radoslavralev commited on
Commit
4ada0d8
·
verified ·
1 Parent(s): 42224de

Training in progress, step 5000

Browse files
1_Pooling/config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
- "word_embedding_dimension": 384,
3
- "pooling_mode_cls_token": false,
4
- "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
6
  "pooling_mode_mean_sqrt_len_tokens": false,
7
  "pooling_mode_weightedmean_tokens": false,
 
1
  {
2
+ "word_embedding_dimension": 512,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
  "pooling_mode_max_tokens": false,
6
  "pooling_mode_mean_sqrt_len_tokens": false,
7
  "pooling_mode_weightedmean_tokens": false,
Information-Retrieval_evaluation_BeIR-touche2020-subset-test_results.csv CHANGED
@@ -1,3 +1,4 @@
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.7551020408163265,0.8979591836734694,0.9387755102040817,1.0,0.7551020408163265,0.01681883497544576,0.6802721088435373,0.045273391320759554,0.6489795918367346,0.07198855467813525,0.563265306122449,0.12417651370073833,0.8328474246841594,0.6023501966395867,0.2434385293084787
3
  -1,-1,0.7346938775510204,0.9387755102040817,0.9591836734693877,0.9795918367346939,0.7346938775510204,0.01628348794626864,0.6802721088435373,0.045158349206937544,0.6612244897959185,0.07322241057348641,0.5857142857142857,0.12952247914108056,0.8306122448979592,0.6211658380172899,0.24407616368208723
 
 
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.7551020408163265,0.8979591836734694,0.9387755102040817,1.0,0.7551020408163265,0.01681883497544576,0.6802721088435373,0.045273391320759554,0.6489795918367346,0.07198855467813525,0.563265306122449,0.12417651370073833,0.8328474246841594,0.6023501966395867,0.2434385293084787
3
  -1,-1,0.7346938775510204,0.9387755102040817,0.9591836734693877,0.9795918367346939,0.7346938775510204,0.01628348794626864,0.6802721088435373,0.045158349206937544,0.6612244897959185,0.07322241057348641,0.5857142857142857,0.12952247914108056,0.8306122448979592,0.6211658380172899,0.24407616368208723
4
+ -1,-1,0.6530612244897959,0.9591836734693877,0.9591836734693877,0.9795918367346939,0.6530612244897959,0.01432104834093062,0.727891156462585,0.048281100280382724,0.6448979591836735,0.07113270115683268,0.5795918367346938,0.1277462197359846,0.7950680272108844,0.6075766364842123,0.25739036878474303
Information-Retrieval_evaluation_NanoArguAna_results.csv CHANGED
@@ -1,3 +1,4 @@
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.18,0.5,0.66,0.74,0.18,0.18,0.16666666666666663,0.5,0.13200000000000003,0.66,0.07400000000000001,0.74,0.3599682539682539,0.45218312003145433,0.3658170202780539
3
  -1,-1,0.14,0.38,0.5,0.66,0.14,0.14,0.12666666666666665,0.38,0.1,0.5,0.06600000000000002,0.66,0.300095238095238,0.38615266678375515,0.3088425567963239
 
 
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.18,0.5,0.66,0.74,0.18,0.18,0.16666666666666663,0.5,0.13200000000000003,0.66,0.07400000000000001,0.74,0.3599682539682539,0.45218312003145433,0.3658170202780539
3
  -1,-1,0.14,0.38,0.5,0.66,0.14,0.14,0.12666666666666665,0.38,0.1,0.5,0.06600000000000002,0.66,0.300095238095238,0.38615266678375515,0.3088425567963239
4
+ -1,-1,0.22,0.54,0.58,0.74,0.22,0.22,0.18,0.54,0.11600000000000002,0.58,0.07400000000000001,0.74,0.3815793650793651,0.4674888162177975,0.3917367299367299
Information-Retrieval_evaluation_NanoClimateFEVER_results.csv CHANGED
@@ -1,3 +1,4 @@
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.1,0.32,0.44,0.6,0.1,0.04333333333333333,0.11333333333333333,0.154,0.092,0.214,0.066,0.2723333333333333,0.23579365079365078,0.18832347198247595,0.13278630044723194
3
  -1,-1,0.1,0.26,0.34,0.6,0.1,0.04666666666666666,0.08666666666666666,0.12399999999999999,0.07200000000000001,0.16899999999999998,0.066,0.2973333333333333,0.21938095238095237,0.1853895398720514,0.1267197025068282
 
 
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.1,0.32,0.44,0.6,0.1,0.04333333333333333,0.11333333333333333,0.154,0.092,0.214,0.066,0.2723333333333333,0.23579365079365078,0.18832347198247595,0.13278630044723194
3
  -1,-1,0.1,0.26,0.34,0.6,0.1,0.04666666666666666,0.08666666666666666,0.12399999999999999,0.07200000000000001,0.16899999999999998,0.066,0.2973333333333333,0.21938095238095237,0.1853895398720514,0.1267197025068282
4
+ -1,-1,0.22,0.36,0.44,0.68,0.22,0.10166666666666666,0.12,0.1433333333333333,0.09200000000000001,0.19666666666666666,0.08,0.32233333333333336,0.3309126984126983,0.24154521021050848,0.17419838412151278
Information-Retrieval_evaluation_NanoDBPedia_results.csv CHANGED
@@ -1,3 +1,4 @@
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.58,0.82,0.86,0.88,0.58,0.05774032197349101,0.5266666666666666,0.13525154291594316,0.444,0.17429307751101658,0.36199999999999993,0.24557535689700863,0.7,0.46037876007701023,0.32047705412103555
3
  -1,-1,0.68,0.8,0.86,0.88,0.68,0.08435515343632806,0.5066666666666666,0.13854094008435847,0.44800000000000006,0.17555319487559032,0.376,0.25077742902228617,0.7498333333333334,0.4897177201468777,0.34021634749539026
 
 
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.58,0.82,0.86,0.88,0.58,0.05774032197349101,0.5266666666666666,0.13525154291594316,0.444,0.17429307751101658,0.36199999999999993,0.24557535689700863,0.7,0.46037876007701023,0.32047705412103555
3
  -1,-1,0.68,0.8,0.86,0.88,0.68,0.08435515343632806,0.5066666666666666,0.13854094008435847,0.44800000000000006,0.17555319487559032,0.376,0.25077742902228617,0.7498333333333334,0.4897177201468777,0.34021634749539026
4
+ -1,-1,0.62,0.78,0.84,0.92,0.62,0.07067219113244924,0.5199999999999999,0.1473605766367288,0.452,0.18535916558236945,0.364,0.27484027728017424,0.7183571428571429,0.4817256707832707,0.3555155246867996
Information-Retrieval_evaluation_NanoFEVER_results.csv CHANGED
@@ -1,3 +1,4 @@
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.56,0.8,0.88,0.88,0.56,0.5266666666666666,0.28,0.7533333333333333,0.184,0.8333333333333333,0.092,0.8333333333333333,0.6789999999999999,0.7016221865098926,0.6483203115492273
3
  -1,-1,0.6,0.76,0.86,0.88,0.6,0.5466666666666666,0.2533333333333333,0.7066666666666666,0.17199999999999996,0.7966666666666665,0.088,0.8166666666666665,0.6975555555555556,0.6976146491512496,0.6474697943858455
 
 
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.56,0.8,0.88,0.88,0.56,0.5266666666666666,0.28,0.7533333333333333,0.184,0.8333333333333333,0.092,0.8333333333333333,0.6789999999999999,0.7016221865098926,0.6483203115492273
3
  -1,-1,0.6,0.76,0.86,0.88,0.6,0.5466666666666666,0.2533333333333333,0.7066666666666666,0.17199999999999996,0.7966666666666665,0.088,0.8166666666666665,0.6975555555555556,0.6976146491512496,0.6474697943858455
4
+ -1,-1,0.76,0.84,0.9,0.9,0.76,0.7066666666666666,0.29333333333333333,0.7933333333333333,0.18799999999999997,0.8533333333333333,0.09399999999999999,0.8533333333333333,0.805,0.7928392587586685,0.7629176534259828
Information-Retrieval_evaluation_NanoFiQA2018_results.csv CHANGED
@@ -1,3 +1,4 @@
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.24,0.38,0.42,0.52,0.24,0.13307936507936508,0.15333333333333332,0.21543650793650795,0.11600000000000002,0.2601031746031746,0.07600000000000001,0.3241587301587302,0.3178809523809524,0.2635447070179544,0.22615568818713977
3
  -1,-1,0.26,0.42,0.46,0.58,0.26,0.11974603174603175,0.18,0.25293650793650796,0.124,0.28343650793650793,0.08399999999999999,0.37834920634920627,0.34807936507936504,0.289405411189281,0.2371668409805281
 
 
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.24,0.38,0.42,0.52,0.24,0.13307936507936508,0.15333333333333332,0.21543650793650795,0.11600000000000002,0.2601031746031746,0.07600000000000001,0.3241587301587302,0.3178809523809524,0.2635447070179544,0.22615568818713977
3
  -1,-1,0.26,0.42,0.46,0.58,0.26,0.11974603174603175,0.18,0.25293650793650796,0.124,0.28343650793650793,0.08399999999999999,0.37834920634920627,0.34807936507936504,0.289405411189281,0.2371668409805281
4
+ -1,-1,0.3,0.4,0.42,0.52,0.3,0.14474603174603173,0.1733333333333333,0.2201031746031746,0.124,0.2519365079365079,0.08,0.31682539682539684,0.35405555555555557,0.2761214091575939,0.23650883511668197
Information-Retrieval_evaluation_NanoHotpotQA_results.csv CHANGED
@@ -1,3 +1,4 @@
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.5,0.58,0.62,0.68,0.5,0.25,0.2333333333333333,0.35,0.16399999999999998,0.41,0.094,0.47,0.5529999999999999,0.43627646197603637,0.37828612061221206
3
  -1,-1,0.54,0.64,0.7,0.74,0.54,0.27,0.26666666666666666,0.4,0.184,0.46,0.106,0.53,0.606,0.48356059599535955,0.4167638398079239
 
 
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.5,0.58,0.62,0.68,0.5,0.25,0.2333333333333333,0.35,0.16399999999999998,0.41,0.094,0.47,0.5529999999999999,0.43627646197603637,0.37828612061221206
3
  -1,-1,0.54,0.64,0.7,0.74,0.54,0.27,0.26666666666666666,0.4,0.184,0.46,0.106,0.53,0.606,0.48356059599535955,0.4167638398079239
4
+ -1,-1,0.7,0.76,0.78,0.8,0.7,0.35,0.3733333333333333,0.56,0.244,0.61,0.13399999999999998,0.67,0.7373333333333334,0.6362341710243232,0.579012255659608
Information-Retrieval_evaluation_NanoMSMARCO_results.csv CHANGED
@@ -1,3 +1,4 @@
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.26,0.52,0.6,0.62,0.26,0.26,0.1733333333333333,0.52,0.12,0.6,0.062,0.62,0.40519047619047627,0.45904886208148177,0.4260102142025637
3
  -1,-1,0.28,0.54,0.62,0.8,0.28,0.28,0.17999999999999997,0.54,0.124,0.62,0.08,0.8,0.43837301587301575,0.5241911345526384,0.4480618800320956
 
 
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.26,0.52,0.6,0.62,0.26,0.26,0.1733333333333333,0.52,0.12,0.6,0.062,0.62,0.40519047619047627,0.45904886208148177,0.4260102142025637
3
  -1,-1,0.28,0.54,0.62,0.8,0.28,0.28,0.17999999999999997,0.54,0.124,0.62,0.08,0.8,0.43837301587301575,0.5241911345526384,0.4480618800320956
4
+ -1,-1,0.28,0.58,0.64,0.72,0.28,0.28,0.19333333333333333,0.58,0.128,0.64,0.07200000000000001,0.72,0.4386111111111111,0.5075011853031293,0.4533366047009664
Information-Retrieval_evaluation_NanoNFCorpus_results.csv CHANGED
@@ -1,3 +1,4 @@
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.32,0.5,0.52,0.64,0.32,0.01260685895239504,0.31333333333333335,0.03463231741620742,0.27599999999999997,0.06850002262294216,0.24399999999999994,0.10851262864104039,0.4212380952380952,0.2703690747449406,0.10029196368651581
3
  -1,-1,0.34,0.52,0.58,0.68,0.34,0.012133063569139098,0.33333333333333326,0.05465564949455657,0.29600000000000004,0.07192795043792813,0.25,0.10822085751351866,0.44152380952380954,0.2847553576589848,0.108499059841261
 
 
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.32,0.5,0.52,0.64,0.32,0.01260685895239504,0.31333333333333335,0.03463231741620742,0.27599999999999997,0.06850002262294216,0.24399999999999994,0.10851262864104039,0.4212380952380952,0.2703690747449406,0.10029196368651581
3
  -1,-1,0.34,0.52,0.58,0.68,0.34,0.012133063569139098,0.33333333333333326,0.05465564949455657,0.29600000000000004,0.07192795043792813,0.25,0.10822085751351866,0.44152380952380954,0.2847553576589848,0.108499059841261
4
+ -1,-1,0.38,0.46,0.54,0.64,0.38,0.012479157217241355,0.3,0.04881894595681059,0.3,0.06922116223257517,0.276,0.10938910626227699,0.45196825396825396,0.30283246736353403,0.12231981928859673
Information-Retrieval_evaluation_NanoNQ_results.csv CHANGED
@@ -1,3 +1,4 @@
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.32,0.5,0.6,0.62,0.32,0.3,0.1733333333333333,0.47,0.128,0.58,0.066,0.6,0.4272222222222222,0.4619884812398348,0.42411983365963474
3
  -1,-1,0.36,0.56,0.6,0.62,0.36,0.35,0.19333333333333333,0.53,0.128,0.58,0.066,0.6,0.4625,0.490897686812855,0.46206363135240186
 
 
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.32,0.5,0.6,0.62,0.32,0.3,0.1733333333333333,0.47,0.128,0.58,0.066,0.6,0.4272222222222222,0.4619884812398348,0.42411983365963474
3
  -1,-1,0.36,0.56,0.6,0.62,0.36,0.35,0.19333333333333333,0.53,0.128,0.58,0.066,0.6,0.4625,0.490897686812855,0.46206363135240186
4
+ -1,-1,0.32,0.54,0.6,0.66,0.32,0.3,0.18666666666666665,0.51,0.128,0.58,0.07,0.64,0.4465,0.48687028758380874,0.4417143853257704
Information-Retrieval_evaluation_NanoQuoraRetrieval_results.csv CHANGED
@@ -1,3 +1,4 @@
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.94,1.0,1.0,1.0,0.94,0.8273333333333334,0.4133333333333333,0.9653333333333333,0.25999999999999995,0.9793333333333334,0.13799999999999998,0.9966666666666666,0.9666666666666667,0.9697624312418531,0.9551233766233765
3
  -1,-1,0.92,1.0,1.0,1.0,0.92,0.8073333333333332,0.4133333333333333,0.9653333333333333,0.264,0.986,0.13399999999999998,0.99,0.96,0.960129267031932,0.945489898989899
 
 
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.94,1.0,1.0,1.0,0.94,0.8273333333333334,0.4133333333333333,0.9653333333333333,0.25999999999999995,0.9793333333333334,0.13799999999999998,0.9966666666666666,0.9666666666666667,0.9697624312418531,0.9551233766233765
3
  -1,-1,0.92,1.0,1.0,1.0,0.92,0.8073333333333332,0.4133333333333333,0.9653333333333333,0.264,0.986,0.13399999999999998,0.99,0.96,0.960129267031932,0.945489898989899
4
+ -1,-1,0.88,1.0,1.0,1.0,0.88,0.7773333333333332,0.41999999999999993,0.972,0.26799999999999996,0.9893333333333334,0.13599999999999998,0.9926666666666667,0.9366666666666665,0.9483612484877714,0.9296388888888888
Information-Retrieval_evaluation_NanoSCIDOCS_results.csv CHANGED
@@ -1,3 +1,4 @@
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.42,0.6,0.72,0.82,0.42,0.08866666666666667,0.33333333333333326,0.20866666666666664,0.272,0.2806666666666667,0.17999999999999997,0.3696666666666666,0.540047619047619,0.36082794471047336,0.2862806075456748
3
  -1,-1,0.48,0.72,0.76,0.8,0.48,0.10166666666666666,0.3666666666666666,0.22766666666666666,0.28400000000000003,0.29266666666666663,0.19199999999999995,0.3946666666666666,0.5951904761904762,0.3895503827770311,0.3082897117657901
 
