| 25 |
+
"sliding_attention",
|
| 26 |
+
"sliding_attention",
|
| 27 |
+
"sliding_attention",
|
| 28 |
+
"sliding_attention",
|
| 29 |
+
"sliding_attention",
|
| 30 |
+
"full_attention",
|
| 31 |
+
"sliding_attention",
|
| 32 |
+
"sliding_attention",
|
| 33 |
+
"sliding_attention",
|
| 34 |
+
"sliding_attention",
|
| 35 |
+
"sliding_attention",
|
| 36 |
+
"full_attention",
|
| 37 |
+
"sliding_attention",
|
| 38 |
+
"sliding_attention",
|
| 39 |
+
"sliding_attention",
|
| 40 |
+
"sliding_attention",
|
| 41 |
+
"sliding_attention",
|
| 42 |
+
"full_attention"
|
| 43 |
+
],
|
| 44 |
+
"max_position_embeddings": 2048,
|
| 45 |
+
"model_type": "gemma3_text",
|
| 46 |
+
"num_attention_heads": 3,
|
| 47 |
+
"num_hidden_layers": 24,
|
| 48 |
+
"num_key_value_heads": 1,
|
| 49 |
"pad_token_id": 0,
|
| 50 |
+
"query_pre_attn_scalar": 256,
|
| 51 |
+
"rms_norm_eps": 1e-06,
|
| 52 |
+
"rope_local_base_freq": 10000.0,
|
| 53 |
+
"rope_scaling": null,
|
| 54 |
+
"rope_theta": 1000000.0,
|
| 55 |
+
"sliding_window": 257,
|
| 56 |
"transformers_version": "4.57.3",
|
| 57 |
+
"use_bidirectional_attention": true,
|
| 58 |
"use_cache": true,
|
| 59 |
+
"vocab_size": 262144
|
| 60 |
}
|
eval/Information-Retrieval_evaluation_val_results.csv
CHANGED
|
@@ -637,3 +637,24 @@ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Precisi
|
|
| 637 |
1.7037302725968435,9500,0.83535,0.911475,0.93655,0.83535,0.83535,0.3038249999999999,0.911475,0.18731,0.93655,0.83535,0.8751141666666615,0.878991577380946,0.899889550569265,0.8809631243794993
|
| 638 |
1.7485652797704447,9750,0.835325,0.9112,0.936325,0.835325,0.835325,0.3037333333333333,0.9112,0.18726500000000001,0.936325,0.835325,0.8750524999999947,0.8789839384920574,0.8998852971689221,0.8809643466594432
|
| 639 |
1.793400286944046,10000,0.83545,0.911175,0.9366,0.83545,0.83545,0.303725,0.911175,0.18732000000000001,0.9366,0.83545,0.8751591666666616,0.8790415476190412,0.8999318372974409,0.8810239994800558
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 637 |
1.7037302725968435,9500,0.83535,0.911475,0.93655,0.83535,0.83535,0.3038249999999999,0.911475,0.18731,0.93655,0.83535,0.8751141666666615,0.878991577380946,0.899889550569265,0.8809631243794993
|
| 638 |
1.7485652797704447,9750,0.835325,0.9112,0.936325,0.835325,0.835325,0.3037333333333333,0.9112,0.18726500000000001,0.936325,0.835325,0.8750524999999947,0.8789839384920574,0.8998852971689221,0.8809643466594432
|
| 639 |
1.793400286944046,10000,0.83545,0.911175,0.9366,0.83545,0.83545,0.303725,0.911175,0.18732000000000001,0.9366,0.83545,0.8751591666666616,0.8790415476190412,0.8999318372974409,0.8810239994800558
