radoslavralev commited on
Commit
5c42563
·
verified ·
1 Parent(s): 130ec6a

Training in progress, step 12000

Browse files
1_Pooling/config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
- "word_embedding_dimension": 768,
3
- "pooling_mode_cls_token": false,
4
- "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
6
  "pooling_mode_mean_sqrt_len_tokens": false,
7
  "pooling_mode_weightedmean_tokens": false,
 
1
  {
2
+ "word_embedding_dimension": 512,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
  "pooling_mode_max_tokens": false,
6
  "pooling_mode_mean_sqrt_len_tokens": false,
7
  "pooling_mode_weightedmean_tokens": false,
Information-Retrieval_evaluation_val_results.csv CHANGED
@@ -10,3 +10,4 @@ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Precisi
10
  -1,-1,0.827675,0.903,0.928425,0.827675,0.827675,0.30099999999999993,0.903,0.18568500000000004,0.928425,0.827675,0.8671804166666619,0.8711970039682481,0.8922532953454642,0.87334664003711
11
  -1,-1,0.83295,0.9071,0.9329,0.83295,0.83295,0.3023666666666666,0.9071,0.18658000000000005,0.9329,0.83295,0.872013749999996,0.8760916468253912,0.8970951855878305,0.8781372459990227
12
  -1,-1,0.83545,0.911175,0.9366,0.83545,0.83545,0.303725,0.911175,0.18732000000000001,0.9366,0.83545,0.8751591666666616,0.8790415476190412,0.8999318372974409,0.8810239994800558
 
 
10
  -1,-1,0.827675,0.903,0.928425,0.827675,0.827675,0.30099999999999993,0.903,0.18568500000000004,0.928425,0.827675,0.8671804166666619,0.8711970039682481,0.8922532953454642,0.87334664003711
11
  -1,-1,0.83295,0.9071,0.9329,0.83295,0.83295,0.3023666666666666,0.9071,0.18658000000000005,0.9329,0.83295,0.872013749999996,0.8760916468253912,0.8970951855878305,0.8781372459990227
12
  -1,-1,0.83545,0.911175,0.9366,0.83545,0.83545,0.303725,0.911175,0.18732000000000001,0.9366,0.83545,0.8751591666666616,0.8790415476190412,0.8999318372974409,0.8810239994800558
13
+ -1,-1,0.0,0.0,2.5e-05,0.0,0.0,0.0,0.0,5e-06,2.5e-05,0.0,5e-06,1.697420634920635e-05,4.0643645983386815e-05,5.219463554638405e-05
README.md CHANGED
@@ -5,123 +5,51 @@ tags:
5
  - feature-extraction
6
  - dense
7
  - generated_from_trainer
8
- - dataset_size:713743
9
  - loss:MultipleNegativesRankingLoss
10
- base_model: google/embeddinggemma-300m
11
  widget:
12
- - source_sentence: 'Abraham Lincoln: Why is the Gettysburg Address so memorable?'
13
  sentences:
14
- - 'Abraham Lincoln: Why is the Gettysburg Address so memorable?'
15
- - What does the Gettysburg Address really mean?
16
- - What is eatalo.com?
17
- - source_sentence: Has the influence of Ancient Carthage in science, math, and society
18
- been underestimated?
19
  sentences:
20
- - How does one earn money online without an investment from home?
21
- - Has the influence of Ancient Carthage in science, math, and society been underestimated?
22
- - Has the influence of the Ancient Etruscans in science and math been underestimated?
23
- - source_sentence: Is there any app that shares charging to others like share it how
24
- we transfer files?
25
  sentences:
26
- - How do you think of Chinese claims that the present Private Arbitration is illegal,
27
- its verdict violates the UNCLOS and is illegal?
28
- - Is there any app that shares charging to others like share it how we transfer
29
- files?
30
- - Are there any platforms that provides end-to-end encryption for file transfer/
31
- sharing?
32
- - source_sentence: Why AAP’s MLA Dinesh Mohaniya has been arrested?
33
  sentences:
34
- - What are your views on the latest sex scandal by AAP MLA Sandeep Kumar?
35
- - What is a dc current? What are some examples?
36
- - Why AAP’s MLA Dinesh Mohaniya has been arrested?
37
- - source_sentence: What is the difference between economic growth and economic development?
38
  sentences:
39
- - How cold can the Gobi Desert get, and how do its average temperatures compare
40
- to the ones in the Simpson Desert?
41
- - the difference between economic growth and economic development is What?
42
- - What is the difference between economic growth and economic development?
43
  pipeline_tag: sentence-similarity
44
  library_name: sentence-transformers
45
- metrics:
46
- - cosine_accuracy@1
47
- - cosine_accuracy@3
48
- - cosine_accuracy@5
49
- - cosine_precision@1
50
- - cosine_precision@3
51
- - cosine_precision@5
52
- - cosine_recall@1
53
- - cosine_recall@3
54
- - cosine_recall@5
55
- - cosine_ndcg@10
56
- - cosine_mrr@1
57
- - cosine_mrr@5
58
- - cosine_mrr@10
59
- - cosine_map@100
60
- model-index:
61
- - name: SentenceTransformer based on google/embeddinggemma-300m
62
- results:
63
- - task:
64
- type: information-retrieval
65
- name: Information Retrieval
66
- dataset:
67
- name: val
68
- type: val
69
- metrics:
70
- - type: cosine_accuracy@1
71
- value: 0.0
72
- name: Cosine Accuracy@1
73
- - type: cosine_accuracy@3
74
- value: 0.0
75
- name: Cosine Accuracy@3
76
- - type: cosine_accuracy@5
77
- value: 2.5e-05
78
- name: Cosine Accuracy@5
79
- - type: cosine_precision@1
80
- value: 0.0
81
- name: Cosine Precision@1
82
- - type: cosine_precision@3
83
- value: 0.0
84
- name: Cosine Precision@3
85
- - type: cosine_precision@5
86
- value: 5.0e-06
87
- name: Cosine Precision@5
88
- - type: cosine_recall@1
89
- value: 0.0
90
- name: Cosine Recall@1
91
- - type: cosine_recall@3
92
- value: 0.0
93
- name: Cosine Recall@3
94
- - type: cosine_recall@5
95
- value: 2.5e-05
96
- name: Cosine Recall@5
97
- - type: cosine_ndcg@10
98
- value: 4.0643645983386815e-05
99
- name: Cosine Ndcg@10
100
- - type: cosine_mrr@1
101
- value: 0.0
102
- name: Cosine Mrr@1
103
- - type: cosine_mrr@5
104
- value: 5.0e-06
105
- name: Cosine Mrr@5
106
- - type: cosine_mrr@10
107
- value: 1.697420634920635e-05
108
- name: Cosine Mrr@10
109
- - type: cosine_map@100
110
- value: 5.219463554638405e-05
111
- name: Cosine Map@100
112
  ---
113
 