 
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.42,0.6,0.72,0.82,0.42,0.08866666666666667,0.33333333333333326,0.20866666666666664,0.272,0.2806666666666667,0.17999999999999997,0.3696666666666666,0.540047619047619,0.36082794471047336,0.2862806075456748
3
  -1,-1,0.48,0.72,0.76,0.8,0.48,0.10166666666666666,0.3666666666666666,0.22766666666666666,0.28400000000000003,0.29266666666666663,0.19199999999999995,0.3946666666666666,0.5951904761904762,0.3895503827770311,0.3082897117657901
4
+ -1,-1,0.46,0.68,0.84,0.9,0.46,0.09666666666666666,0.3533333333333333,0.21766666666666665,0.304,0.31266666666666665,0.18999999999999997,0.3896666666666666,0.6114444444444443,0.3893008993021786,0.3091964898288773
Information-Retrieval_evaluation_NanoSciFact_results.csv CHANGED
@@ -1,3 +1,4 @@
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.38,0.46,0.5,0.58,0.38,0.345,0.15999999999999998,0.43,0.10800000000000003,0.475,0.068,0.58,0.44026984126984126,0.46384622999765257,0.43257979600699104
3
  -1,-1,0.38,0.54,0.58,0.7,0.38,0.345,0.19999999999999996,0.525,0.12800000000000003,0.565,0.08,0.7,0.4820793650793651,0.5292195947118973,0.47730440170572996
 
 
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.38,0.46,0.5,0.58,0.38,0.345,0.15999999999999998,0.43,0.10800000000000003,0.475,0.068,0.58,0.44026984126984126,0.46384622999765257,0.43257979600699104
3
  -1,-1,0.38,0.54,0.58,0.7,0.38,0.345,0.19999999999999996,0.525,0.12800000000000003,0.565,0.08,0.7,0.4820793650793651,0.5292195947118973,0.47730440170572996
4
+ -1,-1,0.58,0.68,0.7,0.72,0.58,0.545,0.2533333333333333,0.665,0.156,0.685,0.08199999999999999,0.71,0.6375,0.6523742480687815,0.6370166989443306
Information-Retrieval_evaluation_NanoTouche2020_results.csv CHANGED
@@ -1,3 +1,4 @@
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.46938775510204084,0.8367346938775511,0.9387755102040817,1.0,0.46938775510204084,0.032657982947973084,0.44897959183673464,0.09621881460341672,0.42040816326530606,0.1425551052100505,0.3346938775510204,0.22061476067159091,0.6573129251700679,0.3807140713282222,0.2698119698398041
3
  -1,-1,0.5102040816326531,0.8163265306122449,0.8571428571428571,0.9591836734693877,0.5102040816326531,0.04030730530317779,0.45578231292517,0.10027039527564566,0.4040816326530612,0.14754618693234572,0.3428571428571428,0.2268233238254859,0.6711613216715256,0.3942611497955867,0.28013001290517386
 
 
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.46938775510204084,0.8367346938775511,0.9387755102040817,1.0,0.46938775510204084,0.032657982947973084,0.44897959183673464,0.09621881460341672,0.42040816326530606,0.1425551052100505,0.3346938775510204,0.22061476067159091,0.6573129251700679,0.3807140713282222,0.2698119698398041
3
  -1,-1,0.5102040816326531,0.8163265306122449,0.8571428571428571,0.9591836734693877,0.5102040816326531,0.04030730530317779,0.45578231292517,0.10027039527564566,0.4040816326530612,0.14754618693234572,0.3428571428571428,0.2268233238254859,0.6711613216715256,0.3942611497955867,0.28013001290517386
4
+ -1,-1,0.4489795918367347,0.7755102040816326,0.8979591836734694,0.9795918367346939,0.4489795918367347,0.03398816288797225,0.41496598639455773,0.09117793391499442,0.4326530612244897,0.15321422858378142,0.3591836734693878,0.24000922572748823,0.6308309037900873,0.3959230964031327,0.3023791135389433
NanoBEIR_evaluation_mean_results.csv CHANGED
@@ -1,3 +1,4 @@
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.4053375196232339,0.601287284144427,0.6737519623233909,0.7369230769230769,0.4053375196232339,0.23516034838101724,0.26838304552590264,0.37175942432349296,0.20895447409733128,0.43675267025234743,0.1428226059654631,0.4908354981821823,0.5156608233036803,0.45145275407225244,0.3820046351353431
3
  -1,-1,0.4300156985871272,0.6120251177394034,0.6705494505494506,0.7614756671899527,0.4300156985871272,0.24183652979907766,0.2740345368916797,0.3803900122659796,0.20985243328100472,0.4344459364242849,0.14852747252747253,0.5194490371828588,0.536290187137126,0.46960347357534615,0.39284751373578397
 
 
1
  epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
  -1,-1,0.4053375196232339,0.601287284144427,0.6737519623233909,0.7369230769230769,0.4053375196232339,0.23516034838101724,0.26838304552590264,0.37175942432349296,0.20895447409733128,0.43675267025234743,0.1428226059654631,0.4908354981821823,0.5156608233036803,0.45145275407225244,0.3820046351353431
3
  -1,-1,0.4300156985871272,0.6120251177394034,0.6705494505494506,0.7614756671899527,0.4300156985871272,0.24183652979907766,0.2740345368916797,0.3803900122659796,0.20985243328100472,0.4344459364242849,0.14852747252747253,0.5194490371828588,0.536290187137126,0.46960347357534615,0.39284751373578397
4
+ -1,-1,0.47453689167974883,0.6458084772370486,0.7059968602825746,0.7830455259026687,0.47453689167974883,0.2799399135628483,0.290894819466248,0.42221492034192626,0.22558869701726847,0.4697485434104026,0.15470643642072213,0.536851077391949,0.5754430365552815,0.5060859975895767,0.4381147218048991
README.md CHANGED
@@ -5,231 +5,51 @@ tags:
5
  - feature-extraction
6
  - dense
7
  - generated_from_trainer
8
- - dataset_size:713743
9
  - loss:MultipleNegativesRankingLoss
10
- base_model: thenlper/gte-small
11
  widget:
12
- - source_sentence: 'Abraham Lincoln: Why is the Gettysburg Address so memorable?'
13
  sentences:
14
- - 'Abraham Lincoln: Why is the Gettysburg Address so memorable?'
15
- - What does the Gettysburg Address really mean?
16
- - What is eatalo.com?
17
- - source_sentence: Has the influence of Ancient Carthage in science, math, and society
18
- been underestimated?
19
  sentences:
20
- - How does one earn money online without an investment from home?
21
- - Has the influence of Ancient Carthage in science, math, and society been underestimated?
22
- - Has the influence of the Ancient Etruscans in science and math been underestimated?
23
- - source_sentence: Is there any app that shares charging to others like share it how
24
- we transfer files?
25
  sentences:
26
- - How do you think of Chinese claims that the present Private Arbitration is illegal,
27
- its verdict violates the UNCLOS and is illegal?
28
- - Is there any app that shares charging to others like share it how we transfer
29
- files?
30
- - Are there any platforms that provides end-to-end encryption for file transfer/
31
- sharing?
32
- - source_sentence: Why AAP’s MLA Dinesh Mohaniya has been arrested?
33
  sentences:
34
- - What are your views on the latest sex scandal by AAP MLA Sandeep Kumar?
35
- - What is a dc current? What are some examples?
36
- - Why AAP’s MLA Dinesh Mohaniya has been arrested?
37
- - source_sentence: What is the difference between economic growth and economic development?
38
  sentences:
39
- - How cold can the Gobi Desert get, and how do its average temperatures compare
40
- to the ones in the Simpson Desert?
41
- - the difference between economic growth and economic development is What?
42
- - What is the difference between economic growth and economic development?
43
  pipeline_tag: sentence-similarity
44
  library_name: sentence-transformers
45
- metrics:
46
- - cosine_accuracy@1
47
- - cosine_accuracy@3
48
- - cosine_accuracy@5
49
- - cosine_accuracy@10
50
- - cosine_precision@1
51
- - cosine_precision@3
52
- - cosine_precision@5
53
- - cosine_precision@10
54
- - cosine_recall@1
55
- - cosine_recall@3
56
- - cosine_recall@5
57
- - cosine_recall@10
58
- - cosine_ndcg@10
59
- - cosine_mrr@10
60
- - cosine_map@100
61
- model-index:
62
- - name: SentenceTransformer based on thenlper/gte-small
63
- results:
64
- - task:
65
- type: information-retrieval
66
- name: Information Retrieval
67
- dataset:
68
- name: NanoMSMARCO
69
- type: NanoMSMARCO
70
- metrics:
71
- - type: cosine_accuracy@1
72
- value: 0.28
73
- name: Cosine Accuracy@1
74
- - type: cosine_accuracy@3
75
- value: 0.58
76
- name: Cosine Accuracy@3
77
- - type: cosine_accuracy@5
78
- value: 0.64
79
- name: Cosine Accuracy@5
80
- - type: cosine_accuracy@10
81
- value: 0.72
82
- name: Cosine Accuracy@10
83
- - type: cosine_precision@1
84
- value: 0.28
85
- name: Cosine Precision@1
86
- - type: cosine_precision@3
87
- value: 0.19333333333333333
88
- name: Cosine Precision@3
89
- - type: cosine_precision@5
90
- value: 0.128
91
- name: Cosine Precision@5
92
- - type: cosine_precision@10
93
- value: 0.07200000000000001
94
- name: Cosine Precision@10
95
- - type: cosine_recall@1
96
- value: 0.28
97
- name: Cosine Recall@1
98
- - type: cosine_recall@3
99
- value: 0.58
100
- name: Cosine Recall@3
101
- - type: cosine_recall@5
102
- value: 0.64
103
- name: Cosine Recall@5
104
- - type: cosine_recall@10
105
- value: 0.72
106
- name: Cosine Recall@10
107
- - type: cosine_ndcg@10
108
- value: 0.5075011853031293
109
- name: Cosine Ndcg@10
110
- - type: cosine_mrr@10
111
- value: 0.4386111111111111
112
- name: Cosine Mrr@10
113
- - type: cosine_map@100
114
- value: 0.4533366047009664
115
- name: Cosine Map@100
116
- - task:
117
- type: information-retrieval
118
- name: Information Retrieval
119
- dataset:
120
- name: NanoNQ
121
- type: NanoNQ
122
- metrics:
123
- - type: cosine_accuracy@1
124
- value: 0.32
125
- name: Cosine Accuracy@1
126
- - type: cosine_accuracy@3
127
- value: 0.54
128
- name: Cosine Accuracy@3
129
- - type: cosine_accuracy@5
130
- value: 0.6
131
- name: Cosine Accuracy@5
132
- - type: cosine_accuracy@10
133
- value: 0.66
134
- name: Cosine Accuracy@10
135
- - type: cosine_precision@1
136
- value: 0.32
137
- name: Cosine Precision@1
138
- - type: cosine_precision@3
139
- value: 0.18666666666666665
140
- name: Cosine Precision@3
141
- - type: cosine_precision@5
142
- value: 0.128
143
- name: Cosine Precision@5
144
- - type: cosine_precision@10
145
- value: 0.07
146
- name: Cosine Precision@10
147
- - type: cosine_recall@1
148
- value: 0.3
149
- name: Cosine Recall@1
150
- - type: cosine_recall@3
151
- value: 0.51
152
- name: Cosine Recall@3
153
- - type: cosine_recall@5
154
- value: 0.58
155
- name: Cosine Recall@5
156
- - type: cosine_recall@10
157
- value: 0.64
158
- name: Cosine Recall@10
159
- - type: cosine_ndcg@10
160
- value: 0.48687028758380874
161
- name: Cosine Ndcg@10
162
- - type: cosine_mrr@10
163
- value: 0.4465
164
- name: Cosine Mrr@10
165
- - type: cosine_map@100
166
- value: 0.44172587957864395
167
- name: Cosine Map@100
168
- - task:
169
- type: nano-beir
170
- name: Nano BEIR
171
- dataset:
172
- name: NanoBEIR mean
173
- type: NanoBEIR_mean
174
- metrics:
175
- - type: cosine_accuracy@1
176
- value: 0.30000000000000004
177
- name: Cosine Accuracy@1
178
- - type: cosine_accuracy@3
179
- value: 0.56
180
- name: Cosine Accuracy@3
181
- - type: cosine_accuracy@5
182
- value: 0.62
183
- name: Cosine Accuracy@5
184
- - type: cosine_accuracy@10
185
- value: 0.69
186
- name: Cosine Accuracy@10
187
- - type: cosine_precision@1
188
- value: 0.30000000000000004
189
- name: Cosine Precision@1
190
- - type: cosine_precision@3
191
- value: 0.19
192
- name: Cosine Precision@3
193
- - type: cosine_precision@5
194
- value: 0.128
195
- name: Cosine Precision@5
196
- - type: cosine_precision@10
197
- value: 0.07100000000000001
198
- name: Cosine Precision@10
199
- - type: cosine_recall@1
200
- value: 0.29000000000000004
201
- name: Cosine Recall@1
202
- - type: cosine_recall@3
203
- value: 0.5449999999999999
204
- name: Cosine Recall@3
205
- - type: cosine_recall@5
206
- value: 0.61
207
- name: Cosine Recall@5
208
- - type: cosine_recall@10
209
- value: 0.6799999999999999
210
- name: Cosine Recall@10
211
- - type: cosine_ndcg@10
212
- value: 0.497185736443469
213
- name: Cosine Ndcg@10
214
- - type: cosine_mrr@10
215
- value: 0.4425555555555556
216
- name: Cosine Mrr@10
217
- - type: cosine_map@100
218
- value: 0.44753124213980516
219
- name: Cosine Map@100
220
  ---
221
 
222
- # SentenceTransformer based on thenlper/gte-small
223
 
224
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [thenlper/gte-small](https://huggingface.co/thenlper/gte-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
225
 
226
  ## Model Details
227
 
228
  ### Model Description
229
  - **Model Type:** Sentence Transformer
230
- - **Base model:** [thenlper/gte-small](https://huggingface.co/thenlper/gte-small) <!-- at revision 17e1f347d17fe144873b1201da91788898c639cd -->
231
  - **Maximum Sequence Length:** 128 tokens
232
- - **Output Dimensionality:** 384 dimensions
233
  - **Similarity Function:** Cosine Similarity
234
  <!-- - **Training Dataset:** Unknown -->
235
  <!-- - **Language:** Unknown -->
@@ -246,8 +66,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [t
246
  ```
247
  SentenceTransformer(
248
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
249
- (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
250
- (2): Normalize()
251
  )
252
  ```
253
 
@@ -266,23 +85,23 @@ Then you can load this model and run inference.
266
  from sentence_transformers import SentenceTransformer
267
 
268
  # Download from the 🤗 Hub
269
- model = SentenceTransformer("redis/model-b-structured")
270
  # Run inference
271
  sentences = [
272
- 'What is the difference between economic growth and economic development?',
273
- 'What is the difference between economic growth and economic development?',
274
- 'the difference between economic growth and economic development is What?',
275
  ]
276
  embeddings = model.encode(sentences)
277
  print(embeddings.shape)
278
- # [3, 384]
279
 