|
| 640 |
+
0,0,0.639675,0.87685,0.9083,0.639675,0.639675,0.2922833333333333,0.87685,0.18166000000000004,0.9083,0.639675,0.7599624999999923,0.7643178273809481,0.8083956818551257,0.7670522600703508
|
| 641 |
+
0.022417503586800575,250,0.82065,0.89945,0.9242,0.82065,0.82065,0.2998166666666666,0.89945,0.18483999999999998,0.9242,0.82065,0.8617137499999968,0.8657987599206315,0.8872724349019027,0.8680466843836286
|
| 642 |
+
0.04483500717360115,500,0.81655,0.892425,0.91875,0.81655,0.81655,0.29747499999999993,0.892425,0.18375000000000002,0.91875,0.81655,0.8566166666666617,0.8607229662698371,0.882122156254855,0.863151001734206
|
| 643 |
+
0.06725251076040172,750,0.8135,0.892075,0.917625,0.8135,0.8135,0.2973583333333333,0.892075,0.18352500000000005,0.917625,0.8135,0.8543795833333286,0.8584948015872975,0.8802034869577888,0.8609313205301325
|
| 644 |
+
0.0896700143472023,1000,0.8244,0.898125,0.9234,0.8244,0.8244,0.299375,0.898125,0.18468000000000004,0.9234,0.8244,0.8632404166666602,0.8673072817460247,0.8881903001430266,0.8695682867122491
|
| 645 |
+
0.11208751793400287,1250,0.825125,0.8975,0.92345,0.825125,0.825125,0.2991666666666666,0.8975,0.18469000000000002,0.92345,0.825125,0.8635195833333286,0.8675001488095195,0.8881479223773198,0.8698036797223343
|
| 646 |
+
0.13450502152080343,1500,0.824825,0.89745,0.924675,0.824825,0.824825,0.29914999999999997,0.89745,0.18493500000000002,0.924675,0.824825,0.8635674999999957,0.867597232142853,0.8885981237608775,0.8699162638314769
|
| 647 |
+
0.15692252510760402,1750,0.828125,0.9003,0.926725,0.828125,0.828125,0.3001,0.9003,0.18534500000000004,0.926725,0.828125,0.8663654166666617,0.8703199404761844,0.8910206909869869,0.8725571487400507
|
| 648 |
+
0.1793400286944046,2000,0.001325,0.0084,0.022275,0.001325,0.001325,0.0028,0.0084,0.004455,0.022275,0.001325,0.007867083333333311,0.010877668650793688,0.0186950894860071,0.02490441055844739
|
| 649 |
+
0.20175753228120516,2250,0.830025,0.902425,0.92865,0.830025,0.830025,0.3008083333333333,0.902425,0.18573,0.92865,0.830025,0.868462916666662,0.8723177777777715,0.8928818077159327,0.8744904419955204
|
| 650 |
+
0.22417503586800575,2500,0.83385,0.905775,0.931825,0.83385,0.83385,0.30192499999999994,0.905775,0.18636500000000006,0.931825,0.83385,0.871977083333331,0.8756928670634883,0.8959559117645085,0.8778776795620055
|
| 651 |
+
0.2465925394548063,2750,0.0001,0.0752,0.174675,0.0001,0.0001,0.025066666666666664,0.0752,0.034935,0.174675,0.0001,0.05248083333333305,0.055306488095238034,0.08872108035834274,0.06968419084794351