114
- # SentenceTransformer based on google/embeddinggemma-300m
115
 
116
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google/embeddinggemma-300m](https://huggingface.co/google/embeddinggemma-300m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
117
 
118
  ## Model Details
119
 
120
  ### Model Description
121
  - **Model Type:** Sentence Transformer
122
- - **Base model:** [google/embeddinggemma-300m](https://huggingface.co/google/embeddinggemma-300m) <!-- at revision 57c266a740f537b4dc058e1b0cda161fd15afa75 -->
123
  - **Maximum Sequence Length:** 128 tokens
124
- - **Output Dimensionality:** 768 dimensions
125
  - **Similarity Function:** Cosine Similarity
126
  <!-- - **Training Dataset:** Unknown -->
127
  <!-- - **Language:** Unknown -->
@@ -137,11 +65,8 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [g
137
 
138
  ```
139
  SentenceTransformer(
140
- (0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
141
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
142
- (2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
143
- (3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
144
- (4): Normalize()
145
  )
146
  ```
147
 
@@ -160,25 +85,23 @@ Then you can load this model and run inference.
160
  from sentence_transformers import SentenceTransformer
161
 
162
  # Download from the 🤗 Hub
163
- model = SentenceTransformer("redis/model-b-structured")
164
  # Run inference
165
- queries = [
166
- "What is the difference between economic growth and economic development?",
 
 
167
  ]
168
- documents = [
169
- 'What is the difference between economic growth and economic development?',
170
- 'the difference between economic growth and economic development is What?',
171
- 'How cold can the Gobi Desert get, and how do its average temperatures compare to the ones in the Simpson Desert?',
172
- ]
173
- query_embeddings = model.encode_query(queries)
174
- document_embeddings = model.encode_document(documents)
175
- print(query_embeddings.shape, document_embeddings.shape)
176
- # [1, 768] [3, 768]
177
 
178
  # Get the similarity scores for the embeddings
179
- similarities = model.similarity(query_embeddings, document_embeddings)
180
  print(similarities)
181
- # tensor([[nan, nan, nan]])
 
 
182
  ```
183
 
184
  <!--
@@ -205,32 +128,6 @@ You can finetune this model on your own dataset.
205
  *List how the model may foreseeably be misused and address what users ought not to do with the model.*
206
  -->
207
 
208
- ## Evaluation
209
-
210
- ### Metrics
211
-
212
- #### Information Retrieval
213
-
214
- * Dataset: `val`
215
- * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
216
-
217
- | Metric | Value |
218
- |:-------------------|:--------|
219
- | cosine_accuracy@1 | 0.0 |
220
- | cosine_accuracy@3 | 0.0 |
221
- | cosine_accuracy@5 | 0.0 |
222
- | cosine_precision@1 | 0.0 |
223
- | cosine_precision@3 | 0.0 |
224
- | cosine_precision@5 | 0.0 |
225
- | cosine_recall@1 | 0.0 |
226
- | cosine_recall@3 | 0.0 |
227
- | cosine_recall@5 | 0.0 |
228
- | **cosine_ndcg@10** | **0.0** |
229
- | cosine_mrr@1 | 0.0 |
230
- | cosine_mrr@5 | 0.0 |
231
- | cosine_mrr@10 | 0.0 |
232
- | cosine_map@100 | 0.0001 |
233
-
234
  <!--
235
  ## Bias, Risks and Limitations
236
 
@@ -249,49 +146,23 @@ You can finetune this model on your own dataset.
249
 
250
  #### Unnamed Dataset
251
 
252
- * Size: 713,743 training samples
253
- * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
254
- * Approximate statistics based on the first 1000 samples:
255
- | | anchor | positive | negative |
256
- |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
257
- | type | string | string | string |
258
- | details | <ul><li>min: 6 tokens</li><li>mean: 15.9 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.86 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.63 tokens</li><li>max: 61 tokens</li></ul> |
259
- * Samples:
260
- | anchor | positive | negative |
261
- |:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|
262
- | <code>Which one is better Linux OS? Ubuntu or Mint?</code> | <code>Why do you use Linux Mint?</code> | <code>Which one is not better Linux OS ? Ubuntu or Mint ?</code> |
263
- | <code>What is flow?</code> | <code>What is flow?</code> | <code>What are flow lines?</code> |
264
- | <code>How is Trump planning to get Mexico to pay for his supposed wall?</code> | <code>How is it possible for Donald Trump to force Mexico to pay for the wall?</code> | <code>Why do we connect the positive terminal before the negative terminal to ground in a vehicle battery?</code> |
265
- * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
266
- ```json
267
- {
268
- "scale": 7.0,
269
- "similarity_fct": "cos_sim",
270
- "gather_across_devices": false
271
- }
272
- ```
273
-
274
- ### Evaluation Dataset
275
-
276
- #### Unnamed Dataset
277
-
278
- * Size: 40,000 evaluation samples
279
- * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
280
  * Approximate statistics based on the first 1000 samples:
281
- | | anchor | positive | negative |
282
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
283
  | type | string | string | string |
284
- | details | <ul><li>min: 6 tokens</li><li>mean: 15.38 tokens</li><li>max: 75 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.39 tokens</li><li>max: 75 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.58 tokens</li><li>max: 68 tokens</li></ul> |
285
  * Samples:
286
- | anchor | positive | negative |
287
- |:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
288
- | <code>Why are all my questions on Quora marked needing improvement?</code> | <code>Why are all my questions immediately being marked as needing improvement?</code> | <code>For a post-graduate student in IIT, is it allowed to take an external scholarship as a top-up to his/her MHRD assistantship?</code> |
289
- | <code>Can blue butter fly needle with vaccum tube be reused? Is it HIV risk? . Heard the needle is too small to be reused . Had blood draw at clinic?</code> | <code>Can blue butter fly needle with vaccum tube be reused? Is it HIV risk? . Heard the needle is too small to be reused . Had blood draw at clinic?</code> | <code>Can blue butter fly needle with vaccum tube be reused not ? Is it HIV risk ? . Heard the needle is too small to be reused . Had blood draw at clinic ?</code> |
290
- | <code>Why do people still believe the world is flat?</code> | <code>Why are there still people who believe the world is flat?</code> | <code>I'm not able to buy Udemy course .it is not accepting mine and my friends debit card.my card can be used for Flipkart .how to purchase now?</code> |
291
  * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
292
  ```json
293
  {
294
- "scale": 7.0,
295
  "similarity_fct": "cos_sim",
296
  "gather_across_devices": false
297
  }
@@ -300,30 +171,17 @@ You can finetune this model on your own dataset.
300
  ### Training Hyperparameters
301
  #### Non-Default Hyperparameters
302
 