280
  # Get the similarity scores for the embeddings
281
  similarities = model.similarity(embeddings, embeddings)
282
  print(similarities)
283
- # tensor([[ 1.0001, 1.0001, -0.0307],
284
- # [ 1.0001, 1.0001, -0.0307],
285
- # [-0.0307, -0.0307, 1.0001]])
286
  ```
287
 
288
  <!--
@@ -309,65 +128,6 @@ You can finetune this model on your own dataset.
309
  *List how the model may foreseeably be misused and address what users ought not to do with the model.*
310
  -->
311
 
312
- ## Evaluation
313
-
314
- ### Metrics
315
-
316
- #### Information Retrieval
317
-
318
- * Datasets: `NanoMSMARCO` and `NanoNQ`
319
- * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
320
-
321
- | Metric | NanoMSMARCO | NanoNQ |
322
- |:--------------------|:------------|:-----------|
323
- | cosine_accuracy@1 | 0.28 | 0.32 |
324
- | cosine_accuracy@3 | 0.58 | 0.54 |
325
- | cosine_accuracy@5 | 0.64 | 0.6 |
326
- | cosine_accuracy@10 | 0.72 | 0.66 |
327
- | cosine_precision@1 | 0.28 | 0.32 |
328
- | cosine_precision@3 | 0.1933 | 0.1867 |
329
- | cosine_precision@5 | 0.128 | 0.128 |
330
- | cosine_precision@10 | 0.072 | 0.07 |
331
- | cosine_recall@1 | 0.28 | 0.3 |
332
- | cosine_recall@3 | 0.58 | 0.51 |
333
- | cosine_recall@5 | 0.64 | 0.58 |
334
- | cosine_recall@10 | 0.72 | 0.64 |
335
- | **cosine_ndcg@10** | **0.5075** | **0.4869** |
336
- | cosine_mrr@10 | 0.4386 | 0.4465 |
337
- | cosine_map@100 | 0.4533 | 0.4417 |
338
-
339
- #### Nano BEIR
340
-
341
- * Dataset: `NanoBEIR_mean`
342
- * Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) with these parameters:
343
- ```json
344
- {
345
- "dataset_names": [
346
- "msmarco",
347
- "nq"
348
- ],
349
- "dataset_id": "lightonai/NanoBEIR-en"
350
- }
351
- ```
352
-
353
- | Metric | Value |
354
- |:--------------------|:-----------|
355
- | cosine_accuracy@1 | 0.3 |
356
- | cosine_accuracy@3 | 0.56 |
357
- | cosine_accuracy@5 | 0.62 |
358
- | cosine_accuracy@10 | 0.69 |
359
- | cosine_precision@1 | 0.3 |
360
- | cosine_precision@3 | 0.19 |
361
- | cosine_precision@5 | 0.128 |
362
- | cosine_precision@10 | 0.071 |
363
- | cosine_recall@1 | 0.29 |
364
- | cosine_recall@3 | 0.545 |
365
- | cosine_recall@5 | 0.61 |
366
- | cosine_recall@10 | 0.68 |
367
- | **cosine_ndcg@10** | **0.4972** |
368
- | cosine_mrr@10 | 0.4426 |
369
- | cosine_map@100 | 0.4475 |
370
-
371
  <!--
372
  ## Bias, Risks and Limitations
373
 
@@ -386,49 +146,23 @@ You can finetune this model on your own dataset.
386
 
387
  #### Unnamed Dataset
388
 
389
- * Size: 713,743 training samples
390
- * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
391
- * Approximate statistics based on the first 1000 samples:
392
- | | anchor | positive | negative |
393
- |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
394
- | type | string | string | string |
395
- | details | <ul><li>min: 6 tokens</li><li>mean: 16.07 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.03 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.81 tokens</li><li>max: 58 tokens</li></ul> |
396
- * Samples:
397
- | anchor | positive | negative |
398
- |:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|
399
- | <code>Which one is better Linux OS? Ubuntu or Mint?</code> | <code>Why do you use Linux Mint?</code> | <code>Which one is not better Linux OS ? Ubuntu or Mint ?</code> |
400
- | <code>What is flow?</code> | <code>What is flow?</code> | <code>What are flow lines?</code> |
401
- | <code>How is Trump planning to get Mexico to pay for his supposed wall?</code> | <code>How is it possible for Donald Trump to force Mexico to pay for the wall?</code> | <code>Why do we connect the positive terminal before the negative terminal to ground in a vehicle battery?</code> |
402
- * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
403
- ```json
404
- {
405
- "scale": 7.0,
406
- "similarity_fct": "cos_sim",
407
- "gather_across_devices": false
408
- }
409
- ```
410
-
411
- ### Evaluation Dataset
412
-
413
- #### Unnamed Dataset
414
-
415
- * Size: 40,000 evaluation samples
416
- * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
417
  * Approximate statistics based on the first 1000 samples:
418
- | | anchor | positive | negative |
419
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
420
  | type | string | string | string |
421
- | details | <ul><li>min: 6 tokens</li><li>mean: 15.52 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.51 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.79 tokens</li><li>max: 69 tokens</li></ul> |
422
  * Samples:
423
- | anchor | positive | negative |
424
- |:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
425
- | <code>Why are all my questions on Quora marked needing improvement?</code> | <code>Why are all my questions immediately being marked as needing improvement?</code> | <code>For a post-graduate student in IIT, is it allowed to take an external scholarship as a top-up to his/her MHRD assistantship?</code> |
426
- | <code>Can blue butter fly needle with vaccum tube be reused? Is it HIV risk? . Heard the needle is too small to be reused . Had blood draw at clinic?</code> | <code>Can blue butter fly needle with vaccum tube be reused? Is it HIV risk? . Heard the needle is too small to be reused . Had blood draw at clinic?</code> | <code>Can blue butter fly needle with vaccum tube be reused not ? Is it HIV risk ? . Heard the needle is too small to be reused . Had blood draw at clinic ?</code> |
427
- | <code>Why do people still believe the world is flat?</code> | <code>Why are there still people who believe the world is flat?</code> | <code>I'm not able to buy Udemy course .it is not accepting mine and my friends debit card.my card can be used for Flipkart .how to purchase now?</code> |
428
  * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
429
  ```json
430
  {
431
- "scale": 7.0,
432
  "similarity_fct": "cos_sim",
433
  "gather_across_devices": false
434
  }
@@ -437,49 +171,36 @@ You can finetune this model on your own dataset.
437
  ### Training Hyperparameters
438
  #### Non-Default Hyperparameters
439
 
440
- - `eval_strategy`: steps
441
- - `per_device_train_batch_size`: 128
442
- - `per_device_eval_batch_size`: 128
443
- - `learning_rate`: 2e-05
444
- - `weight_decay`: 0.0001
445
- - `max_steps`: 5000
446
- - `warmup_ratio`: 0.1
447
  - `fp16`: True
448
- - `dataloader_drop_last`: True
449
- - `dataloader_num_workers`: 1
450
- - `dataloader_prefetch_factor`: 1
451
- - `load_best_model_at_end`: True
452
- - `optim`: adamw_torch
453
- - `ddp_find_unused_parameters`: False
454
- - `push_to_hub`: True
455
- - `hub_model_id`: redis/model-b-structured
456
- - `eval_on_start`: True
457
 
458
  #### All Hyperparameters
459
  <details><summary>Click to expand</summary>
460
 
461
  - `overwrite_output_dir`: False
462
  - `do_predict`: False
463
- - `eval_strategy`: steps
464
  - `prediction_loss_only`: True
465
- - `per_device_train_batch_size`: 128
466
- - `per_device_eval_batch_size`: 128
467
  - `per_gpu_train_batch_size`: None
468
  - `per_gpu_eval_batch_size`: None
469
  - `gradient_accumulation_steps`: 1
470
  - `eval_accumulation_steps`: None
471
  - `torch_empty_cache_steps`: None
472
- - `learning_rate`: 2e-05
473
- - `weight_decay`: 0.0001
474
  - `adam_beta1`: 0.9
475
  - `adam_beta2`: 0.999
476
  - `adam_epsilon`: 1e-08
477
- - `max_grad_norm`: 1.0
478
- - `num_train_epochs`: 3.0
479
- - `max_steps`: 5000
480
  - `lr_scheduler_type`: linear
481
  - `lr_scheduler_kwargs`: {}
482
- - `warmup_ratio`: 0.1
483
  - `warmup_steps`: 0
484
  - `log_level`: passive
485
  - `log_level_replica`: warning
@@ -507,14 +228,14 @@ You can finetune this model on your own dataset.
507
  - `tpu_num_cores`: None
508
  - `tpu_metrics_debug`: False
509
  - `debug`: []
510
- - `dataloader_drop_last`: True
511
- - `dataloader_num_workers`: 1
512
- - `dataloader_prefetch_factor`: 1
513
  - `past_index`: -1
514
  - `disable_tqdm`: False
515
  - `remove_unused_columns`: True
516
  - `label_names`: None
517
- - `load_best_model_at_end`: True
518
  - `ignore_data_skip`: False
519
  - `fsdp`: []
520
  - `fsdp_min_num_params`: 0
@@ -524,23 +245,23 @@ You can finetune this model on your own dataset.
524
  - `parallelism_config`: None
525
  - `deepspeed`: None
526
  - `label_smoothing_factor`: 0.0
527
- - `optim`: adamw_torch
528
  - `optim_args`: None
529
  - `adafactor`: False
530
  - `group_by_length`: False
531
  - `length_column_name`: length
532
  - `project`: huggingface
533
  - `trackio_space_id`: trackio
534
- - `ddp_find_unused_parameters`: False
535
  - `ddp_bucket_cap_mb`: None
536
  - `ddp_broadcast_buffers`: False
537
  - `dataloader_pin_memory`: True
538
  - `dataloader_persistent_workers`: False
539
  - `skip_memory_metrics`: True
540
  - `use_legacy_prediction_loop`: False
541
- - `push_to_hub`: True
542
  - `resume_from_checkpoint`: None
543
- - `hub_model_id`: redis/model-b-structured
544
  - `hub_strategy`: every_save
545
  - `hub_private_repo`: None
546
  - `hub_always_push`: False
@@ -567,43 +288,31 @@ You can finetune this model on your own dataset.
567
  - `neftune_noise_alpha`: None
568
  - `optim_target_modules`: None
569
  - `batch_eval_metrics`: False
570
- - `eval_on_start`: True
571
  - `use_liger_kernel`: False
572
  - `liger_kernel_config`: None
573
  - `eval_use_gather_object`: False
574
  - `average_tokens_across_devices`: True
575
  - `prompts`: None
576
  - `batch_sampler`: batch_sampler
577
- - `multi_dataset_batch_sampler`: proportional
578
  - `router_mapping`: {}
579
  - `learning_rate_mapping`: {}
580
 
581
  </details>
582
 
583
  ### Training Logs
584
- | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
585
- |:------:|:----:|:-------------:|:---------------:|:--------------------------:|:---------------------:|:----------------------------:|
586
- | 0 | 0 | - | 3.6810 | 0.6259 | 0.6583 | 0.6421 |
587
- | 0.0448 | 250 | 2.585 | 0.6156 | 0.5723 | 0.5298 | 0.5511 |
588
- | 0.0897 | 500 | 0.6653 | 0.4478 | 0.6142 | 0.5301 | 0.5722 |
589
- | 0.1345 | 750 | 0.5594 | 0.4191 | 0.5786 | 0.5355 | 0.5570 |
590
- | 0.1793 | 1000 | 0.5315 | 0.4058 | 0.5597 | 0.5291 | 0.5444 |
591
- | 0.2242 | 1250 | 0.5141 | 0.3980 | 0.5490 | 0.5255 | 0.5372 |
592
- | 0.2690 | 1500 | 0.4986 | 0.3916 | 0.5286 | 0.5331 | 0.5308 |
593
- | 0.3138 | 1750 | 0.4909 | 0.3857 | 0.5386 | 0.5297 | 0.5342 |
594
- | 0.3587 | 2000 | 0.4831 | 0.3818 | 0.5175 | 0.5155 | 0.5165 |
595
- | 0.4035 | 2250 | 0.4752 | 0.3785 | 0.5105 | 0.5292 | 0.5198 |
596
- | 0.4484 | 2500 | 0.4707 | 0.3758 | 0.5208 | 0.4986 | 0.5097 |
597
- | 0.4932 | 2750 | 0.4646 | 0.3733 | 0.5182 | 0.5016 | 0.5099 |
598
- | 0.5380 | 3000 | 0.4636 | 0.3713 | 0.5127 | 0.4969 | 0.5048 |
599
- | 0.5829 | 3250 | 0.4602 | 0.3693 | 0.5112 | 0.4869 | 0.4991 |
600
- | 0.6277 | 3500 | 0.4597 | 0.3678 | 0.5170 | 0.5000 | 0.5085 |
601
- | 0.6725 | 3750 | 0.4555 | 0.3665 | 0.5127 | 0.4899 | 0.5013 |
602
- | 0.7174 | 4000 | 0.4541 | 0.3661 | 0.5130 | 0.4869 | 0.5000 |
603
- | 0.7622 | 4250 | 0.4528 | 0.3649 | 0.5078 | 0.4887 | 0.4982 |
604
- | 0.8070 | 4500 | 0.4495 | 0.3643 | 0.5073 | 0.4867 | 0.4970 |
605
- | 0.8519 | 4750 | 0.4524 | 0.3640 | 0.5049 | 0.4875 | 0.4962 |
606
- | 0.8967 | 5000 | 0.4516 | 0.3637 | 0.5075 | 0.4869 | 0.4972 |
607
 
608
 
609
  ### Framework Versions
@@ -612,7 +321,7 @@ You can finetune this model on your own dataset.
612
  - Transformers: 4.57.3
613
  - PyTorch: 2.9.1+cu128
614
  - Accelerate: 1.12.0
615
- - Datasets: 2.21.0
616
  - Tokenizers: 0.22.1
617
 
618
  ## Citation
 
5
  - feature-extraction
6
  - dense
7
  - generated_from_trainer
8
+ - dataset_size:100000
9
  - loss:MultipleNegativesRankingLoss
10
+ base_model: prajjwal1/bert-small
11
  widget:
12
+ - source_sentence: How do I calculate IQ?
13
  sentences:
14
+ - What is the easiest way to know my IQ?
15
+ - How do I calculate not IQ ?
16
+ - What are some creative and innovative business ideas with less investment in India?
17
+ - source_sentence: How can I learn martial arts in my home?
 
18
  sentences:
19
+ - How can I learn martial arts by myself?
20
+ - What are the advantages and disadvantages of investing in gold?
21
+ - Can people see that I have looked at their pictures on instagram if I am not following
22
+ them?
23
+ - source_sentence: When Enterprise picks you up do you have to take them back?
24
  sentences:
25
+ - Are there any software Training institute in Tuticorin?
26
+ - When Enterprise picks you up do you have to take them back?
27
+ - When Enterprise picks you up do them have to take youback?
28
+ - source_sentence: What are some non-capital goods?
 
 
 
29
  sentences:
30
+ - What are capital goods?
31
+ - How is the value of [math]\pi[/math] calculated?
32
+ - What are some non-capital goods?
33
+ - source_sentence: What is the QuickBooks technical support phone number in New York?
34
  sentences:
35
+ - What caused the Great Depression?
36
+ - Can I apply for PR in Canada?
37
+ - Which is the best QuickBooks Hosting Support Number in New York?
 
38
  pipeline_tag: sentence-similarity
39
  library_name: sentence-transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  ---
41
 
42
+ # SentenceTransformer based on prajjwal1/bert-small
43
 
44
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small). It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
45
 
46
  ## Model Details
47
 
48
  ### Model Description
49
  - **Model Type:** Sentence Transformer
50
+ - **Base model:** [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small) <!-- at revision 0ec5f86f27c1a77d704439db5e01c307ea11b9d4 -->
51
  - **Maximum Sequence Length:** 128 tokens
52
+ - **Output Dimensionality:** 512 dimensions
53
  - **Similarity Function:** Cosine Similarity
54
  <!-- - **Training Dataset:** Unknown -->
55
  <!-- - **Language:** Unknown -->
 
66
  ```
67
  SentenceTransformer(
68
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
69
+ (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
 
70
  )
71
  ```
72
 
 
85
  from sentence_transformers import SentenceTransformer
86
 
87
  # Download from the 🤗 Hub
88
+ model = SentenceTransformer("sentence_transformers_model_id")
89
  # Run inference
90
  sentences = [
91
+ 'What is the QuickBooks technical support phone number in New York?',
92
+ 'Which is the best QuickBooks Hosting Support Number in New York?',
93
+ 'Can I apply for PR in Canada?',
94
  ]
95
  embeddings = model.encode(sentences)
96
  print(embeddings.shape)
97
+ # [3, 512]
98
 
99
  # Get the similarity scores for the embeddings
100
  similarities = model.similarity(embeddings, embeddings)
101
  print(similarities)
102
+ # tensor([[1.0000, 0.8563, 0.0594],
103
+ # [0.8563, 1.0000, 0.1245],
104
+ # [0.0594, 0.1245, 1.0000]])
105
  ```
106
 
107
  <!--
 
128
  *List how the model may foreseeably be misused and address what users ought not to do with the model.*
129
  -->
130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
  <!--
132
  ## Bias, Risks and Limitations
133
 
 
146
 
147
  #### Unnamed Dataset
148
 
149
+ * Size: 100,000 training samples
150
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
  * Approximate statistics based on the first 1000 samples:
152
+ | | sentence_0 | sentence_1 | sentence_2 |
153
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
154
  | type | string | string | string |
155
+ | details | <ul><li>min: 6 tokens</li><li>mean: 15.79 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.68 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.37 tokens</li><li>max: 67 tokens</li></ul> |
156
  * Samples:
157
+ | sentence_0 | sentence_1 | sentence_2 |
158
+ |:-----------------------------------------------------------------|:-----------------------------------------------------------------|:----------------------------------------------------------------------------------|
159
+ | <code>Is masturbating bad for boys?</code> | <code>Is masturbating bad for boys?</code> | <code>How harmful or unhealthy is masturbation?</code> |
160
+ | <code>Does a train engine move in reverse?</code> | <code>Does a train engine move in reverse?</code> | <code>Time moves forward, not in reverse. Doesn't that make time a vector?</code> |
161
+ | <code>What is the most badass thing anyone has ever done?</code> | <code>What is the most badass thing anyone has ever done?</code> | <code>anyone is the most badass thing Whathas ever done?</code> |
162
  * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
163
  ```json
164
  {
165
+ "scale": 20.0,
166
  "similarity_fct": "cos_sim",
167
  "gather_across_devices": false
168
  }
 