|
| 652 |
+
0.26901004304160686,3000,2.5e-05,0.072325,0.142725,2.5e-05,2.5e-05,0.024108333333333332,0.072325,0.028544999999999997,0.142725,2.5e-05,0.04569916666666664,0.05269701388888883,0.08544234767952956,0.06723497471913427
|
| 653 |
+
0.2914275466284075,3250,2.5e-05,0.072325,0.142725,2.5e-05,2.5e-05,0.024108333333333332,0.072325,0.028544999999999997,0.142725,2.5e-05,0.04569916666666664,0.05269701388888883,0.08544234767952956,0.06723497471913427
|
| 654 |
+
0.31384505021520803,3500,2.5e-05,0.072325,0.142725,2.5e-05,2.5e-05,0.024108333333333332,0.072325,0.028544999999999997,0.142725,2.5e-05,0.04569916666666664,0.05269701388888883,0.08544234767952956,0.06723497471913427
|
| 655 |
+
0.3362625538020086,3750,2.5e-05,0.072325,0.142725,2.5e-05,2.5e-05,0.024108333333333332,0.072325,0.028544999999999997,0.142725,2.5e-05,0.04569916666666664,0.05269701388888883,0.08544234767952956,0.06723497471913427
|
| 656 |
+
0.3586800573888092,4000,2.5e-05,0.072325,0.142725,2.5e-05,2.5e-05,0.024108333333333332,0.072325,0.028544999999999997,0.142725,2.5e-05,0.04569916666666664,0.05269701388888883,0.08544234767952956,0.06723497471913427
|
| 657 |
+
0.38109756097560976,4250,0.0,2.5e-05,7.5e-05,0.0,0.0,8.333333333333332e-06,2.5e-05,1.5000000000000002e-05,7.5e-05,0.0,2.3749999999999998e-05,2.6875e-05,4.409809989162802e-05,5.524355841383588e-05
|
| 658 |
+
0.4035150645624103,4500,0.0,2.5e-05,7.5e-05,0.0,0.0,8.333333333333332e-06,2.5e-05,1.5000000000000002e-05,7.5e-05,0.0,2.3749999999999998e-05,2.6875e-05,4.409809989162802e-05,5.524355841383588e-05
|
| 659 |
+
0.4259325681492109,4750,0.0,2.5e-05,7.5e-05,0.0,0.0,8.333333333333332e-06,2.5e-05,1.5000000000000002e-05,7.5e-05,0.0,2.3749999999999998e-05,2.6875e-05,4.409809989162802e-05,5.524355841383588e-05
|
| 660 |
+
0.4483500717360115,5000,0.0,2.5e-05,7.5e-05,0.0,0.0,8.333333333333332e-06,2.5e-05,1.5000000000000002e-05,7.5e-05,0.0,2.3749999999999998e-05,2.6875e-05,4.409809989162802e-05,5.524355841383588e-05
|
final_metrics.json
CHANGED
|
@@ -1,16 +1,16 @@
|
|
| 1 |
{
|
| 2 |
-
"val_cosine_accuracy@1": 0.
|
| 3 |
-
"val_cosine_accuracy@3": 0.
|
| 4 |
-
"val_cosine_accuracy@5": 0.
|
| 5 |
-
"val_cosine_precision@1": 0.
|
| 6 |
-
"val_cosine_precision@3": 0.
|
| 7 |
-
"val_cosine_precision@5": 0.
|
| 8 |
-
"val_cosine_recall@1": 0.
|
| 9 |
-
"val_cosine_recall@3": 0.
|
| 10 |
-
"val_cosine_recall@5": 0.
|
| 11 |
-
"val_cosine_ndcg@10": 0.
|
| 12 |
-
"val_cosine_mrr@1": 0.
|
| 13 |
-
"val_cosine_mrr@5": 0.
|
| 14 |
-
"val_cosine_mrr@10": 0.
|
| 15 |
-
"val_cosine_map@100": 0.