303
- - `eval_strategy`: steps
304
  - `per_device_train_batch_size`: 64
305
  - `per_device_eval_batch_size`: 64
306
- - `learning_rate`: 2e-05
307
- - `weight_decay`: 0.0001
308
- - `max_steps`: 5000
309
- - `warmup_ratio`: 0.1
310
  - `fp16`: True
311
- - `dataloader_drop_last`: True
312
- - `dataloader_num_workers`: 1
313
- - `dataloader_prefetch_factor`: 1
314
- - `load_best_model_at_end`: True
315
- - `optim`: adamw_torch
316
- - `ddp_find_unused_parameters`: False
317
- - `push_to_hub`: True
318
- - `hub_model_id`: redis/model-b-structured
319
- - `eval_on_start`: True
320
 
321
  #### All Hyperparameters
322
  <details><summary>Click to expand</summary>
323
 
324
  - `overwrite_output_dir`: False
325
  - `do_predict`: False
326
- - `eval_strategy`: steps
327
  - `prediction_loss_only`: True
328
  - `per_device_train_batch_size`: 64
329
  - `per_device_eval_batch_size`: 64
@@ -332,17 +190,17 @@ You can finetune this model on your own dataset.
332
  - `gradient_accumulation_steps`: 1
333
  - `eval_accumulation_steps`: None
334
  - `torch_empty_cache_steps`: None
335
- - `learning_rate`: 2e-05
336
- - `weight_decay`: 0.0001
337
  - `adam_beta1`: 0.9
338
  - `adam_beta2`: 0.999
339
  - `adam_epsilon`: 1e-08
340
- - `max_grad_norm`: 1.0
341
- - `num_train_epochs`: 3.0
342
- - `max_steps`: 5000
343
  - `lr_scheduler_type`: linear
344
  - `lr_scheduler_kwargs`: {}
345
- - `warmup_ratio`: 0.1
346
  - `warmup_steps`: 0
347
  - `log_level`: passive
348
  - `log_level_replica`: warning
@@ -370,14 +228,14 @@ You can finetune this model on your own dataset.
370
  - `tpu_num_cores`: None
371
  - `tpu_metrics_debug`: False
372
  - `debug`: []
373
- - `dataloader_drop_last`: True
374
- - `dataloader_num_workers`: 1
375
- - `dataloader_prefetch_factor`: 1
376
  - `past_index`: -1
377
  - `disable_tqdm`: False
378
  - `remove_unused_columns`: True
379
  - `label_names`: None
380
- - `load_best_model_at_end`: True
381
  - `ignore_data_skip`: False
382
  - `fsdp`: []
383
  - `fsdp_min_num_params`: 0
@@ -387,23 +245,23 @@ You can finetune this model on your own dataset.
387
  - `parallelism_config`: None
388
  - `deepspeed`: None
389
  - `label_smoothing_factor`: 0.0
390
- - `optim`: adamw_torch
391
  - `optim_args`: None
392
  - `adafactor`: False
393
  - `group_by_length`: False
394
  - `length_column_name`: length
395
  - `project`: huggingface
396
  - `trackio_space_id`: trackio
397
- - `ddp_find_unused_parameters`: False
398
  - `ddp_bucket_cap_mb`: None
399
  - `ddp_broadcast_buffers`: False
400
  - `dataloader_pin_memory`: True
401
  - `dataloader_persistent_workers`: False
402
  - `skip_memory_metrics`: True
403
  - `use_legacy_prediction_loop`: False
404
- - `push_to_hub`: True
405
  - `resume_from_checkpoint`: None
406
- - `hub_model_id`: redis/model-b-structured
407
  - `hub_strategy`: every_save
408
  - `hub_private_repo`: None
409
  - `hub_always_push`: False
@@ -430,43 +288,31 @@ You can finetune this model on your own dataset.
430
  - `neftune_noise_alpha`: None
431
  - `optim_target_modules`: None
432
  - `batch_eval_metrics`: False
433
- - `eval_on_start`: True
434
  - `use_liger_kernel`: False
435
  - `liger_kernel_config`: None
436
  - `eval_use_gather_object`: False
437
  - `average_tokens_across_devices`: True
438
  - `prompts`: None
439
  - `batch_sampler`: batch_sampler
440
- - `multi_dataset_batch_sampler`: proportional
441
  - `router_mapping`: {}
442
  - `learning_rate_mapping`: {}
443
 