171
  ### Training Hyperparameters
172
  #### Non-Default Hyperparameters
173
 
174
+ - `per_device_train_batch_size`: 64
175
+ - `per_device_eval_batch_size`: 64
 
 
 
 
 
176
  - `fp16`: True
177
+ - `multi_dataset_batch_sampler`: round_robin
 
 
 
 
 
 
 
 
178
 
179
  #### All Hyperparameters
180
  <details><summary>Click to expand</summary>
181
 
182
  - `overwrite_output_dir`: False
183
  - `do_predict`: False
184
+ - `eval_strategy`: no
185
  - `prediction_loss_only`: True
186
+ - `per_device_train_batch_size`: 64
187
+ - `per_device_eval_batch_size`: 64
188
  - `per_gpu_train_batch_size`: None
189
  - `per_gpu_eval_batch_size`: None
190
  - `gradient_accumulation_steps`: 1
191
  - `eval_accumulation_steps`: None
192
  - `torch_empty_cache_steps`: None
193
+ - `learning_rate`: 5e-05
194
+ - `weight_decay`: 0.0
195
  - `adam_beta1`: 0.9
196
  - `adam_beta2`: 0.999
197
  - `adam_epsilon`: 1e-08
198
+ - `max_grad_norm`: 1
199
+ - `num_train_epochs`: 3
200
+ - `max_steps`: -1
201
  - `lr_scheduler_type`: linear
202
  - `lr_scheduler_kwargs`: {}
203
+ - `warmup_ratio`: 0.0
204
  - `warmup_steps`: 0
205
  - `log_level`: passive
206
  - `log_level_replica`: warning
 
228
  - `tpu_num_cores`: None
229
  - `tpu_metrics_debug`: False
230
  - `debug`: []
231
+ - `dataloader_drop_last`: False
232
+ - `dataloader_num_workers`: 0
233
+ - `dataloader_prefetch_factor`: None
234
  - `past_index`: -1
235
  - `disable_tqdm`: False
236
  - `remove_unused_columns`: True
237
  - `label_names`: None
238
+ - `load_best_model_at_end`: False
239
  - `ignore_data_skip`: False
240
  - `fsdp`: []
241
  - `fsdp_min_num_params`: 0
 
245
  - `parallelism_config`: None
246
  - `deepspeed`: None
247
  - `label_smoothing_factor`: 0.0
248
+ - `optim`: adamw_torch_fused
249
  - `optim_args`: None
250
  - `adafactor`: False
251
  - `group_by_length`: False
252
  - `length_column_name`: length
253
  - `project`: huggingface
254
  - `trackio_space_id`: trackio
255
+ - `ddp_find_unused_parameters`: None
256
  - `ddp_bucket_cap_mb`: None
257
  - `ddp_broadcast_buffers`: False
258
  - `dataloader_pin_memory`: True
259
  - `dataloader_persistent_workers`: False
260
  - `skip_memory_metrics`: True
261
  - `use_legacy_prediction_loop`: False
262
+ - `push_to_hub`: False
263
  - `resume_from_checkpoint`: None
264
+ - `hub_model_id`: None
265
  - `hub_strategy`: every_save
266
  - `hub_private_repo`: None
267
  - `hub_always_push`: False
 
288
  - `neftune_noise_alpha`: None
289
  - `optim_target_modules`: None
290
  - `batch_eval_metrics`: False
291
+ - `eval_on_start`: False
292
  - `use_liger_kernel`: False
293
  - `liger_kernel_config`: None
294
  - `eval_use_gather_object`: False
295
  - `average_tokens_across_devices`: True
296
  - `prompts`: None
297
  - `batch_sampler`: batch_sampler
298
+ - `multi_dataset_batch_sampler`: round_robin
299
  - `router_mapping`: {}
300
  - `learning_rate_mapping`: {}
301
 
302
  </details>
303
 
304
  ### Training Logs
305
+ | Epoch | Step | Training Loss |
306
+ |:------:|:----:|:-------------:|
307
+ | 0.3199 | 500 | 0.4294 |
308
+ | 0.6398 | 1000 | 0.1268 |
309
+ | 0.9597 | 1500 | 0.1 |
310
+ | 1.2796 | 2000 | 0.0792 |
311
+ | 1.5995 | 2500 | 0.0706 |
312
+ | 1.9194 | 3000 | 0.0687 |
313
+ | 2.2393 | 3500 | 0.0584 |
314
+ | 2.5592 | 4000 | 0.057 |
315
+ | 2.8791 | 4500 | 0.0581 |
 
 
 
 
 
 
 
 
 
 
 
 
316
 
317
 
318
  ### Framework Versions
 
321
  - Transformers: 4.57.3
322
  - PyTorch: 2.9.1+cu128
323
  - Accelerate: 1.12.0
324
+ - Datasets: 4.4.2
325
  - Tokenizers: 0.22.1
326
 
327
  ## Citation
config.json CHANGED
@@ -1,24 +1,45 @@
1
  {
2
  "architectures": [
3
- "BertModel"
4
  ],
5
- "attention_probs_dropout_prob": 0.1,
6
- "classifier_dropout": null,
 
 
 
 
 
 
 
 
7
  "dtype": "float32",
8
- "hidden_act": "gelu",
9
- "hidden_dropout_prob": 0.1,
10
- "hidden_size": 384,
 
 
 
 
 
11
  "initializer_range": 0.02,
12
- "intermediate_size": 1536,
13
- "layer_norm_eps": 1e-12,
14
- "max_position_embeddings": 512,
15
- "model_type": "bert",
 
 
 
 
 
 
16
  "num_attention_heads": 12,
17
- "num_hidden_layers": 12,
18
- "pad_token_id": 0,
19
  "position_embedding_type": "absolute",
 
 
 
 
20
  "transformers_version": "4.57.3",
21
- "type_vocab_size": 2,
22
- "use_cache": true,
23
- "vocab_size": 30522
24
  }
 
1
  {
2
  "architectures": [
3
+ "ModernBertModel"
4
  ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 50281,
8
+ "classifier_activation": "gelu",
9
+ "classifier_bias": false,
10
+ "classifier_dropout": 0.0,
11
+ "classifier_pooling": "mean",
12
+ "cls_token_id": 50281,
13
+ "decoder_bias": true,
14
+ "deterministic_flash_attn": false,
15
  "dtype": "float32",
16
+ "embedding_dropout": 0.0,
17
+ "eos_token_id": 50282,
18
+ "global_attn_every_n_layers": 3,
19
+ "global_rope_theta": 160000.0,
20
+ "gradient_checkpointing": false,
21
+ "hidden_activation": "gelu",
22
+ "hidden_size": 768,
23
+ "initializer_cutoff_factor": 2.0,
24
  "initializer_range": 0.02,
25
+ "intermediate_size": 1152,
26
+ "layer_norm_eps": 1e-05,
27
+ "local_attention": 128,
28
+ "local_rope_theta": 10000.0,
29
+ "max_position_embeddings": 8192,
30
+ "mlp_bias": false,
31
+ "mlp_dropout": 0.0,
32
+ "model_type": "modernbert",
33
+ "norm_bias": false,
34
+ "norm_eps": 1e-05,
35
  "num_attention_heads": 12,
36
+ "num_hidden_layers": 22,
37
+ "pad_token_id": 50283,
38
  "position_embedding_type": "absolute",
39
+ "repad_logits_with_grad": false,
40
+ "sep_token_id": 50282,
41
+ "sparse_pred_ignore_index": -100,
42
+ "sparse_prediction": false,
43
  "transformers_version": "4.57.3",
44
+ "vocab_size": 50368
 