|
| 16 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"val_cosine_accuracy@1": 0.83545,
|
| 3 |
+
"val_cosine_accuracy@3": 0.911175,
|
| 4 |
+
"val_cosine_accuracy@5": 0.9366,
|
| 5 |
+
"val_cosine_precision@1": 0.83545,
|
| 6 |
+
"val_cosine_precision@3": 0.303725,
|
| 7 |
+
"val_cosine_precision@5": 0.18732000000000001,
|
| 8 |
+
"val_cosine_recall@1": 0.83545,
|
| 9 |
+
"val_cosine_recall@3": 0.911175,
|
| 10 |
+
"val_cosine_recall@5": 0.9366,
|
| 11 |
+
"val_cosine_ndcg@10": 0.8999318372974409,
|
| 12 |
+
"val_cosine_mrr@1": 0.83545,
|
| 13 |
+
"val_cosine_mrr@5": 0.8751591666666616,
|
| 14 |
+
"val_cosine_mrr@10": 0.8790415476190412,
|
| 15 |
+
"val_cosine_map@100": 0.8810239994800558
|
| 16 |
}
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:545b247747446f3974b25dce1c7156ba3f4d45cf47a42bc853d38de5dc798cfe
|
| 3 |
+
size 1211486072
|
modules.json
CHANGED
|
@@ -10,11 +10,5 @@
|
|
| 10 |
"name": "1",
|
| 11 |
"path": "1_Pooling",
|
| 12 |
"type": "sentence_transformers.models.Pooling"
|
| 13 |
-
},
|
| 14 |
-
{
|
| 15 |
-
"idx": 2,
|
| 16 |
-
"name": "2",
|
| 17 |
-
"path": "2_Normalize",
|
| 18 |
-
"type": "sentence_transformers.models.Normalize"
|
| 19 |
}
|
| 20 |
]
|
|
|
|
| 10 |
"name": "1",
|
| 11 |
"path": "1_Pooling",
|
| 12 |
"type": "sentence_transformers.models.Pooling"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
}
|
| 14 |
]
|
special_tokens_map.json
CHANGED
|
@@ -1,34 +1,30 @@
|
|
| 1 |
{
|
| 2 |
-
"
|
| 3 |
-
|
|
|
|
| 4 |
"lstrip": false,
|
| 5 |
"normalized": false,
|
| 6 |
"rstrip": false,
|
| 7 |
"single_word": false
|
| 8 |
},
|
| 9 |
-
"
|
| 10 |
-
|
|
|
|
| 11 |
"lstrip": false,
|
| 12 |
"normalized": false,
|
| 13 |
"rstrip": false,
|
| 14 |
"single_word": false
|
| 15 |
},
|
|
|
|
| 16 |
"pad_token": {
|
| 17 |
-
"content": "
|
| 18 |
-
"lstrip": false,
|
| 19 |
-
"normalized": false,
|
| 20 |
-
"rstrip": false,
|
| 21 |
-
"single_word": false
|
| 22 |
-
},
|
| 23 |
-
"sep_token": {
|
| 24 |
-
"content": "[SEP]",
|
| 25 |
"lstrip": false,
|
| 26 |
"normalized": false,
|
| 27 |
"rstrip": false,
|
| 28 |
"single_word": false
|
| 29 |
},
|
| 30 |
"unk_token": {
|
| 31 |
-
"content": "
|
| 32 |
"lstrip": false,
|
| 33 |
"normalized": false,
|
| 34 |
"rstrip": false,
|
|
|
|
| 1 |
{
|
| 2 |
+
"boi_token": "<start_of_image>",
|
| 3 |
+
"bos_token": {
|
| 4 |
+
"content": "<bos>",
|
| 5 |
"lstrip": false,
|
| 6 |
"normalized": false,
|
| 7 |
"rstrip": false,
|
| 8 |
"single_word": false
|
| 9 |
},
|
| 10 |
+
"eoi_token": "<end_of_image>",
|
| 11 |
+
"eos_token": {
|
| 12 |
+
"content": "<eos>",
|
| 13 |
"lstrip": false,
|
| 14 |
"normalized": false,
|
| 15 |
"rstrip": false,
|
| 16 |
"single_word": false
|
| 17 |
},
|
| 18 |
+
"image_token": "<image_soft_token>",
|
| 19 |
"pad_token": {
|
| 20 |
+
"content": "<pad>",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
"lstrip": false,
|
| 22 |
"normalized": false,
|
| 23 |
"rstrip": false,
|
| 24 |
"single_word": false
|
| 25 |
},
|
| 26 |
"unk_token": {
|
| 27 |
+
"content": "<unk>",
|
| 28 |
"lstrip": false,
|
| 29 |
"normalized": false,
|
| 30 |
"rstrip": false,
|
tokenizer.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
training_args.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 6161
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0550728e68dcb4297a5ed369ce43e645f35ae6cb79deed45333999adba8e4c4e
|
| 3 |
size 6161
|