444
  </details>
445
 
446
  ### Training Logs
447
- | Epoch | Step | Training Loss | Validation Loss | val_cosine_ndcg@10 |
448
- |:------:|:----:|:-------------:|:---------------:|:------------------:|
449
- | 0 | 0 | - | 1.1196 | 0.8084 |
450
- | 0.0224 | 250 | 0.3432 | 0.2247 | 0.8873 |
451
- | 0.0448 | 500 | 0.2279 | 0.2306 | 0.8821 |
452
- | 0.0673 | 750 | 0.2253 | 0.2339 | 0.8802 |
453
- | 0.0897 | 1000 | 0.2231 | 0.2147 | 0.8882 |
454
- | 0.1121 | 1250 | 0.2091 | 0.2115 | 0.8881 |
455
- | 0.1345 | 1500 | 0.2145 | 0.2059 | 0.8886 |
456
- | 0.1569 | 1750 | 0.2049 | 0.2025 | 0.8910 |
457
- | 0.1793 | 2000 | 0.2066 | nan | 0.0346 |
458
- | 0.2018 | 2250 | 0.2012 | 0.2087 | 0.8929 |
459
- | 0.2242 | 2500 | 0.2175 | 0.2187 | 0.8960 |
460
- | 0.2466 | 2750 | 0.2311 | nan | 0.2274 |
461
- | 0.2690 | 3000 | 0.2477 | nan | 0.1686 |
462
- | 0.2914 | 3250 | 0.2484 | nan | 0.1686 |
463
- | 0.3138 | 3500 | 0.253 | nan | 0.1686 |
464
- | 0.3363 | 3750 | 0.249 | nan | 0.1686 |
465
- | 0.3587 | 4000 | 0.2524 | nan | 0.1686 |
466
- | 0.3811 | 4250 | 0.2502 | nan | 0.0000 |
467
- | 0.4035 | 4500 | 0.0 | nan | 0.0000 |
468
- | 0.4259 | 4750 | 0.0 | nan | 0.0000 |
469
- | 0.4484 | 5000 | 0.0 | nan | 0.0000 |
470
 
471
 
472
  ### Framework Versions
 
5
  - feature-extraction
6
  - dense
7
  - generated_from_trainer
8
+ - dataset_size:100000
9
  - loss:MultipleNegativesRankingLoss
10
+ base_model: prajjwal1/bert-small
11
  widget:
12
+ - source_sentence: How do I calculate IQ?
13
  sentences:
14
+ - What is the easiest way to know my IQ?
15
+ - How do I calculate not IQ ?
16
+ - What are some creative and innovative business ideas with less investment in India?
17
+ - source_sentence: How can I learn martial arts in my home?
 
18
  sentences:
19
+ - How can I learn martial arts by myself?
20
+ - What are the advantages and disadvantages of investing in gold?
21
+ - Can people see that I have looked at their pictures on instagram if I am not following
22
+ them?
23
+ - source_sentence: When Enterprise picks you up do you have to take them back?
24
  sentences:
25
+ - Are there any software Training institute in Tuticorin?
26
+ - When Enterprise picks you up do you have to take them back?
27
+ - When Enterprise picks you up do them have to take youback?
28
+ - source_sentence: What are some non-capital goods?
 
 
 
29
  sentences:
30
+ - What are capital goods?
31
+ - How is the value of [math]\pi[/math] calculated?
32
+ - What are some non-capital goods?
33
+ - source_sentence: What is the QuickBooks technical support phone number in New York?
34
  sentences:
35
+ - What caused the Great Depression?
36
+ - Can I apply for PR in Canada?
37
+ - Which is the best QuickBooks Hosting Support Number in New York?
 
38
  pipeline_tag: sentence-similarity
39
  library_name: sentence-transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  ---
41
 
42
+ # SentenceTransformer based on prajjwal1/bert-small
43
 
44
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small). It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
45
 
46
  ## Model Details
47
 
48
  ### Model Description
49
  - **Model Type:** Sentence Transformer
50
+ - **Base model:** [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small) <!-- at revision 0ec5f86f27c1a77d704439db5e01c307ea11b9d4 -->
51
  - **Maximum Sequence Length:** 128 tokens
52
+ - **Output Dimensionality:** 512 dimensions
53
  - **Similarity Function:** Cosine Similarity
54
  <!-- - **Training Dataset:** Unknown -->
55
  <!-- - **Language:** Unknown -->
 
65
 
66
  ```
67
  SentenceTransformer(
68
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
69
+ (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
 
 
 
70
  )
71
  ```
72
 
 
85
  from sentence_transformers import SentenceTransformer
86
 
87
  # Download from the 🤗 Hub
88
+ model = SentenceTransformer("sentence_transformers_model_id")
89
  # Run inference
90
+ sentences = [
91
+ 'What is the QuickBooks technical support phone number in New York?',
92
+ 'Which is the best QuickBooks Hosting Support Number in New York?',
93
+ 'Can I apply for PR in Canada?',
94
  ]
95
+ embeddings = model.encode(sentences)
96
+ print(embeddings.shape)
97
+ # [3, 512]
 
 
 
 
 
 
98
 
99
  # Get the similarity scores for the embeddings
100
+ similarities = model.similarity(embeddings, embeddings)
101
  print(similarities)
102
+ # tensor([[1.0000, 0.8563, 0.0594],
103
+ # [0.8563, 1.0000, 0.1245],
104
+ # [0.0594, 0.1245, 1.0000]])
105
  ```
106
 
107
  <!--
 
128
  *List how the model may foreseeably be misused and address what users ought not to do with the model.*
129
  -->
130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
  <!--
132
  ## Bias, Risks and Limitations
133
 
 
146
 
147
  #### Unnamed Dataset
148
 
149
+ * Size: 100,000 training samples
150
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
  * Approximate statistics based on the first 1000 samples:
152
+ | | sentence_0 | sentence_1 | sentence_2 |
153
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
154
  | type | string | string | string |
155
+ | details | <ul><li>min: 6 tokens</li><li>mean: 15.79 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.68 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.37 tokens</li><li>max: 67 tokens</li></ul> |
156
  * Samples:
157
+ | sentence_0 | sentence_1 | sentence_2 |
158
+ |:-----------------------------------------------------------------|:-----------------------------------------------------------------|:----------------------------------------------------------------------------------|
159
+ | <code>Is masturbating bad for boys?</code> | <code>Is masturbating bad for boys?</code> | <code>How harmful or unhealthy is masturbation?</code> |
160
+ | <code>Does a train engine move in reverse?</code> | <code>Does a train engine move in reverse?</code> | <code>Time moves forward, not in reverse. Doesn't that make time a vector?</code> |
161
+ | <code>What is the most badass thing anyone has ever done?</code> | <code>What is the most badass thing anyone has ever done?</code> | <code>anyone is the most badass thing Whathas ever done?</code> |
162
  * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
163
  ```json
164
  {
165
+ "scale": 20.0,
166
  "similarity_fct": "cos_sim",
167
  "gather_across_devices": false
168
  }
 