 
45
  }
eval/Information-Retrieval_evaluation_NanoMSMARCO_results.csv CHANGED
@@ -62,3 +62,24 @@ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accurac
62
  0.8070301291248206,4500,0.28,0.58,0.64,0.72,0.28,0.28,0.19333333333333333,0.58,0.128,0.64,0.07200000000000001,0.72,0.4383888888888889,0.5072618819162075,0.45318728603379055
63
  0.8518651362984218,4750,0.28,0.58,0.64,0.72,0.28,0.28,0.19333333333333333,0.58,0.128,0.64,0.07200000000000001,0.72,0.4353333333333333,0.5049319844672133,0.4499328092290969
64
  0.896700143472023,5000,0.28,0.58,0.64,0.72,0.28,0.28,0.19333333333333333,0.58,0.128,0.64,0.07200000000000001,0.72,0.4386111111111111,0.5075011853031293,0.4533366047009664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  0.8070301291248206,4500,0.28,0.58,0.64,0.72,0.28,0.28,0.19333333333333333,0.58,0.128,0.64,0.07200000000000001,0.72,0.4383888888888889,0.5072618819162075,0.45318728603379055
63
  0.8518651362984218,4750,0.28,0.58,0.64,0.72,0.28,0.28,0.19333333333333333,0.58,0.128,0.64,0.07200000000000001,0.72,0.4353333333333333,0.5049319844672133,0.4499328092290969
64
  0.896700143472023,5000,0.28,0.58,0.64,0.72,0.28,0.28,0.19333333333333333,0.58,0.128,0.64,0.07200000000000001,0.72,0.4386111111111111,0.5075011853031293,0.4533366047009664
65
+ 0,0,0.44,0.72,0.76,0.86,0.44,0.44,0.24,0.72,0.15200000000000002,0.76,0.08599999999999998,0.86,0.5872222222222222,0.6530251712549636,0.5942230199326107
66
+ 0.04483500717360115,250,0.5,0.66,0.74,0.86,0.5,0.5,0.22,0.66,0.14800000000000002,0.74,0.08599999999999998,0.86,0.6009444444444444,0.6614885369108103,0.6057446524064171
67
+ 0.0896700143472023,500,0.38,0.64,0.7,0.84,0.38,0.38,0.21333333333333332,0.64,0.14,0.7,0.08399999999999999,0.84,0.5303571428571429,0.6042167983758794,0.5350048266983858
68
+ 0.13450502152080343,750,0.34,0.62,0.72,0.84,0.34,0.34,0.20666666666666664,0.62,0.14400000000000002,0.72,0.08399999999999999,0.84,0.4998253968253968,0.5818862869894319,0.5054932208877442
69
+ 0.1793400286944046,1000,0.36,0.64,0.74,0.84,0.36,0.36,0.21333333333333332,0.64,0.14800000000000002,0.74,0.08399999999999999,0.84,0.520079365079365,0.5975989120072726,0.5259964429127448
70
+ 0.22417503586800575,1250,0.38,0.6,0.7,0.82,0.38,0.38,0.2,0.6,0.14,0.7,0.08199999999999999,0.82,0.5175714285714286,0.5900845581022193,0.5253970322872762
71
+ 0.26901004304160686,1500,0.38,0.6,0.74,0.88,0.38,0.38,0.2,0.6,0.14800000000000002,0.74,0.08799999999999997,0.88,0.5306904761904763,0.6137718247368406,0.5338962921488117
72
+ 0.31384505021520803,1750,0.44,0.64,0.72,0.82,0.44,0.44,0.21333333333333332,0.64,0.14400000000000002,0.72,0.08199999999999999,0.82,0.5582380952380952,0.6210313401123215,0.5661495407150169
73
+ 0.3586800573888092,2000,0.42,0.62,0.74,0.84,0.42,0.42,0.20666666666666667,0.62,0.14800000000000002,0.74,0.08399999999999999,0.84,0.5431111111111111,0.6139286759157707,0.5496822129079311
74
+ 0.4035150645624103,2250,0.42,0.64,0.72,0.86,0.42,0.42,0.21333333333333332,0.64,0.14400000000000002,0.72,0.08599999999999998,0.86,0.5545238095238095,0.6274703296032564,0.5598875379006958
75
+ 0.4483500717360115,2500,0.4,0.64,0.7,0.84,0.4,0.4,0.21333333333333332,0.64,0.14,0.7,0.08399999999999999,0.84,0.5326269841269842,0.6059110266137139,0.5390528582528582
76
+ 0.4931850789096126,2750,0.4,0.6,0.7,0.84,0.4,0.4,0.2,0.6,0.14,0.7,0.08399999999999999,0.84,0.5269603174603174,0.6010982937060065,0.5333106058525309
77
+ 0.5380200860832137,3000,0.38,0.62,0.68,0.8,0.38,0.38,0.20666666666666667,0.62,0.136,0.68,0.08,0.8,0.5127698412698413,0.5815761098213873,0.5217435726816532
78
+ 0.582855093256815,3250,0.38,0.62,0.68,0.84,0.38,0.38,0.20666666666666667,0.62,0.136,0.68,0.08399999999999999,0.84,0.5195714285714285,0.5959424630497384,0.5261366864130023
79
+ 0.6276901004304161,3500,0.34,0.62,0.68,0.84,0.34,0.34,0.20666666666666667,0.62,0.136,0.68,0.08399999999999999,0.84,0.5000238095238095,0.5817461333361641,0.506881638131638
80
+ 0.6725251076040172,3750,0.38,0.54,0.68,0.82,0.38,0.38,0.18,0.54,0.136,0.68,0.08199999999999999,0.82,0.4990238095238096,0.574449934686088,0.5065894537036111
81
+ 0.7173601147776184,4000,0.36,0.56,0.68,0.84,0.36,0.36,0.18666666666666668,0.56,0.136,0.68,0.08399999999999999,0.84,0.49754761904761907,0.5783298901538331,0.5039462424830071
82
+ 0.7621951219512195,4250,0.38,0.54,0.68,0.8,0.38,0.38,0.18,0.54,0.136,0.68,0.08,0.8,0.4962698412698412,0.5679224634618015,0.5047910892580143
83
+ 0.8070301291248206,4500,0.38,0.54,0.68,0.8,0.38,0.38,0.18,0.54,0.136,0.68,0.08,0.8,0.49724603174603177,0.5689079415466521,0.5057280863753186
84
+ 0.8518651362984218,4750,0.38,0.54,0.68,0.8,0.38,0.38,0.18,0.54,0.136,0.68,0.08,0.8,0.49702380952380953,0.5686686381597302,0.5062534467729701
85
+ 0.896700143472023,5000,0.38,0.54,0.68,0.8,0.38,0.38,0.18,0.54,0.136,0.68,0.08,0.8,0.49702380952380953,0.5686686381597302,0.5063338862610184
eval/Information-Retrieval_evaluation_NanoNQ_results.csv CHANGED
@@ -62,3 +62,24 @@ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accurac
62
  0.8070301291248206,4500,0.34,0.54,0.6,0.66,0.34,0.31,0.18666666666666665,0.51,0.128,0.58,0.07,0.64,0.4526904761904762,0.4867145189304679,0.4396658900478081
63
  0.8518651362984218,4750,0.32,0.54,0.62,0.66,0.32,0.3,0.18666666666666665,0.51,0.132,0.6,0.07,0.64,0.4471666666666667,0.48748319998633916,0.44239180468060907
64
  0.896700143472023,5000,0.32,0.54,0.6,0.66,0.32,0.3,0.18666666666666665,0.51,0.128,0.58,0.07,0.64,0.4465,0.48687028758380874,0.44172587957864395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  0.8070301291248206,4500,0.34,0.54,0.6,0.66,0.34,0.31,0.18666666666666665,0.51,0.128,0.58,0.07,0.64,0.4526904761904762,0.4867145189304679,0.4396658900478081
63
  0.8518651362984218,4750,0.32,0.54,0.62,0.66,0.32,0.3,0.18666666666666665,0.51,0.132,0.6,0.07,0.64,0.4471666666666667,0.48748319998633916,0.44239180468060907
64
  0.896700143472023,5000,0.32,0.54,0.6,0.66,0.32,0.3,0.18666666666666665,0.51,0.128,0.58,0.07,0.64,0.4465,0.48687028758380874,0.44172587957864395
65
+ 0,0,0.52,0.7,0.78,0.84,0.52,0.49,0.2333333333333333,0.65,0.15600000000000003,0.73,0.08999999999999998,0.8,0.6295238095238095,0.655180139603386,0.6050874426120327
66
+ 0.04483500717360115,250,0.42,0.58,0.64,0.7,0.42,0.4,0.2,0.56,0.136,0.62,0.07400000000000001,0.67,0.5126666666666666,0.5428573559072695,0.5042166330920687
67
+ 0.0896700143472023,500,0.38,0.46,0.5,0.52,0.38,0.36,0.16,0.45,0.10800000000000001,0.5,0.05600000000000001,0.52,0.42533333333333334,0.4457898552989127,0.42706306291127477
68
+ 0.13450502152080343,750,0.44,0.54,0.56,0.6,0.44,0.43,0.18666666666666665,0.53,0.11600000000000002,0.54,0.06400000000000002,0.59,0.49404761904761896,0.5159570908086976,0.4965777871381774
69
+ 0.1793400286944046,1000,0.48,0.6,0.64,0.66,0.48,0.46,0.20666666666666664,0.56,0.136,0.61,0.07,0.63,0.5485238095238095,0.5594855215148441,0.5393816157072532
70
+ 0.22417503586800575,1250,0.36,0.48,0.5,0.54,0.36,0.36,0.16,0.46,0.10800000000000001,0.5,0.05800000000000001,0.54,0.4263809523809523,0.454425603688531,0.4335228238127278
71
+ 0.26901004304160686,1500,0.5,0.56,0.62,0.68,0.5,0.47,0.19333333333333333,0.53,0.136,0.6,0.07600000000000001,0.67,0.5526666666666666,0.5728784984088857,0.5441837282873221
72
+ 0.31384505021520803,1750,0.48,0.6,0.62,0.68,0.48,0.44,0.2133333333333333,0.57,0.132,0.59,0.07400000000000001,0.66,0.546,0.5608375815980038,0.5290146476027398
73
+ 0.3586800573888092,2000,0.44,0.6,0.62,0.66,0.44,0.41,0.2133333333333333,0.57,0.132,0.59,0.07200000000000001,0.64,0.5306666666666667,0.5473731717209221,0.5205315285350001
74
+ 0.4035150645624103,2250,0.46,0.62,0.62,0.7,0.46,0.42,0.21999999999999997,0.59,0.132,0.59,0.076,0.68,0.5480555555555555,0.5664919007358439,0.5325330170606462
75
+ 0.4483500717360115,2500,0.42,0.58,0.62,0.68,0.42,0.38,0.20666666666666664,0.55,0.132,0.59,0.07200000000000001,0.65,0.5171904761904762,0.5349102193796205,0.49767561740605765
76
+ 0.4931850789096126,2750,0.42,0.58,0.62,0.66,0.42,0.38,0.20666666666666664,0.56,0.132,0.59,0.07,0.63,0.5128571428571429,0.5305417572323692,0.500674495141964
77
+ 0.5380200860832137,3000,0.36,0.58,0.62,0.66,0.36,0.33,0.20666666666666664,0.55,0.132,0.59,0.07,0.63,0.47535714285714287,0.5056776748073686,0.46917147086883276
78
+ 0.582855093256815,3250,0.4,0.56,0.6,0.66,0.4,0.36,0.2,0.54,0.128,0.57,0.07200000000000001,0.64,0.4951904761904762,0.5203342116934336,0.4831348147040378
79
+ 0.6276901004304161,3500,0.4,0.58,0.62,0.66,0.4,0.36,0.20666666666666664,0.55,0.132,0.59,0.07,0.63,0.4978888888888888,0.5184828560998758,0.4866964965155002
80
+ 0.6725251076040172,3750,0.38,0.56,0.6,0.66,0.38,0.35,0.2,0.53,0.12800000000000003,0.57,0.07,0.63,0.477047619047619,0.5051560366496759,0.46717407724278326
81
+ 0.7173601147776184,4000,0.4,0.58,0.62,0.66,0.4,0.37,0.20666666666666664,0.55,0.132,0.59,0.07,0.63,0.4948333333333333,0.519008475868834,0.4862411991234443
82
+ 0.7621951219512195,4250,0.38,0.54,0.6,0.64,0.38,0.35,0.19333333333333333,0.51,0.12800000000000003,0.57,0.068,0.61,0.47083333333333327,0.49587988697564983,0.4624349223748537
83
+ 0.8070301291248206,4500,0.4,0.56,0.6,0.66,0.4,0.36,0.2,0.53,0.12800000000000003,0.57,0.07,0.63,0.4851904761904761,0.5067916971640994,0.4667389293530859
84
+ 0.8518651362984218,4750,0.4,0.56,0.62,0.66,0.4,0.36,0.2,0.53,0.132,0.59,0.07,0.63,0.4935238095238095,0.5135182747262652,0.4760970118108672
85
+ 0.896700143472023,5000,0.4,0.56,0.6,0.66,0.4,0.36,0.2,0.54,0.12800000000000003,0.58,0.07,0.63,0.48852380952380947,0.5105228253020769,0.4728184565167554
eval/NanoBEIR_evaluation_mean_results.csv CHANGED
@@ -62,3 +62,24 @@ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accurac
62
  0.8070301291248206,4500,0.31000000000000005,0.56,0.62,0.69,0.31000000000000005,0.29500000000000004,0.19,0.5449999999999999,0.128,0.61,0.07100000000000001,0.6799999999999999,0.44553968253968257,0.4969882004233377,0.4464265880407993
63
  0.8518651362984218,4750,0.30000000000000004,0.56,0.63,0.69,0.30000000000000004,0.29000000000000004,0.19,0.5449999999999999,0.13,0.62,0.07100000000000001,0.6799999999999999,0.44125000000000003,0.49620759222677624,0.446162306954853
64
  0.896700143472023,5000,0.30000000000000004,0.56,0.62,0.69,0.30000000000000004,0.29000000000000004,0.19,0.5449999999999999,0.128,0.61,0.07100000000000001,0.6799999999999999,0.4425555555555556,0.497185736443469,0.44753124213980516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  0.8070301291248206,4500,0.31000000000000005,0.56,0.62,0.69,0.31000000000000005,0.29500000000000004,0.19,0.5449999999999999,0.128,0.61,0.07100000000000001,0.6799999999999999,0.44553968253968257,0.4969882004233377,0.4464265880407993
63
  0.8518651362984218,4750,0.30000000000000004,0.56,0.63,0.69,0.30000000000000004,0.29000000000000004,0.19,0.5449999999999999,0.13,0.62,0.07100000000000001,0.6799999999999999,0.44125000000000003,0.49620759222677624,0.446162306954853
64
  0.896700143472023,5000,0.30000000000000004,0.56,0.62,0.69,0.30000000000000004,0.29000000000000004,0.19,0.5449999999999999,0.128,0.61,0.07100000000000001,0.6799999999999999,0.4425555555555556,0.497185736443469,0.44753124213980516
65
+ 0,0,0.48,0.71,0.77,0.85,0.48,0.46499999999999997,0.23666666666666664,0.685,0.15400000000000003,0.745,0.08799999999999998,0.8300000000000001,0.6083730158730158,0.6541026554291748,0.5996552312723218
66
+ 0.04483500717360115,250,0.45999999999999996,0.62,0.69,0.78,0.45999999999999996,0.45,0.21000000000000002,0.6100000000000001,0.14200000000000002,0.6799999999999999,0.07999999999999999,0.765,0.5568055555555556,0.60217294640904,0.5549806427492429
67
+ 0.0896700143472023,500,0.38,0.55,0.6,0.6799999999999999,0.38,0.37,0.18666666666666665,0.545,0.12400000000000001,0.6,0.07,0.6799999999999999,0.4778452380952381,0.525003326837396,0.4810339448048303
68
+ 0.13450502152080343,750,0.39,0.5800000000000001,0.64,0.72,0.39,0.385,0.19666666666666666,0.575,0.13,0.63,0.07400000000000001,0.715,0.4969365079365079,0.5489216888990647,0.5010355040129608
69
+ 0.1793400286944046,1000,0.42,0.62,0.69,0.75,0.42,0.41000000000000003,0.20999999999999996,0.6000000000000001,0.14200000000000002,0.675,0.077,0.735,0.5343015873015873,0.5785422167610583,0.5326890293099991
70
+ 0.22417503586800575,1250,0.37,0.54,0.6,0.6799999999999999,0.37,0.37,0.18,0.53,0.12400000000000001,0.6,0.07,0.6799999999999999,0.47197619047619044,0.5222550808953752,0.479459928050002
71
+ 0.26901004304160686,1500,0.44,0.5800000000000001,0.6799999999999999,0.78,0.44,0.425,0.19666666666666666,0.565,0.14200000000000002,0.6699999999999999,0.08199999999999999,0.775,0.5416785714285715,0.5933251615728632,0.5390400102180669
72
+ 0.31384505021520803,1750,0.45999999999999996,0.62,0.6699999999999999,0.75,0.45999999999999996,0.44,0.21333333333333332,0.605,0.138,0.655,0.078,0.74,0.5521190476190476,0.5909344608551627,0.5475820941588783
73
+ 0.3586800573888092,2000,0.43,0.61,0.6799999999999999,0.75,0.43,0.415,0.20999999999999996,0.595,0.14,0.665,0.078,0.74,0.536888888888889,0.5806509238183464,0.5351068707214656
74
+ 0.4035150645624103,2250,0.44,0.63,0.6699999999999999,0.78,0.44,0.42,0.21666666666666665,0.615,0.138,0.655,0.08099999999999999,0.77,0.5512896825396825,0.5969811151695501,0.546210277480671
75
+ 0.4483500717360115,2500,0.41000000000000003,0.61,0.6599999999999999,0.76,0.41000000000000003,0.39,0.20999999999999996,0.595,0.136,0.645,0.078,0.745,0.5249087301587302,0.5704106229966672,0.518364237829458
76
+ 0.4931850789096126,2750,0.41000000000000003,0.59,0.6599999999999999,0.75,0.41000000000000003,0.39,0.2033333333333333,0.5800000000000001,0.136,0.645,0.077,0.735,0.5199087301587302,0.5658200254691879,0.5169925504972475
77
+ 0.5380200860832137,3000,0.37,0.6,0.65,0.73,0.37,0.355,0.20666666666666667,0.585,0.134,0.635,0.07500000000000001,0.7150000000000001,0.4940634920634921,0.5436268923143779,0.49545752177524294