171
  ### Training Hyperparameters
172
  #### Non-Default Hyperparameters
173
 
 
174
  - `per_device_train_batch_size`: 64
175
  - `per_device_eval_batch_size`: 64
 
 
 
 
176
  - `fp16`: True
177
+ - `multi_dataset_batch_sampler`: round_robin
 
 
 
 
 
 
 
 
178
 
179
  #### All Hyperparameters
180
  <details><summary>Click to expand</summary>
181
 
182
  - `overwrite_output_dir`: False
183
  - `do_predict`: False
184
+ - `eval_strategy`: no
185
  - `prediction_loss_only`: True
186
  - `per_device_train_batch_size`: 64
187
  - `per_device_eval_batch_size`: 64
 
190
  - `gradient_accumulation_steps`: 1
191
  - `eval_accumulation_steps`: None
192
  - `torch_empty_cache_steps`: None
193
+ - `learning_rate`: 5e-05
194
+ - `weight_decay`: 0.0
195
  - `adam_beta1`: 0.9
196
  - `adam_beta2`: 0.999
197
  - `adam_epsilon`: 1e-08
198
+ - `max_grad_norm`: 1
199
+ - `num_train_epochs`: 3
200
+ - `max_steps`: -1
201
  - `lr_scheduler_type`: linear
202
  - `lr_scheduler_kwargs`: {}
203
+ - `warmup_ratio`: 0.0
204
  - `warmup_steps`: 0
205
  - `log_level`: passive
206
  - `log_level_replica`: warning
 
228
  - `tpu_num_cores`: None
229
  - `tpu_metrics_debug`: False
230
  - `debug`: []
231
+ - `dataloader_drop_last`: False
232
+ - `dataloader_num_workers`: 0
233
+ - `dataloader_prefetch_factor`: None
234
  - `past_index`: -1
235
  - `disable_tqdm`: False
236
  - `remove_unused_columns`: True
237
  - `label_names`: None
238
+ - `load_best_model_at_end`: False
239
  - `ignore_data_skip`: False
240
  - `fsdp`: []
241
  - `fsdp_min_num_params`: 0
 
245
  - `parallelism_config`: None
246
  - `deepspeed`: None
247
  - `label_smoothing_factor`: 0.0
248
+ - `optim`: adamw_torch_fused
249
  - `optim_args`: None
250
  - `adafactor`: False
251
  - `group_by_length`: False
252
  - `length_column_name`: length
253
  - `project`: huggingface
254
  - `trackio_space_id`: trackio
255
+ - `ddp_find_unused_parameters`: None
256
  - `ddp_bucket_cap_mb`: None
257
  - `ddp_broadcast_buffers`: False
258
  - `dataloader_pin_memory`: True
259
  - `dataloader_persistent_workers`: False
260
  - `skip_memory_metrics`: True
261
  - `use_legacy_prediction_loop`: False
262
+ - `push_to_hub`: False
263
  - `resume_from_checkpoint`: None
264
+ - `hub_model_id`: None
265
  - `hub_strategy`: every_save
266
  - `hub_private_repo`: None
267
  - `hub_always_push`: False
 
288
  - `neftune_noise_alpha`: None
289
  - `optim_target_modules`: None
290
  - `batch_eval_metrics`: False
291
+ - `eval_on_start`: False
292
  - `use_liger_kernel`: False
293
  - `liger_kernel_config`: None
294
  - `eval_use_gather_object`: False
295
  - `average_tokens_across_devices`: True
296
  - `prompts`: None
297
  - `batch_sampler`: batch_sampler
298
+ - `multi_dataset_batch_sampler`: round_robin
299
  - `router_mapping`: {}
300
  - `learning_rate_mapping`: {}
301
 
302
  </details>
303
 
304
  ### Training Logs
305
+ | Epoch | Step | Training Loss |
306
+ |:------:|:----:|:-------------:|
307
+ | 0.3199 | 500 | 0.4294 |
308
+ | 0.6398 | 1000 | 0.1268 |
309
+ | 0.9597 | 1500 | 0.1 |
310
+ | 1.2796 | 2000 | 0.0792 |
311
+ | 1.5995 | 2500 | 0.0706 |
312
+ | 1.9194 | 3000 | 0.0687 |
313
+ | 2.2393 | 3500 | 0.0584 |
314
+ | 2.5592 | 4000 | 0.057 |
315
+ | 2.8791 | 4500 | 0.0581 |
 
 
 
 
 
 
 
 
 
 
 
 
316
 
317
 
318
  ### Framework Versions
config.json CHANGED
@@ -1,60 +1,25 @@
1
  {
2
- "_sliding_window_pattern": 6,
3
  "architectures": [
4
- "Gemma3TextModel"
5
  ],
6
- "attention_bias": false,
7
- "attention_dropout": 0.0,
8
- "attn_logit_softcapping": null,
9
- "bos_token_id": 2,
10
  "dtype": "float32",
11
- "eos_token_id": 1,
12
- "final_logit_softcapping": null,
13
- "head_dim": 256,
14
- "hidden_activation": "gelu_pytorch_tanh",
15
- "hidden_size": 768,
16
  "initializer_range": 0.02,
17
- "intermediate_size": 1152,
18
- "layer_types": [
19
- "sliding_attention",
20
- "sliding_attention",
21
- "sliding_attention",
22
- "sliding_attention",
23
- "sliding_attention",
24
- "full_attention",
25
- "sliding_attention",
26
- "sliding_attention",
27
- "sliding_attention",
28
- "sliding_attention",
29
- "sliding_attention",
30
- "full_attention",
31
- "sliding_attention",
32
- "sliding_attention",
33
- "sliding_attention",
34
- "sliding_attention",
35
- "sliding_attention",
36
- "full_attention",
37
- "sliding_attention",
38
- "sliding_attention",
39
- "sliding_attention",
40
- "sliding_attention",
41
- "sliding_attention",
42
- "full_attention"
43
- ],
44
- "max_position_embeddings": 2048,
45
- "model_type": "gemma3_text",
46
- "num_attention_heads": 3,
47
- "num_hidden_layers": 24,
48
- "num_key_value_heads": 1,
49
  "pad_token_id": 0,
50
- "query_pre_attn_scalar": 256,
51
- "rms_norm_eps": 1e-06,
52
- "rope_local_base_freq": 10000.0,
53
- "rope_scaling": null,
54
- "rope_theta": 1000000.0,
55
- "sliding_window": 257,
56
  "transformers_version": "4.57.3",
57
- "use_bidirectional_attention": true,
58
  "use_cache": true,
59
- "vocab_size": 262144
60
  }
 
1
  {
 
2
  "architectures": [
3
+ "BertModel"
4
  ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
 
 
7
  "dtype": "float32",
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
 
12
  "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
 
 
 
 
 
21
  "transformers_version": "4.57.3",
22
+ "type_vocab_size": 2,
23
  "use_cache": true,
24
+ "vocab_size": 30522
25
  }
config_sentence_transformers.json CHANGED
@@ -6,20 +6,8 @@
6
  "pytorch": "2.9.1+cu128"
7
  },
8
  "prompts": {
9
- "query": "task: search result | query: ",
10
- "document": "title: none | text: ",
11
- "BitextMining": "task: search result | query: ",
12
- "Clustering": "task: clustering | query: ",
13
- "Classification": "task: classification | query: ",
14
- "InstructionRetrieval": "task: code retrieval | query: ",
15
- "MultilabelClassification": "task: classification | query: ",
16
- "PairClassification": "task: sentence similarity | query: ",
17
- "Reranking": "task: search result | query: ",
18
- "Retrieval": "task: search result | query: ",
19
- "Retrieval-query": "task: search result | query: ",
20
- "Retrieval-document": "title: none | text: ",
21
- "STS": "task: sentence similarity | query: ",
22
- "Summarization": "task: summarization | query: "
23
  },
24
  "default_prompt_name": null,
25
  "similarity_fn_name": "cosine"
 
6
  "pytorch": "2.9.1+cu128"
7
  },
8
  "prompts": {
9
+ "query": "",
10
+ "document": ""
 
 
 
 
 
 
 
 
 
 
 