78
+ 0.582855093256815,3250,0.39,0.5900000000000001,0.64,0.75,0.39,0.37,0.20333333333333334,0.5800000000000001,0.132,0.625,0.078,0.74,0.5073809523809523,0.558138337371586,0.5046357505585201
79
+ 0.6276901004304161,3500,0.37,0.6,0.65,0.75,0.37,0.35,0.20666666666666667,0.585,0.134,0.635,0.077,0.735,0.4989563492063492,0.5501144947180199,0.4967890673235691
80
+ 0.6725251076040172,3750,0.38,0.55,0.64,0.74,0.38,0.365,0.19,0.535,0.132,0.625,0.076,0.725,0.4880357142857143,0.5398029856678819,0.48688176547319717
81
+ 0.7173601147776184,4000,0.38,0.5700000000000001,0.65,0.75,0.38,0.365,0.19666666666666666,0.555,0.134,0.635,0.077,0.735,0.4961904761904762,0.5486691830113335,0.4950937208032257
82
+ 0.7621951219512195,4250,0.38,0.54,0.64,0.72,0.38,0.365,0.18666666666666665,0.525,0.132,0.625,0.07400000000000001,0.7050000000000001,0.4835515873015872,0.5319011752187257,0.48361300581643396
83
+ 0.8070301291248206,4500,0.39,0.55,0.64,0.73,0.39,0.37,0.19,0.535,0.132,0.625,0.07500000000000001,0.7150000000000001,0.4912182539682539,0.5378498193553758,0.4862335078642023
84
+ 0.8518651362984218,4750,0.39,0.55,0.65,0.73,0.39,0.37,0.19,0.535,0.134,0.635,0.07500000000000001,0.7150000000000001,0.4952738095238095,0.5410934564429977,0.4911752292919187
85
+ 0.896700143472023,5000,0.39,0.55,0.64,0.73,0.39,0.37,0.19,0.54,0.132,0.63,0.07500000000000001,0.7150000000000001,0.4927738095238095,0.5395957317309036,0.48957617138888687
final_metrics.json CHANGED
@@ -1,231 +1,231 @@
1
  {
2
  "nano_beir": {
3
- "NanoClimateFEVER_cosine_accuracy@1": 0.1,
4
- "NanoClimateFEVER_cosine_accuracy@3": 0.26,
5
- "NanoClimateFEVER_cosine_accuracy@5": 0.34,
6
- "NanoClimateFEVER_cosine_accuracy@10": 0.6,
7
- "NanoClimateFEVER_cosine_precision@1": 0.1,
8
- "NanoClimateFEVER_cosine_precision@3": 0.08666666666666666,
9
- "NanoClimateFEVER_cosine_precision@5": 0.07200000000000001,
10
- "NanoClimateFEVER_cosine_precision@10": 0.066,
11
- "NanoClimateFEVER_cosine_recall@1": 0.04666666666666666,
12
- "NanoClimateFEVER_cosine_recall@3": 0.12399999999999999,
13
- "NanoClimateFEVER_cosine_recall@5": 0.16899999999999998,
14
- "NanoClimateFEVER_cosine_recall@10": 0.2973333333333333,
15
- "NanoClimateFEVER_cosine_ndcg@10": 0.1853895398720514,
16
- "NanoClimateFEVER_cosine_mrr@10": 0.21938095238095237,
17
- "NanoClimateFEVER_cosine_map@100": 0.1267197025068282,
18
- "NanoDBPedia_cosine_accuracy@1": 0.68,
19
- "NanoDBPedia_cosine_accuracy@3": 0.8,
20
- "NanoDBPedia_cosine_accuracy@5": 0.86,
21
- "NanoDBPedia_cosine_accuracy@10": 0.88,
22
- "NanoDBPedia_cosine_precision@1": 0.68,
23
- "NanoDBPedia_cosine_precision@3": 0.5066666666666666,
24
- "NanoDBPedia_cosine_precision@5": 0.44800000000000006,
25
- "NanoDBPedia_cosine_precision@10": 0.376,
26
- "NanoDBPedia_cosine_recall@1": 0.08435515343632806,
27
- "NanoDBPedia_cosine_recall@3": 0.13854094008435847,
28
- "NanoDBPedia_cosine_recall@5": 0.17555319487559032,
29
- "NanoDBPedia_cosine_recall@10": 0.25077742902228617,
30
- "NanoDBPedia_cosine_ndcg@10": 0.4897177201468777,
31
- "NanoDBPedia_cosine_mrr@10": 0.7498333333333334,
32
- "NanoDBPedia_cosine_map@100": 0.34021634749539026,
33
- "NanoFEVER_cosine_accuracy@1": 0.6,
34
- "NanoFEVER_cosine_accuracy@3": 0.76,
35
- "NanoFEVER_cosine_accuracy@5": 0.86,
36
- "NanoFEVER_cosine_accuracy@10": 0.88,
37
- "NanoFEVER_cosine_precision@1": 0.6,
38
- "NanoFEVER_cosine_precision@3": 0.2533333333333333,
39
- "NanoFEVER_cosine_precision@5": 0.17199999999999996,
40
- "NanoFEVER_cosine_precision@10": 0.088,
41
- "NanoFEVER_cosine_recall@1": 0.5466666666666666,
42
- "NanoFEVER_cosine_recall@3": 0.7066666666666666,
43
- "NanoFEVER_cosine_recall@5": 0.7966666666666665,
44
- "NanoFEVER_cosine_recall@10": 0.8166666666666665,
45
- "NanoFEVER_cosine_ndcg@10": 0.6976146491512496,
46
- "NanoFEVER_cosine_mrr@10": 0.6975555555555556,
47
- "NanoFEVER_cosine_map@100": 0.6474697943858455,
48
- "NanoFiQA2018_cosine_accuracy@1": 0.26,
49
- "NanoFiQA2018_cosine_accuracy@3": 0.42,
50
- "NanoFiQA2018_cosine_accuracy@5": 0.46,
51
- "NanoFiQA2018_cosine_accuracy@10": 0.58,
52
- "NanoFiQA2018_cosine_precision@1": 0.26,
53
- "NanoFiQA2018_cosine_precision@3": 0.18,
54
  "NanoFiQA2018_cosine_precision@5": 0.124,
55
- "NanoFiQA2018_cosine_precision@10": 0.08399999999999999,
56
- "NanoFiQA2018_cosine_recall@1": 0.11974603174603175,
57
- "NanoFiQA2018_cosine_recall@3": 0.25293650793650796,
58
- "NanoFiQA2018_cosine_recall@5": 0.28343650793650793,
59
- "NanoFiQA2018_cosine_recall@10": 0.37834920634920627,
60
- "NanoFiQA2018_cosine_ndcg@10": 0.289405411189281,
61
- "NanoFiQA2018_cosine_mrr@10": 0.34807936507936504,
62
- "NanoFiQA2018_cosine_map@100": 0.2371668409805281,
63
- "NanoHotpotQA_cosine_accuracy@1": 0.54,
64
- "NanoHotpotQA_cosine_accuracy@3": 0.64,
65
- "NanoHotpotQA_cosine_accuracy@5": 0.7,
66
- "NanoHotpotQA_cosine_accuracy@10": 0.74,
67
- "NanoHotpotQA_cosine_precision@1": 0.54,
68
- "NanoHotpotQA_cosine_precision@3": 0.26666666666666666,
69
- "NanoHotpotQA_cosine_precision@5": 0.184,
70
- "NanoHotpotQA_cosine_precision@10": 0.106,
71
- "NanoHotpotQA_cosine_recall@1": 0.27,
72
- "NanoHotpotQA_cosine_recall@3": 0.4,
73
- "NanoHotpotQA_cosine_recall@5": 0.46,
74
- "NanoHotpotQA_cosine_recall@10": 0.53,
75
- "NanoHotpotQA_cosine_ndcg@10": 0.48356059599535955,
76
- "NanoHotpotQA_cosine_mrr@10": 0.606,
77
- "NanoHotpotQA_cosine_map@100": 0.4167638398079239,
78
  "NanoMSMARCO_cosine_accuracy@1": 0.28,
79
- "NanoMSMARCO_cosine_accuracy@3": 0.54,
80
- "NanoMSMARCO_cosine_accuracy@5": 0.62,
81
- "NanoMSMARCO_cosine_accuracy@10": 0.8,
82
  "NanoMSMARCO_cosine_precision@1": 0.28,
83
- "NanoMSMARCO_cosine_precision@3": 0.17999999999999997,
84
- "NanoMSMARCO_cosine_precision@5": 0.124,
85
- "NanoMSMARCO_cosine_precision@10": 0.08,
86
  "NanoMSMARCO_cosine_recall@1": 0.28,
87
- "NanoMSMARCO_cosine_recall@3": 0.54,
88
- "NanoMSMARCO_cosine_recall@5": 0.62,
89
- "NanoMSMARCO_cosine_recall@10": 0.8,
90
- "NanoMSMARCO_cosine_ndcg@10": 0.5241911345526384,
91
- "NanoMSMARCO_cosine_mrr@10": 0.43837301587301575,
92
- "NanoMSMARCO_cosine_map@100": 0.4480618800320956,
93
- "NanoNFCorpus_cosine_accuracy@1": 0.34,
94
- "NanoNFCorpus_cosine_accuracy@3": 0.52,
95
- "NanoNFCorpus_cosine_accuracy@5": 0.58,
96
- "NanoNFCorpus_cosine_accuracy@10": 0.68,
97
- "NanoNFCorpus_cosine_precision@1": 0.34,
98
- "NanoNFCorpus_cosine_precision@3": 0.33333333333333326,
99
- "NanoNFCorpus_cosine_precision@5": 0.29600000000000004,
100
- "NanoNFCorpus_cosine_precision@10": 0.25,
101
- "NanoNFCorpus_cosine_recall@1": 0.012133063569139098,
102
- "NanoNFCorpus_cosine_recall@3": 0.05465564949455657,
103
- "NanoNFCorpus_cosine_recall@5": 0.07192795043792813,
104
- "NanoNFCorpus_cosine_recall@10": 0.10822085751351866,
105
- "NanoNFCorpus_cosine_ndcg@10": 0.2847553576589848,
106
- "NanoNFCorpus_cosine_mrr@10": 0.44152380952380954,
107
- "NanoNFCorpus_cosine_map@100": 0.108499059841261,
108
- "NanoNQ_cosine_accuracy@1": 0.36,
109
- "NanoNQ_cosine_accuracy@3": 0.56,
110
  "NanoNQ_cosine_accuracy@5": 0.6,
111
- "NanoNQ_cosine_accuracy@10": 0.62,
112
- "NanoNQ_cosine_precision@1": 0.36,
113
- "NanoNQ_cosine_precision@3": 0.19333333333333333,
114
  "NanoNQ_cosine_precision@5": 0.128,
115
- "NanoNQ_cosine_precision@10": 0.066,
116
- "NanoNQ_cosine_recall@1": 0.35,
117
- "NanoNQ_cosine_recall@3": 0.53,
118
  "NanoNQ_cosine_recall@5": 0.58,
119
- "NanoNQ_cosine_recall@10": 0.6,
120
- "NanoNQ_cosine_ndcg@10": 0.490897686812855,
121
- "NanoNQ_cosine_mrr@10": 0.4625,
122
- "NanoNQ_cosine_map@100": 0.46206363135240186,
123
- "NanoQuoraRetrieval_cosine_accuracy@1": 0.92,
124
  "NanoQuoraRetrieval_cosine_accuracy@3": 1.0,
125
  "NanoQuoraRetrieval_cosine_accuracy@5": 1.0,
126
  "NanoQuoraRetrieval_cosine_accuracy@10": 1.0,
127
- "NanoQuoraRetrieval_cosine_precision@1": 0.92,
128
- "NanoQuoraRetrieval_cosine_precision@3": 0.4133333333333333,
129
- "NanoQuoraRetrieval_cosine_precision@5": 0.264,
130
- "NanoQuoraRetrieval_cosine_precision@10": 0.13399999999999998,
131
- "NanoQuoraRetrieval_cosine_recall@1": 0.8073333333333332,
132
- "NanoQuoraRetrieval_cosine_recall@3": 0.9653333333333333,
133
- "NanoQuoraRetrieval_cosine_recall@5": 0.986,
134
- "NanoQuoraRetrieval_cosine_recall@10": 0.99,
135
- "NanoQuoraRetrieval_cosine_ndcg@10": 0.960129267031932,
136
- "NanoQuoraRetrieval_cosine_mrr@10": 0.96,
137
- "NanoQuoraRetrieval_cosine_map@100": 0.945489898989899,
138
- "NanoSCIDOCS_cosine_accuracy@1": 0.48,
139
- "NanoSCIDOCS_cosine_accuracy@3": 0.72,
140
- "NanoSCIDOCS_cosine_accuracy@5": 0.76,
141
- "NanoSCIDOCS_cosine_accuracy@10": 0.8,
142
- "NanoSCIDOCS_cosine_precision@1": 0.48,
143
- "NanoSCIDOCS_cosine_precision@3": 0.3666666666666666,
144
- "NanoSCIDOCS_cosine_precision@5": 0.28400000000000003,
145
- "NanoSCIDOCS_cosine_precision@10": 0.19199999999999995,
146
- "NanoSCIDOCS_cosine_recall@1": 0.10166666666666666,
147
- "NanoSCIDOCS_cosine_recall@3": 0.22766666666666666,
148
- "NanoSCIDOCS_cosine_recall@5": 0.29266666666666663,
149
- "NanoSCIDOCS_cosine_recall@10": 0.3946666666666666,
150
- "NanoSCIDOCS_cosine_ndcg@10": 0.3895503827770311,
151
- "NanoSCIDOCS_cosine_mrr@10": 0.5951904761904762,
152
- "NanoSCIDOCS_cosine_map@100": 0.3082897117657901,
153
- "NanoArguAna_cosine_accuracy@1": 0.14,
154
- "NanoArguAna_cosine_accuracy@3": 0.38,
155
- "NanoArguAna_cosine_accuracy@5": 0.5,
156
- "NanoArguAna_cosine_accuracy@10": 0.66,
157
- "NanoArguAna_cosine_precision@1": 0.14,
158
- "NanoArguAna_cosine_precision@3": 0.12666666666666665,
159
- "NanoArguAna_cosine_precision@5": 0.1,
160
- "NanoArguAna_cosine_precision@10": 0.06600000000000002,
161
- "NanoArguAna_cosine_recall@1": 0.14,
162
- "NanoArguAna_cosine_recall@3": 0.38,
163
- "NanoArguAna_cosine_recall@5": 0.5,
164
- "NanoArguAna_cosine_recall@10": 0.66,
165
- "NanoArguAna_cosine_ndcg@10": 0.38615266678375515,
166
- "NanoArguAna_cosine_mrr@10": 0.300095238095238,
167
- "NanoArguAna_cosine_map@100": 0.3088425567963239,
168
- "NanoSciFact_cosine_accuracy@1": 0.38,
169
- "NanoSciFact_cosine_accuracy@3": 0.54,
170
- "NanoSciFact_cosine_accuracy@5": 0.58,
171
- "NanoSciFact_cosine_accuracy@10": 0.7,
172
- "NanoSciFact_cosine_precision@1": 0.38,
173
- "NanoSciFact_cosine_precision@3": 0.19999999999999996,
174
- "NanoSciFact_cosine_precision@5": 0.12800000000000003,
175
- "NanoSciFact_cosine_precision@10": 0.08,
176
- "NanoSciFact_cosine_recall@1": 0.345,
177
- "NanoSciFact_cosine_recall@3": 0.525,
178
- "NanoSciFact_cosine_recall@5": 0.565,
179
- "NanoSciFact_cosine_recall@10": 0.7,
180
- "NanoSciFact_cosine_ndcg@10": 0.5292195947118973,
181
- "NanoSciFact_cosine_mrr@10": 0.4820793650793651,
182
- "NanoSciFact_cosine_map@100": 0.47730440170572996,
183
- "NanoTouche2020_cosine_accuracy@1": 0.5102040816326531,
184
- "NanoTouche2020_cosine_accuracy@3": 0.8163265306122449,
185
- "NanoTouche2020_cosine_accuracy@5": 0.8571428571428571,
186
- "NanoTouche2020_cosine_accuracy@10": 0.9591836734693877,
187
- "NanoTouche2020_cosine_precision@1": 0.5102040816326531,
188
- "NanoTouche2020_cosine_precision@3": 0.45578231292517,
189
- "NanoTouche2020_cosine_precision@5": 0.4040816326530612,
190
- "NanoTouche2020_cosine_precision@10": 0.3428571428571428,
191
- "NanoTouche2020_cosine_recall@1": 0.04030730530317779,
192
- "NanoTouche2020_cosine_recall@3": 0.10027039527564566,
193
- "NanoTouche2020_cosine_recall@5": 0.14754618693234572,
194
- "NanoTouche2020_cosine_recall@10": 0.2268233238254859,
195
- "NanoTouche2020_cosine_ndcg@10": 0.3942611497955867,
196
- "NanoTouche2020_cosine_mrr@10": 0.6711613216715256,
197
- "NanoTouche2020_cosine_map@100": 0.28013001290517386,
198
- "NanoBEIR_mean_cosine_accuracy@1": 0.4300156985871272,
199
- "NanoBEIR_mean_cosine_accuracy@3": 0.6120251177394034,
200
- "NanoBEIR_mean_cosine_accuracy@5": 0.6705494505494506,
201
- "NanoBEIR_mean_cosine_accuracy@10": 0.7614756671899527,
202
- "NanoBEIR_mean_cosine_precision@1": 0.4300156985871272,
203
- "NanoBEIR_mean_cosine_precision@3": 0.2740345368916797,
204
- "NanoBEIR_mean_cosine_precision@5": 0.20985243328100472,
205
- "NanoBEIR_mean_cosine_precision@10": 0.14852747252747253,
206
- "NanoBEIR_mean_cosine_recall@1": 0.24183652979907766,
207
- "NanoBEIR_mean_cosine_recall@3": 0.3803900122659796,
208
- "NanoBEIR_mean_cosine_recall@5": 0.4344459364242849,
209
- "NanoBEIR_mean_cosine_recall@10": 0.5194490371828588,
210
- "NanoBEIR_mean_cosine_ndcg@10": 0.46960347357534615,
211
- "NanoBEIR_mean_cosine_mrr@10": 0.536290187137126,
212
- "NanoBEIR_mean_cosine_map@100": 0.39284751373578397
213
  },
214
  "beir_touche2020": {
215
- "BeIR-touche2020-subset-test_cosine_accuracy@1": 0.7346938775510204,
216
- "BeIR-touche2020-subset-test_cosine_accuracy@3": 0.9387755102040817,
217
  "BeIR-touche2020-subset-test_cosine_accuracy@5": 0.9591836734693877,
218
  "BeIR-touche2020-subset-test_cosine_accuracy@10": 0.9795918367346939,
219
- "BeIR-touche2020-subset-test_cosine_precision@1": 0.7346938775510204,
220
- "BeIR-touche2020-subset-test_cosine_precision@3": 0.6802721088435373,
221
- "BeIR-touche2020-subset-test_cosine_precision@5": 0.6612244897959185,
222
- "BeIR-touche2020-subset-test_cosine_precision@10": 0.5857142857142857,
223
- "BeIR-touche2020-subset-test_cosine_recall@1": 0.01628348794626864,
224
- "BeIR-touche2020-subset-test_cosine_recall@3": 0.045158349206937544,
225
- "BeIR-touche2020-subset-test_cosine_recall@5": 0.07322241057348641,
226
- "BeIR-touche2020-subset-test_cosine_recall@10": 0.12952247914108056,
227
- "BeIR-touche2020-subset-test_cosine_ndcg@10": 0.6211658380172899,
228
- "BeIR-touche2020-subset-test_cosine_mrr@10": 0.8306122448979592,
229
- "BeIR-touche2020-subset-test_cosine_map@100": 0.24407616368208723
230
  }
231
  }
 