 
11
  },
12
  "default_prompt_name": null,
13
  "similarity_fn_name": "cosine"
eval/Information-Retrieval_evaluation_val_results.csv CHANGED
@@ -679,3 +679,52 @@ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Precisi
679
  0.4035150645624103,4500,0.0,0.0,2.5e-05,0.0,0.0,0.0,0.0,5e-06,2.5e-05,0.0,5e-06,1.697420634920635e-05,4.0643645983386815e-05,5.219463554638405e-05
680
  0.4259325681492109,4750,0.0,0.0,2.5e-05,0.0,0.0,0.0,0.0,5e-06,2.5e-05,0.0,5e-06,1.697420634920635e-05,4.0643645983386815e-05,5.219463554638405e-05
681
  0.4483500717360115,5000,0.0,0.0,2.5e-05,0.0,0.0,0.0,0.0,5e-06,2.5e-05,0.0,5e-06,1.697420634920635e-05,4.0643645983386815e-05,5.219463554638405e-05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
679
  0.4035150645624103,4500,0.0,0.0,2.5e-05,0.0,0.0,0.0,0.0,5e-06,2.5e-05,0.0,5e-06,1.697420634920635e-05,4.0643645983386815e-05,5.219463554638405e-05
680
  0.4259325681492109,4750,0.0,0.0,2.5e-05,0.0,0.0,0.0,0.0,5e-06,2.5e-05,0.0,5e-06,1.697420634920635e-05,4.0643645983386815e-05,5.219463554638405e-05
681
  0.4483500717360115,5000,0.0,0.0,2.5e-05,0.0,0.0,0.0,0.0,5e-06,2.5e-05,0.0,5e-06,1.697420634920635e-05,4.0643645983386815e-05,5.219463554638405e-05
682
+ 0,0,0.751925,0.887,0.917,0.751925,0.751925,0.29566666666666663,0.887,0.18340000000000004,0.917,0.751925,0.821192916666658,0.8254150297618993,0.8556052902179354,0.8278830901193039
683
+ 0.0896700143472023,250,0.80465,0.896325,0.924375,0.80465,0.80465,0.298775,0.896325,0.184875,0.924375,0.80465,0.852659999999995,0.8565211904761864,0.8800328213130088,0.8588291102423605
684
+ 0.1793400286944046,500,0.820025,0.89875,0.9253,0.820025,0.820025,0.2995833333333333,0.89875,0.18506,0.9253,0.820025,0.8615108333333292,0.8654402579365047,0.8870095227636031,0.8676799907230608
685
+ 0.26901004304160686,750,0.821125,0.899775,0.925575,0.821125,0.821125,0.2999249999999999,0.899775,0.185115,0.925575,0.821125,0.8624174999999963,0.86642163690476,0.8879143529201894,0.8686602623965786
686
+ 0.3586800573888092,1000,0.822575,0.89985,0.9263,0.822575,0.822575,0.29994999999999994,0.89985,0.18526,0.9263,0.822575,0.8632583333333298,0.8672305357142832,0.8886276582361335,0.8694671920858201
687
+ 0.4483500717360115,1250,0.822725,0.9006,0.926475,0.822725,0.822725,0.3001999999999999,0.9006,0.18529500000000004,0.926475,0.822725,0.8636683333333298,0.8676871031746004,0.8890995637213502,0.869907342550433
688
+ 0.5380200860832137,1500,0.823925,0.900825,0.926275,0.823925,0.823925,0.300275,0.900825,0.18525500000000003,0.926275,0.823925,0.8643383333333308,0.8683831448412673,0.8896475955998834,0.8706135646799439
689
+ 0.6276901004304161,1750,0.82525,0.902,0.927425,0.82525,0.82525,0.30066666666666664,0.902,0.185485,0.927425,0.82525,0.8655337499999965,0.8696110317460287,0.8909058933560547,0.8717896326318644
690
+ 0.7173601147776184,2000,0.8246,0.902325,0.92685,0.8246,0.8246,0.30077499999999996,0.902325,0.18537000000000003,0.92685,0.8246,0.8651599999999963,0.8692929960317426,0.8906287939435462,0.8714942451461398
691
+ 0.8070301291248206,2250,0.82515,0.902525,0.927075,0.82515,0.82515,0.3008416666666666,0.902525,0.185415,0.927075,0.82515,0.8654974999999964,0.8697102480158696,0.8911223828711662,0.8718783764760456
692
+ 0.896700143472023,2500,0.824625,0.902775,0.927675,0.824625,0.824625,0.3009249999999999,0.902775,0.185535,0.927675,0.824625,0.8654166666666628,0.8695106051587264,0.8909426642160327,0.8717054008785079
693
+ 0.9863701578192252,2750,0.825375,0.9027,0.9276,0.825375,0.825375,0.3009,0.9027,0.18552000000000002,0.9276,0.825375,0.8658224999999957,0.8699597023809489,0.891320667068452,0.8721370407336589
694
+ 1.0760401721664274,3000,0.826025,0.9025,0.927675,0.826025,0.826025,0.30083333333333323,0.9025,0.18553500000000003,0.927675,0.826025,0.8662079166666632,0.8702979464285674,0.8915119967833314,0.872510571142309
695
+ 1.16571018651363,3250,0.825725,0.90265,0.9274,0.825725,0.825725,0.3008833333333333,0.90265,0.18548,0.9274,0.825725,0.8659145833333294,0.8700107539682509,0.891222478634554,0.8722470996330639
696
+ 1.2553802008608321,3500,0.82525,0.90305,0.928175,0.82525,0.82525,0.3010166666666666,0.90305,0.18563500000000002,0.928175,0.82525,0.8659366666666619,0.8700273908730114,0.8914502713155418,0.8722180663314848
697
+ 1.3450502152080344,3750,0.826225,0.902825,0.928275,0.826225,0.826225,0.3009416666666666,0.902825,0.18565500000000001,0.928275,0.826225,0.8664804166666623,0.8706096130952335,0.8919543885192465,0.8727891622700147
698
+ 1.4347202295552366,4000,0.8264,0.902725,0.927975,0.8264,0.8264,0.3009083333333333,0.902725,0.18559500000000004,0.927975,0.8264,0.8664483333333288,0.8706402281745992,0.891983843733548,0.8728380784984238
699
+ 1.524390243902439,4250,0.8266,0.9036,0.929175,0.8266,0.8266,0.30119999999999997,0.9036,0.18583500000000003,0.929175,0.8266,0.8670083333333283,0.871095853174598,0.8924808083686762,0.8732574599816396
700
+ 1.6140602582496413,4500,0.826675,0.90375,0.928825,0.826675,0.826675,0.30124999999999996,0.90375,0.185765,0.928825,0.826675,0.8669558333333298,0.8710873214285674,0.892471870823939,0.8732517911596164
701
+ 1.7037302725968435,4750,0.826025,0.90415,0.9284,0.826025,0.826025,0.3013833333333333,0.90415,0.18567999999999998,0.9284,0.826025,0.866584999999996,0.8707971230158688,0.8922687828652679,0.8729724881673945
702
+ 1.793400286944046,5000,0.8265,0.9048,0.929275,0.8265,0.8265,0.3016,0.9048,0.18585500000000002,0.929275,0.8265,0.8670866666666623,0.8711956349206301,0.8926408625431878,0.8733700026530962
703
+ 1.8830703012912482,5250,0.8266,0.903875,0.92895,0.8266,0.8266,0.3012916666666666,0.903875,0.18579000000000004,0.92895,0.8266,0.8669020833333292,0.8710456150793603,0.8924858518633457,0.8732353782999096
704
+ 1.9727403156384504,5500,0.8271,0.904475,0.928975,0.8271,0.8271,0.3014916666666666,0.904475,0.18579500000000002,0.928975,0.8271,0.867337916666662,0.8714944543650747,0.892834931269629,0.8736889896748274
705
+ 2.062410329985653,5750,0.827175,0.90435,0.92955,0.827175,0.827175,0.30144999999999994,0.90435,0.18591000000000005,0.92955,0.827175,0.8675820833333281,0.8716831349206297,0.8930074386378707,0.8738795306452989
706
+ 2.152080344332855,6000,0.8271,0.904575,0.929575,0.8271,0.8271,0.30152499999999993,0.904575,0.18591500000000005,0.929575,0.8271,0.8676179166666625,0.8717332341269798,0.8931109587880816,0.8739079151666905
707