1
  {
2
  "nano_beir": {
3
+ "NanoClimateFEVER_cosine_accuracy@1": 0.22,
4
+ "NanoClimateFEVER_cosine_accuracy@3": 0.36,
5
+ "NanoClimateFEVER_cosine_accuracy@5": 0.44,
6
+ "NanoClimateFEVER_cosine_accuracy@10": 0.68,
7
+ "NanoClimateFEVER_cosine_precision@1": 0.22,
8
+ "NanoClimateFEVER_cosine_precision@3": 0.12,
9
+ "NanoClimateFEVER_cosine_precision@5": 0.09200000000000001,
10
+ "NanoClimateFEVER_cosine_precision@10": 0.08,
11
+ "NanoClimateFEVER_cosine_recall@1": 0.10166666666666666,
12
+ "NanoClimateFEVER_cosine_recall@3": 0.1433333333333333,
13
+ "NanoClimateFEVER_cosine_recall@5": 0.19666666666666666,
14
+ "NanoClimateFEVER_cosine_recall@10": 0.32233333333333336,
15
+ "NanoClimateFEVER_cosine_ndcg@10": 0.24154521021050848,
16
+ "NanoClimateFEVER_cosine_mrr@10": 0.3309126984126983,
17
+ "NanoClimateFEVER_cosine_map@100": 0.17419838412151278,
18
+ "NanoDBPedia_cosine_accuracy@1": 0.62,
19
+ "NanoDBPedia_cosine_accuracy@3": 0.78,
20
+ "NanoDBPedia_cosine_accuracy@5": 0.84,
21
+ "NanoDBPedia_cosine_accuracy@10": 0.92,
22
+ "NanoDBPedia_cosine_precision@1": 0.62,
23
+ "NanoDBPedia_cosine_precision@3": 0.5199999999999999,
24
+ "NanoDBPedia_cosine_precision@5": 0.452,
25
+ "NanoDBPedia_cosine_precision@10": 0.364,
26
+ "NanoDBPedia_cosine_recall@1": 0.07067219113244924,
27
+ "NanoDBPedia_cosine_recall@3": 0.1473605766367288,
28
+ "NanoDBPedia_cosine_recall@5": 0.18535916558236945,
29
+ "NanoDBPedia_cosine_recall@10": 0.27484027728017424,
30
+ "NanoDBPedia_cosine_ndcg@10": 0.4817256707832707,
31
+ "NanoDBPedia_cosine_mrr@10": 0.7183571428571429,
32
+ "NanoDBPedia_cosine_map@100": 0.3555155246867996,
33
+ "NanoFEVER_cosine_accuracy@1": 0.76,
34
+ "NanoFEVER_cosine_accuracy@3": 0.84,
35
+ "NanoFEVER_cosine_accuracy@5": 0.9,
36
+ "NanoFEVER_cosine_accuracy@10": 0.9,
37
+ "NanoFEVER_cosine_precision@1": 0.76,
38
+ "NanoFEVER_cosine_precision@3": 0.29333333333333333,
39
+ "NanoFEVER_cosine_precision@5": 0.18799999999999997,
40
+ "NanoFEVER_cosine_precision@10": 0.09399999999999999,
41
+ "NanoFEVER_cosine_recall@1": 0.7066666666666666,
42
+ "NanoFEVER_cosine_recall@3": 0.7933333333333333,
43
+ "NanoFEVER_cosine_recall@5": 0.8533333333333333,
44
+ "NanoFEVER_cosine_recall@10": 0.8533333333333333,
45
+ "NanoFEVER_cosine_ndcg@10": 0.7928392587586685,
46
+ "NanoFEVER_cosine_mrr@10": 0.805,
47
+ "NanoFEVER_cosine_map@100": 0.7629176534259828,
48
+ "NanoFiQA2018_cosine_accuracy@1": 0.3,
49
+ "NanoFiQA2018_cosine_accuracy@3": 0.4,
50
+ "NanoFiQA2018_cosine_accuracy@5": 0.42,
51
+ "NanoFiQA2018_cosine_accuracy@10": 0.52,
52
+ "NanoFiQA2018_cosine_precision@1": 0.3,
53
+ "NanoFiQA2018_cosine_precision@3": 0.1733333333333333,
54
  "NanoFiQA2018_cosine_precision@5": 0.124,
55
+ "NanoFiQA2018_cosine_precision@10": 0.08,
56
+ "NanoFiQA2018_cosine_recall@1": 0.14474603174603173,
57
+ "NanoFiQA2018_cosine_recall@3": 0.2201031746031746,
58
+ "NanoFiQA2018_cosine_recall@5": 0.2519365079365079,
59
+ "NanoFiQA2018_cosine_recall@10": 0.31682539682539684,
60
+ "NanoFiQA2018_cosine_ndcg@10": 0.2761214091575939,
61
+ "NanoFiQA2018_cosine_mrr@10": 0.35405555555555557,
62
+ "NanoFiQA2018_cosine_map@100": 0.23650883511668197,
63
+ "NanoHotpotQA_cosine_accuracy@1": 0.7,
64
+ "NanoHotpotQA_cosine_accuracy@3": 0.76,
65
+ "NanoHotpotQA_cosine_accuracy@5": 0.78,
66
+ "NanoHotpotQA_cosine_accuracy@10": 0.8,
67
+ "NanoHotpotQA_cosine_precision@1": 0.7,
68
+ "NanoHotpotQA_cosine_precision@3": 0.3733333333333333,
69
+ "NanoHotpotQA_cosine_precision@5": 0.244,
70
+ "NanoHotpotQA_cosine_precision@10": 0.13399999999999998,
71
+ "NanoHotpotQA_cosine_recall@1": 0.35,
72
+ "NanoHotpotQA_cosine_recall@3": 0.56,
73
+ "NanoHotpotQA_cosine_recall@5": 0.61,
74
+ "NanoHotpotQA_cosine_recall@10": 0.67,
75
+ "NanoHotpotQA_cosine_ndcg@10": 0.6362341710243232,
76
+ "NanoHotpotQA_cosine_mrr@10": 0.7373333333333334,
77
+ "NanoHotpotQA_cosine_map@100": 0.579012255659608,
78
  "NanoMSMARCO_cosine_accuracy@1": 0.28,
79
+ "NanoMSMARCO_cosine_accuracy@3": 0.58,
80
+ "NanoMSMARCO_cosine_accuracy@5": 0.64,
81
+ "NanoMSMARCO_cosine_accuracy@10": 0.72,
82
  "NanoMSMARCO_cosine_precision@1": 0.28,
83
+ "NanoMSMARCO_cosine_precision@3": 0.19333333333333333,
84
+ "NanoMSMARCO_cosine_precision@5": 0.128,
85
+ "NanoMSMARCO_cosine_precision@10": 0.07200000000000001,
86
  "NanoMSMARCO_cosine_recall@1": 0.28,
87
+ "NanoMSMARCO_cosine_recall@3": 0.58,
88
+ "NanoMSMARCO_cosine_recall@5": 0.64,
89
+ "NanoMSMARCO_cosine_recall@10": 0.72,
90
+ "NanoMSMARCO_cosine_ndcg@10": 0.5075011853031293,
91
+ "NanoMSMARCO_cosine_mrr@10": 0.4386111111111111,
92
+ "NanoMSMARCO_cosine_map@100": 0.4533366047009664,
93
+ "NanoNFCorpus_cosine_accuracy@1": 0.38,
94
+ "NanoNFCorpus_cosine_accuracy@3": 0.46,
95
+ "NanoNFCorpus_cosine_accuracy@5": 0.54,
96
+ "NanoNFCorpus_cosine_accuracy@10": 0.64,
97
+ "NanoNFCorpus_cosine_precision@1": 0.38,
98
+ "NanoNFCorpus_cosine_precision@3": 0.3,
99
+ "NanoNFCorpus_cosine_precision@5": 0.3,
100
+ "NanoNFCorpus_cosine_precision@10": 0.276,
101
+ "NanoNFCorpus_cosine_recall@1": 0.012479157217241355,
102
+ "NanoNFCorpus_cosine_recall@3": 0.04881894595681059,
103
+ "NanoNFCorpus_cosine_recall@5": 0.06922116223257517,
104
+ "NanoNFCorpus_cosine_recall@10": 0.10938910626227699,
105
+ "NanoNFCorpus_cosine_ndcg@10": 0.30283246736353403,
106
+ "NanoNFCorpus_cosine_mrr@10": 0.45196825396825396,
107
+ "NanoNFCorpus_cosine_map@100": 0.12231981928859673,
108
+ "NanoNQ_cosine_accuracy@1": 0.32,
109
+ "NanoNQ_cosine_accuracy@3": 0.54,
110
  "NanoNQ_cosine_accuracy@5": 0.6,
111
+ "NanoNQ_cosine_accuracy@10": 0.66,
112
+ "NanoNQ_cosine_precision@1": 0.32,
113
+ "NanoNQ_cosine_precision@3": 0.18666666666666665,
114
  "NanoNQ_cosine_precision@5": 0.128,
115
+ "NanoNQ_cosine_precision@10": 0.07,
116
+ "NanoNQ_cosine_recall@1": 0.3,
117
+ "NanoNQ_cosine_recall@3": 0.51,
118
  "NanoNQ_cosine_recall@5": 0.58,
119
+ "NanoNQ_cosine_recall@10": 0.64,
120
+ "NanoNQ_cosine_ndcg@10": 0.48687028758380874,
121
+ "NanoNQ_cosine_mrr@10": 0.4465,
122
+ "NanoNQ_cosine_map@100": 0.4417143853257704,
123
+ "NanoQuoraRetrieval_cosine_accuracy@1": 0.88,
124
  "NanoQuoraRetrieval_cosine_accuracy@3": 1.0,
125
  "NanoQuoraRetrieval_cosine_accuracy@5": 1.0,
126
  "NanoQuoraRetrieval_cosine_accuracy@10": 1.0,
127
+ "NanoQuoraRetrieval_cosine_precision@1": 0.88,
128
+ "NanoQuoraRetrieval_cosine_precision@3": 0.41999999999999993,
129
+ "NanoQuoraRetrieval_cosine_precision@5": 0.26799999999999996,
130
+ "NanoQuoraRetrieval_cosine_precision@10": 0.13599999999999998,
131
+ "NanoQuoraRetrieval_cosine_recall@1": 0.7773333333333332,
132
+ "NanoQuoraRetrieval_cosine_recall@3": 0.972,
133
+ "NanoQuoraRetrieval_cosine_recall@5": 0.9893333333333334,
134
+ "NanoQuoraRetrieval_cosine_recall@10": 0.9926666666666667,
135
+ "NanoQuoraRetrieval_cosine_ndcg@10": 0.9483612484877714,
136
+ "NanoQuoraRetrieval_cosine_mrr@10": 0.9366666666666665,
137
+ "NanoQuoraRetrieval_cosine_map@100": 0.9296388888888888,
138
+ "NanoSCIDOCS_cosine_accuracy@1": 0.46,
139
+ "NanoSCIDOCS_cosine_accuracy@3": 0.68,
140
+ "NanoSCIDOCS_cosine_accuracy@5": 0.84,
141
+ "NanoSCIDOCS_cosine_accuracy@10": 0.9,
142
+ "NanoSCIDOCS_cosine_precision@1": 0.46,
143
+ "NanoSCIDOCS_cosine_precision@3": 0.3533333333333333,
144
+ "NanoSCIDOCS_cosine_precision@5": 0.304,
145
+ "NanoSCIDOCS_cosine_precision@10": 0.18999999999999997,
146
+ "NanoSCIDOCS_cosine_recall@1": 0.09666666666666666,
147
+ "NanoSCIDOCS_cosine_recall@3": 0.21766666666666665,
148
+ "NanoSCIDOCS_cosine_recall@5": 0.31266666666666665,
149
+ "NanoSCIDOCS_cosine_recall@10": 0.3896666666666666,
150
+ "NanoSCIDOCS_cosine_ndcg@10": 0.3893008993021786,
151
+ "NanoSCIDOCS_cosine_mrr@10": 0.6114444444444443,
152
+ "NanoSCIDOCS_cosine_map@100": 0.3091964898288773,
153
+ "NanoArguAna_cosine_accuracy@1": 0.22,
154
+ "NanoArguAna_cosine_accuracy@3": 0.54,
155
+ "NanoArguAna_cosine_accuracy@5": 0.58,
156
+ "NanoArguAna_cosine_accuracy@10": 0.74,
157
+ "NanoArguAna_cosine_precision@1": 0.22,
158
+ "NanoArguAna_cosine_precision@3": 0.18,
159
+ "NanoArguAna_cosine_precision@5": 0.11600000000000002,
160
+ "NanoArguAna_cosine_precision@10": 0.07400000000000001,
161
+ "NanoArguAna_cosine_recall@1": 0.22,
162
+ "NanoArguAna_cosine_recall@3": 0.54,
163
+ "NanoArguAna_cosine_recall@5": 0.58,
164
+ "NanoArguAna_cosine_recall@10": 0.74,
165
+ "NanoArguAna_cosine_ndcg@10": 0.4674888162177975,
166
+ "NanoArguAna_cosine_mrr@10": 0.3815793650793651,
167
+ "NanoArguAna_cosine_map@100": 0.3917367299367299,
168
+ "NanoSciFact_cosine_accuracy@1": 0.58,
169
+ "NanoSciFact_cosine_accuracy@3": 0.68,
170
+ "NanoSciFact_cosine_accuracy@5": 0.7,
171
+ "NanoSciFact_cosine_accuracy@10": 0.72,
172
+ "NanoSciFact_cosine_precision@1": 0.58,
173
+ "NanoSciFact_cosine_precision@3": 0.2533333333333333,
174
+ "NanoSciFact_cosine_precision@5": 0.156,
175
+ "NanoSciFact_cosine_precision@10": 0.08199999999999999,
176
+ "NanoSciFact_cosine_recall@1": 0.545,
177
+ "NanoSciFact_cosine_recall@3": 0.665,
178
+ "NanoSciFact_cosine_recall@5": 0.685,
179
+ "NanoSciFact_cosine_recall@10": 0.71,
180
+ "NanoSciFact_cosine_ndcg@10": 0.6523742480687815,
181
+ "NanoSciFact_cosine_mrr@10": 0.6375,
182
+ "NanoSciFact_cosine_map@100": 0.6370166989443306,
183
+ "NanoTouche2020_cosine_accuracy@1": 0.4489795918367347,
184
+ "NanoTouche2020_cosine_accuracy@3": 0.7755102040816326,
185
+ "NanoTouche2020_cosine_accuracy@5": 0.8979591836734694,
186
+ "NanoTouche2020_cosine_accuracy@10": 0.9795918367346939,
187
+ "NanoTouche2020_cosine_precision@1": 0.4489795918367347,
188
+ "NanoTouche2020_cosine_precision@3": 0.41496598639455773,
189
+ "NanoTouche2020_cosine_precision@5": 0.4326530612244897,
190
+ "NanoTouche2020_cosine_precision@10": 0.3591836734693878,
191
+ "NanoTouche2020_cosine_recall@1": 0.03398816288797225,
192
+ "NanoTouche2020_cosine_recall@3": 0.09117793391499442,
193
+ "NanoTouche2020_cosine_recall@5": 0.15321422858378142,
194
+ "NanoTouche2020_cosine_recall@10": 0.24000922572748823,
195
+ "NanoTouche2020_cosine_ndcg@10": 0.3959230964031327,
196
+ "NanoTouche2020_cosine_mrr@10": 0.6308309037900873,
197
+ "NanoTouche2020_cosine_map@100": 0.3023791135389433,
198
+ "NanoBEIR_mean_cosine_accuracy@1": 0.47453689167974883,
199
+ "NanoBEIR_mean_cosine_accuracy@3": 0.6458084772370486,
200
+ "NanoBEIR_mean_cosine_accuracy@5": 0.7059968602825746,
201
+ "NanoBEIR_mean_cosine_accuracy@10": 0.7830455259026687,
202
+ "NanoBEIR_mean_cosine_precision@1": 0.47453689167974883,
203
+ "NanoBEIR_mean_cosine_precision@3": 0.290894819466248,
204
+ "NanoBEIR_mean_cosine_precision@5": 0.22558869701726847,
205
+ "NanoBEIR_mean_cosine_precision@10": 0.15470643642072213,
206
+ "NanoBEIR_mean_cosine_recall@1": 0.2799399135628483,
207
+ "NanoBEIR_mean_cosine_recall@3": 0.42221492034192626,
208
+ "NanoBEIR_mean_cosine_recall@5": 0.4697485434104026,
209
+ "NanoBEIR_mean_cosine_recall@10": 0.536851077391949,
210
+ "NanoBEIR_mean_cosine_ndcg@10": 0.5060859975895767,
211
+ "NanoBEIR_mean_cosine_mrr@10": 0.5754430365552815,
212
+ "NanoBEIR_mean_cosine_map@100": 0.4381147218048991
213
  },
214
  "beir_touche2020": {
215
+ "BeIR-touche2020-subset-test_cosine_accuracy@1": 0.6530612244897959,
216
+ "BeIR-touche2020-subset-test_cosine_accuracy@3": 0.9591836734693877,
217
  "BeIR-touche2020-subset-test_cosine_accuracy@5": 0.9591836734693877,
218
  "BeIR-touche2020-subset-test_cosine_accuracy@10": 0.9795918367346939,
219
+ "BeIR-touche2020-subset-test_cosine_precision@1": 0.6530612244897959,
220
+ "BeIR-touche2020-subset-test_cosine_precision@3": 0.727891156462585,
221
+ "BeIR-touche2020-subset-test_cosine_precision@5": 0.6448979591836735,
222
+ "BeIR-touche2020-subset-test_cosine_precision@10": 0.5795918367346938,
223
+ "BeIR-touche2020-subset-test_cosine_recall@1": 0.01432104834093062,
224
+ "BeIR-touche2020-subset-test_cosine_recall@3": 0.048281100280382724,
225
+ "BeIR-touche2020-subset-test_cosine_recall@5": 0.07113270115683268,
226
+ "BeIR-touche2020-subset-test_cosine_recall@10": 0.1277462197359846,
227
+ "BeIR-touche2020-subset-test_cosine_ndcg@10": 0.6075766364842123,
228
+ "BeIR-touche2020-subset-test_cosine_mrr@10": 0.7950680272108844,
229
+ "BeIR-touche2020-subset-test_cosine_map@100": 0.25739036878474303
230
  }
231
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:325ea67b4c6fb434aa13d441e188dab3f657079050a07c5c0072112cfb0cb217
3
- size 133462128
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e66bd1a9ef557e4d2c8b9b0ed8d2be4c7ef70fbeeb03cde61cd58c4f4bc8351
3
+ size 596070136
modules.json CHANGED
@@ -10,11 +10,5 @@
10
  "name": "1",
11
  "path": "1_Pooling",
12
  "type": "sentence_transformers.models.Pooling"
13
- },
14
- {
15
- "idx": 2,
16
- "name": "2",
17
- "path": "2_Normalize",
18
- "type": "sentence_transformers.models.Normalize"
19
  }
20
  ]
 
10
  "name": "1",
11
  "path": "1_Pooling",
12
  "type": "sentence_transformers.models.Pooling"
 
 
 
 
 
 
13
  }
14
  ]
special_tokens_map.json CHANGED
@@ -8,7 +8,7 @@
8
  },
9
  "mask_token": {
10
  "content": "[MASK]",
11
- "lstrip": false,
12
  "normalized": false,
13
  "rstrip": false,
14
  "single_word": false
 
8
  },
9
  "mask_token": {
10
  "content": "[MASK]",
11
+ "lstrip": true,
12
  "normalized": false,
13
  "rstrip": false,
14
  "single_word": false
tokenizer.json CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2fc687b11de0bc1b3d8348f92e3b49ef1089a621506c7661fbf3248fcd54947e
3
- size 711649
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:218484396a9d08293b108b0e5ea31e0a1b7c801dcbed35a821deb392d2fe9bb4
3
+ size 3583485
tokenizer_config.json CHANGED
@@ -1,14 +1,230 @@
1
  {
2
  "added_tokens_decoder": {
3
  "0": {
4
- "content": "[PAD]",
 
 
 
 
 
 
 
 
5
  "lstrip": false,
6
  "normalized": false,
7
  "rstrip": false,
8
  "single_word": false,
9
  "special": true
10
  },
11
- "100": {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  "content": "[UNK]",
13
  "lstrip": false,
14
  "normalized": false,
@@ -16,7 +232,7 @@
16
  "single_word": false,
17
  "special": true
18
  },
19
- "101": {
20
  "content": "[CLS]",
21
  "lstrip": false,
22
  "normalized": false,
@@ -24,7 +240,7 @@
24
  "single_word": false,
25
  "special": true
26
  },
27
- "102": {
28
  "content": "[SEP]",
29
  "lstrip": false,
30
  "normalized": false,
@@ -32,34 +248,698 @@
32
  "single_word": false,
33
  "special": true
34
  },
35
- "103": {
36
- "content": "[MASK]",
37
  "lstrip": false,
38
  "normalized": false,
39
  "rstrip": false,
40
  "single_word": false,
41
  "special": true
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  }
43
  },
44
  "clean_up_tokenization_spaces": true,
45
  "cls_token": "[CLS]",
46
- "do_basic_tokenize": true,
47
- "do_lower_case": true,
48
  "extra_special_tokens": {},
49
  "mask_token": "[MASK]",
50
- "max_length": 128,
51
- "model_max_length": 512,
52
- "never_split": null,
53
- "pad_to_multiple_of": null,
 
54
  "pad_token": "[PAD]",
55
- "pad_token_type_id": 0,
56
- "padding_side": "right",
57
  "sep_token": "[SEP]",
58
- "stride": 0,
59
- "strip_accents": null,
60
- "tokenize_chinese_chars": true,
61
- "tokenizer_class": "BertTokenizer",
62
- "truncation_side": "right",
63
- "truncation_strategy": "longest_first",
64
  "unk_token": "[UNK]"
65
  }
 
1
  {
2
  "added_tokens_decoder": {
3
  "0": {
4
+ "content": "|||IP_ADDRESS|||",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<|padding|>",
13
  "lstrip": false,
14
  "normalized": false,
15
  "rstrip": false,
16
  "single_word": false,
17
  "special": true
18
  },
19
+ "50254": {
20
+ "content": " ",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "50255": {
28
+ "content": " ",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "50256": {
36
+ "content": " ",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "50257": {
44
+ "content": " ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "50258": {
52
+ "content": " ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "50259": {
60
+ "content": " ",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "50260": {
68
+ "content": " ",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "50261": {
76
+ "content": " ",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "50262": {
84
+ "content": " ",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "50263": {
92
+ "content": " ",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "50264": {
100
+ "content": " ",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "50265": {
108
+ "content": " ",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "50266": {
116
+ "content": " ",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "50267": {
124
+ "content": " ",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "50268": {
132
+ "content": " ",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "50269": {
140
+ "content": " ",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "50270": {
148
+ "content": " ",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "50271": {
156
+ "content": " ",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "50272": {
164
+ "content": " ",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "50273": {
172
+ "content": " ",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "50274": {
180
+ "content": " ",
181
+ "lstrip": false,
182
+ "normalized": true,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "50275": {
188
+ "content": " ",
189
+ "lstrip": false,
190
+ "normalized": true,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "50276": {
196
+ "content": " ",
197
+ "lstrip": false,
198
+ "normalized": true,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "50277": {
204
+ "content": "|||EMAIL_ADDRESS|||",
205
+ "lstrip": false,
206
+ "normalized": true,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "50278": {
212
+ "content": "|||PHONE_NUMBER|||",
213
+ "lstrip": false,
214
+ "normalized": true,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "50279": {
220
+ "content": "<|endoftext|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "50280": {
228
  "content": "[UNK]",
229
  "lstrip": false,
230
  "normalized": false,
 
232
  "single_word": false,
233
  "special": true
234
  },
235
+ "50281": {
236
  "content": "[CLS]",
237
  "lstrip": false,
238
  "normalized": false,
 
240
  "single_word": false,
241
  "special": true
242
  },
243
+ "50282": {
244
  "content": "[SEP]",
245
  "lstrip": false,
246
  "normalized": false,
 
248
  "single_word": false,
249
  "special": true
250
  },
251
+ "50283": {
252
+ "content": "[PAD]",
253
  "lstrip": false,
254
  "normalized": false,
255
  "rstrip": false,
256
  "single_word": false,
257
  "special": true
258
+ },
259
+ "50284": {
260
+ "content": "[MASK]",
261
+ "lstrip": true,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "50285": {
268
+ "content": "[unused0]",
269
+ "lstrip": false,
270
+ "normalized": true,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": false
274
+ },
275
+ "50286": {
276
+ "content": "[unused1]",
277
+ "lstrip": false,
278
+ "normalized": true,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": false
282
+ },
283
+ "50287": {
284
+ "content": "[unused2]",
285
+ "lstrip": false,
286
+ "normalized": true,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": false
290
+ },
291
+ "50288": {
292
+ "content": "[unused3]",
293
+ "lstrip": false,
294
+ "normalized": true,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": false
298
+ },
299
+ "50289": {
300
+ "content": "[unused4]",
301
+ "lstrip": false,
302
+ "normalized": true,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": false
306
+ },
307
+ "50290": {
308
+ "content": "[unused5]",
309
+ "lstrip": false,
310
+ "normalized": true,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": false
314
+ },
315
+ "50291": {
316
+ "content": "[unused6]",
317
+ "lstrip": false,
318
+ "normalized": true,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": false
322
+ },
323
+ "50292": {
324
+ "content": "[unused7]",
325
+ "lstrip": false,
326
+ "normalized": true,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": false
330
+ },
331
+ "50293": {
332
+ "content": "[unused8]",
333
+ "lstrip": false,
334
+ "normalized": true,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": false
338
+ },
339
+ "50294": {
340
+ "content": "[unused9]",
341
+ "lstrip": false,
342
+ "normalized": true,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": false
346
+ },
347
+ "50295": {
348
+ "content": "[unused10]",
349
+ "lstrip": false,
350
+ "normalized": true,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": false
354
+ },
355
+ "50296": {
356
+ "content": "[unused11]",
357
+ "lstrip": false,
358
+ "normalized": true,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": false
362
+ },
363
+ "50297": {
364
+ "content": "[unused12]",
365
+ "lstrip": false,
366
+ "normalized": true,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": false
370
+ },
371
+ "50298": {
372
+ "content": "[unused13]",
373
+ "lstrip": false,
374
+ "normalized": true,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": false
378
+ },
379
+ "50299": {
380
+ "content": "[unused14]",
381
+ "lstrip": false,
382
+ "normalized": true,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": false
386
+ },
387
+ "50300": {
388
+ "content": "[unused15]",
389
+ "lstrip": false,
390
+ "normalized": true,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": false
394
+ },
395
+ "50301": {
396
+ "content": "[unused16]",
397
+ "lstrip": false,
398
+ "normalized": true,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": false
402
+ },
403
+ "50302": {
404
+ "content": "[unused17]",
405
+ "lstrip": false,
406
+ "normalized": true,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": false
410
+ },
411
+ "50303": {
412
+ "content": "[unused18]",
413
+ "lstrip": false,
414
+ "normalized": true,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": false
418
+ },
419
+ "50304": {
420
+ "content": "[unused19]",
421
+ "lstrip": false,
422
+ "normalized": true,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": false
426
+ },
427
+ "50305": {
428
+ "content": "[unused20]",
429
+ "lstrip": false,
430
+ "normalized": true,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": false
434
+ },
435
+ "50306": {
436
+ "content": "[unused21]",
437
+ "lstrip": false,
438
+ "normalized": true,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": false
442
+ },
443
+ "50307": {
444
+ "content": "[unused22]",
445
+ "lstrip": false,
446
+ "normalized": true,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": false
450
+ },
451
+ "50308": {
452
+ "content": "[unused23]",
453
+ "lstrip": false,
454
+ "normalized": true,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": false
458
+ },
459
+ "50309": {
460
+ "content": "[unused24]",
461
+ "lstrip": false,
462
+ "normalized": true,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": false
466
+ },
467
+ "50310": {
468
+ "content": "[unused25]",
469
+ "lstrip": false,
470
+ "normalized": true,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": false
474
+ },
475
+ "50311": {
476
+ "content": "[unused26]",
477
+ "lstrip": false,
478
+ "normalized": true,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": false
482
+ },
483
+ "50312": {
484
+ "content": "[unused27]",
485
+ "lstrip": false,
486
+ "normalized": true,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": false
490
+ },
491
+ "50313": {
492
+ "content": "[unused28]",
493
+ "lstrip": false,
494
+ "normalized": true,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": false
498
+ },
499
+ "50314": {
500
+ "content": "[unused29]",
501
+ "lstrip": false,
502
+ "normalized": true,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": false
506
+ },
507
+ "50315": {
508
+ "content": "[unused30]",
509
+ "lstrip": false,
510
+ "normalized": true,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": false
514
+ },
515
+ "50316": {
516
+ "content": "[unused31]",
517
+ "lstrip": false,
518
+ "normalized": true,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": false
522
+ },
523
+ "50317": {
524
+ "content": "[unused32]",
525
+ "lstrip": false,
526
+ "normalized": true,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": false
530
+ },
531
+ "50318": {
532
+ "content": "[unused33]",
533
+ "lstrip": false,
534
+ "normalized": true,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": false
538
+ },
539
+ "50319": {
540
+ "content": "[unused34]",
541
+ "lstrip": false,
542
+ "normalized": true,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": false
546
+ },
547
+ "50320": {
548
+ "content": "[unused35]",
549
+ "lstrip": false,
550
+ "normalized": true,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": false
554
+ },
555
+ "50321": {
556
+ "content": "[unused36]",
557
+ "lstrip": false,
558
+ "normalized": true,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": false
562
+ },
563
+ "50322": {
564
+ "content": "[unused37]",
565
+ "lstrip": false,
566
+ "normalized": true,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": false
570
+ },
571
+ "50323": {
572
+ "content": "[unused38]",
573
+ "lstrip": false,
574
+ "normalized": true,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": false
578
+ },
579
+ "50324": {
580
+ "content": "[unused39]",
581
+ "lstrip": false,
582
+ "normalized": true,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": false
586
+ },
587
+ "50325": {
588
+ "content": "[unused40]",
589
+ "lstrip": false,
590
+ "normalized": true,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": false
594
+ },
595
+ "50326": {
596
+ "content": "[unused41]",
597
+ "lstrip": false,
598
+ "normalized": true,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": false
602
+ },
603
+ "50327": {
604
+ "content": "[unused42]",
605
+ "lstrip": false,
606
+ "normalized": true,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": false
610
+ },
611
+ "50328": {
612
+ "content": "[unused43]",
613
+ "lstrip": false,
614
+ "normalized": true,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": false
618
+ },
619
+ "50329": {
620
+ "content": "[unused44]",
621
+ "lstrip": false,
622
+ "normalized": true,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": false
626
+ },
627
+ "50330": {
628
+ "content": "[unused45]",
629
+ "lstrip": false,
630
+ "normalized": true,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": false
634
+ },
635
+ "50331": {
636
+ "content": "[unused46]",
637
+ "lstrip": false,
638
+ "normalized": true,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": false
642
+ },
643
+ "50332": {
644
+ "content": "[unused47]",
645
+ "lstrip": false,
646
+ "normalized": true,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": false
650
+ },
651
+ "50333": {
652
+ "content": "[unused48]",
653
+ "lstrip": false,
654
+ "normalized": true,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": false
658
+ },
659
+ "50334": {
660
+ "content": "[unused49]",
661
+ "lstrip": false,
662
+ "normalized": true,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": false
666
+ },
667
+ "50335": {
668
+ "content": "[unused50]",
669
+ "lstrip": false,
670
+ "normalized": true,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": false
674
+ },
675
+ "50336": {
676
+ "content": "[unused51]",
677
+ "lstrip": false,
678
+ "normalized": true,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": false
682
+ },
683
+ "50337": {
684
+ "content": "[unused52]",
685
+ "lstrip": false,
686
+ "normalized": true,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": false
690
+ },
691
+ "50338": {
692
+ "content": "[unused53]",
693
+ "lstrip": false,
694
+ "normalized": true,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": false
698
+ },
699
+ "50339": {
700
+ "content": "[unused54]",
701
+ "lstrip": false,
702
+ "normalized": true,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": false
706
+ },
707
+ "50340": {
708
+ "content": "[unused55]",
709
+ "lstrip": false,
710
+ "normalized": true,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": false
714
+ },
715
+ "50341": {
716
+ "content": "[unused56]",
717
+ "lstrip": false,
718
+ "normalized": true,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": false
722
+ },
723
+ "50342": {
724
+ "content": "[unused57]",
725
+ "lstrip": false,
726
+ "normalized": true,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": false
730
+ },
731
+ "50343": {
732
+ "content": "[unused58]",
733
+ "lstrip": false,
734
+ "normalized": true,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": false
738
+ },
739
+ "50344": {
740
+ "content": "[unused59]",
741
+ "lstrip": false,
742
+ "normalized": true,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": false
746
+ },
747
+ "50345": {
748
+ "content": "[unused60]",
749
+ "lstrip": false,
750
+ "normalized": true,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": false
754
+ },
755
+ "50346": {
756
+ "content": "[unused61]",
757
+ "lstrip": false,
758
+ "normalized": true,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": false
762
+ },
763
+ "50347": {
764
+ "content": "[unused62]",
765
+ "lstrip": false,
766
+ "normalized": true,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": false
770
+ },
771
+ "50348": {
772
+ "content": "[unused63]",
773
+ "lstrip": false,
774
+ "normalized": true,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": false
778
+ },
779
+ "50349": {
780
+ "content": "[unused64]",
781
+ "lstrip": false,
782
+ "normalized": true,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": false
786
+ },
787
+ "50350": {
788
+ "content": "[unused65]",
789
+ "lstrip": false,
790
+ "normalized": true,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": false
794
+ },
795
+ "50351": {
796
+ "content": "[unused66]",
797
+ "lstrip": false,
798
+ "normalized": true,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": false
802
+ },
803
+ "50352": {
804
+ "content": "[unused67]",
805
+ "lstrip": false,
806
+ "normalized": true,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": false
810
+ },
811
+ "50353": {
812
+ "content": "[unused68]",
813
+ "lstrip": false,
814
+ "normalized": true,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": false
818
+ },
819
+ "50354": {
820
+ "content": "[unused69]",
821
+ "lstrip": false,
822
+ "normalized": true,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": false
826
+ },
827
+ "50355": {
828
+ "content": "[unused70]",
829
+ "lstrip": false,
830
+ "normalized": true,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": false
834
+ },
835
+ "50356": {
836
+ "content": "[unused71]",
837
+ "lstrip": false,
838
+ "normalized": true,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": false
842
+ },
843
+ "50357": {
844
+ "content": "[unused72]",
845
+ "lstrip": false,
846
+ "normalized": true,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": false
850
+ },
851
+ "50358": {
852
+ "content": "[unused73]",
853
+ "lstrip": false,
854
+ "normalized": true,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": false
858
+ },
859
+ "50359": {
860
+ "content": "[unused74]",
861
+ "lstrip": false,
862
+ "normalized": true,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": false
866
+ },
867
+ "50360": {
868
+ "content": "[unused75]",
869
+ "lstrip": false,
870
+ "normalized": true,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": false
874
+ },
875
+ "50361": {
876
+ "content": "[unused76]",
877
+ "lstrip": false,
878
+ "normalized": true,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": false
882
+ },
883
+ "50362": {
884
+ "content": "[unused77]",
885
+ "lstrip": false,
886
+ "normalized": true,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": false
890
+ },
891
+ "50363": {
892
+ "content": "[unused78]",
893
+ "lstrip": false,
894
+ "normalized": true,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": false
898
+ },
899
+ "50364": {
900
+ "content": "[unused79]",
901
+ "lstrip": false,
902
+ "normalized": true,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": false
906
+ },
907
+ "50365": {
908
+ "content": "[unused80]",
909
+ "lstrip": false,
910
+ "normalized": true,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": false
914
+ },
915
+ "50366": {
916
+ "content": "[unused81]",
917
+ "lstrip": false,
918
+ "normalized": true,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": false
922
+ },
923
+ "50367": {
924
+ "content": "[unused82]",
925
+ "lstrip": false,
926
+ "normalized": true,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": false
930
  }
931
  },
932
  "clean_up_tokenization_spaces": true,
933
  "cls_token": "[CLS]",
 
 
934
  "extra_special_tokens": {},
935
  "mask_token": "[MASK]",
936
+ "model_input_names": [
937
+ "input_ids",
938
+ "attention_mask"
939
+ ],
940
+ "model_max_length": 1000000000000000019884624838656,
941
  "pad_token": "[PAD]",
 
 
942
  "sep_token": "[SEP]",
943
+ "tokenizer_class": "PreTrainedTokenizerFast",
 
 
 
 
 
944
  "unk_token": "[UNK]"
945
  }