+ 2.2417503586800573,6250,0.827225,0.904475,0.92955,0.827225,0.827225,0.3014916666666666,0.904475,0.18591000000000005,0.92955,0.827225,0.8675649999999959,0.8717064186507892,0.8931235559174038,0.873877398407616
708
+ 2.33142037302726,6500,0.8273,0.905225,0.929775,0.8273,0.8273,0.30174166666666663,0.905225,0.185955,0.929775,0.8273,0.8677670833333289,0.8718472718253913,0.8932079921309838,0.8740305777000185
709
+ 2.421090387374462,6750,0.827425,0.905075,0.9297,0.827425,0.827425,0.3016916666666666,0.905075,0.18594000000000002,0.9297,0.827425,0.8678008333333294,0.8718941964285661,0.8932542348032559,0.8740757678933109
710
+ 2.5107604017216643,7000,0.8269,0.90525,0.9296,0.8269,0.8269,0.3017499999999999,0.90525,0.18592,0.9296,0.8269,0.867580833333329,0.8717025595238047,0.8931301877553839,0.8738871433454486
711
+ 2.6004304160688667,7250,0.827225,0.904975,0.929675,0.827225,0.827225,0.3016583333333333,0.904975,0.185935,0.929675,0.827225,0.8677058333333296,0.8717949007936467,0.8931569064335827,0.8739934443060552
712
+ 2.6901004304160687,7500,0.82755,0.9051,0.93,0.82755,0.82755,0.3017,0.9051,0.18600000000000003,0.93,0.82755,0.8679774999999965,0.8720509126984096,0.8933746803361129,0.8742608501545442
713
+ 2.779770444763271,7750,0.827825,0.9054,0.929975,0.827825,0.827825,0.30179999999999996,0.9054,0.18599500000000002,0.929975,0.827825,0.8681562499999959,0.8722401388888844,0.8935616290842326,0.8744330985543757
714
+ 2.869440459110473,8000,0.828275,0.905375,0.92995,0.828275,0.828275,0.3017916666666666,0.905375,0.18599000000000004,0.92995,0.828275,0.8683970833333294,0.8725187599206307,0.8937878693376755,0.8747118448510659
715
+ 2.9591104734576756,8250,0.8276,0.905175,0.9303,0.8276,0.8276,0.301725,0.905175,0.18606000000000003,0.9303,0.8276,0.8680820833333295,0.8721759920634872,0.8935945905099506,0.8743330189280194
716
+ 3.048780487804878,8500,0.828325,0.90515,0.930475,0.828325,0.828325,0.30171666666666663,0.90515,0.18609500000000004,0.930475,0.828325,0.8684974999999953,0.8725453273809473,0.8938128351914529,0.8747440172400296
717
+ 3.1384505021520805,8750,0.82795,0.9052,0.9302,0.82795,0.82795,0.30173333333333324,0.9052,0.18604,0.9302,0.82795,0.8682741666666624,0.8724082142857096,0.893791889973397,0.8745838158482304
718
+ 3.2281205164992826,9000,0.8283,0.905375,0.930825,0.8283,0.8283,0.3017916666666666,0.905375,0.186165,0.930825,0.8283,0.8685966666666627,0.8726080357142809,0.8938966727680374,0.8747960624601541
719
+ 3.317790530846485,9250,0.82835,0.905475,0.930475,0.82835,0.82835,0.30182499999999995,0.905475,0.18609500000000004,0.930475,0.82835,0.8685666666666628,0.8726975595238055,0.8940499889166927,0.8748546291176182
720
+ 3.407460545193687,9500,0.8283,0.9056,0.930575,0.8283,0.8283,0.30186666666666667,0.9056,0.18611500000000003,0.930575,0.8283,0.8685999999999962,0.8727170337301539,0.8940961677203971,0.8748585659281131
721
+ 3.4971305595408895,9750,0.82805,0.90565,0.930775,0.82805,0.82805,0.3018833333333333,0.90565,0.18615500000000001,0.930775,0.82805,0.8685420833333294,0.8726378075396779,0.8940545972391326,0.8747808576034762
722
+ 3.586800573888092,10000,0.828125,0.9052,0.9304,0.828125,0.828125,0.30173333333333324,0.9052,0.18608000000000002,0.9304,0.828125,0.8683999999999958,0.872550267857138,0.8939721843580628,0.8746969389189057
723
+ 3.6764705882352944,10250,0.828325,0.9055,0.930675,0.828325,0.828325,0.3018333333333333,0.9055,0.18613500000000002,0.930675,0.828325,0.8685495833333294,0.8726263194444398,0.893987547028647,0.874796265410846
724
+ 3.7661406025824964,10500,0.828175,0.905125,0.930675,0.828175,0.828175,0.30170833333333325,0.905125,0.18613500000000002,0.930675,0.828175,0.8684674999999954,0.8725678670634869,0.8939775062267301,0.8747340075836931
725
+ 3.855810616929699,10750,0.82815,0.905175,0.93075,0.82815,0.82815,0.3017249999999999,0.905175,0.18615000000000004,0.93075,0.82815,0.8684716666666625,0.8725727777777725,0.8940086829611978,0.8747196153860665
726
+ 3.945480631276901,11000,0.828675,0.9054,0.93065,0.828675,0.828675,0.3018,0.9054,0.18613000000000002,0.93065,0.828675,0.8687779166666618,0.8729081150793602,0.8942634666022241,0.8750627536951296
727
+ 4.035150645624103,11250,0.8284,0.90535,0.9306,0.8284,0.8284,0.3017833333333333,0.90535,0.18612000000000004,0.9306,0.8284,0.8686220833333292,0.8727696130952336,0.8941853658108053,0.874910002213559
728
+ 4.124820659971306,11500,0.828425,0.905575,0.9308,0.828425,0.828425,0.3018583333333333,0.905575,0.18616000000000002,0.9308,0.828425,0.8687266666666623,0.872845128968249,0.8942524642669559,0.8749859334121904
729
+ 4.214490674318508,11750,0.828225,0.905425,0.930775,0.828225,0.828225,0.30180833333333323,0.905425,0.18615500000000001,0.930775,0.828225,0.8685866666666623,0.8726996329365029,0.8941203987290073,0.8748458978394003
730
+ 4.30416068866571,12000,0.828275,0.90535,0.930675,0.828275,0.828275,0.3017833333333333,0.90535,0.186135,0.930675,0.828275,0.8685570833333288,0.8726829662698361,0.8940991092644636,0.8748315667834753
final_metrics.json CHANGED
@@ -1,16 +1,16 @@
1
  {
2
- "val_cosine_accuracy@1": 0.83545,
3
- "val_cosine_accuracy@3": 0.911175,
4
- "val_cosine_accuracy@5": 0.9366,
5
- "val_cosine_precision@1": 0.83545,
6
- "val_cosine_precision@3": 0.303725,
7
- "val_cosine_precision@5": 0.18732000000000001,
8
- "val_cosine_recall@1": 0.83545,
9
- "val_cosine_recall@3": 0.911175,
10
- "val_cosine_recall@5": 0.9366,
11
- "val_cosine_ndcg@10": 0.8999318372974409,
12
- "val_cosine_mrr@1": 0.83545,
13
- "val_cosine_mrr@5": 0.8751591666666616,
14
- "val_cosine_mrr@10": 0.8790415476190412,
15
- "val_cosine_map@100": 0.8810239994800558
16
  }
 
1
  {
2
+ "val_cosine_accuracy@1": 0.0,
3
+ "val_cosine_accuracy@3": 0.0,
4
+ "val_cosine_accuracy@5": 2.5e-05,
5
+ "val_cosine_precision@1": 0.0,
6
+ "val_cosine_precision@3": 0.0,
7
+ "val_cosine_precision@5": 5e-06,
8
+ "val_cosine_recall@1": 0.0,
9
+ "val_cosine_recall@3": 0.0,
10
+ "val_cosine_recall@5": 2.5e-05,
11
+ "val_cosine_ndcg@10": 4.0643645983386815e-05,
12
+ "val_cosine_mrr@1": 0.0,
13
+ "val_cosine_mrr@5": 5e-06,
14
+ "val_cosine_mrr@10": 1.697420634920635e-05,
15
+ "val_cosine_map@100": 5.219463554638405e-05
16
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:545b247747446f3974b25dce1c7156ba3f4d45cf47a42bc853d38de5dc798cfe
3
- size 1211486072
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c16a8a0c066ce6670147940dcb6ed642b624b948c9a93d349a3f2c82687151c3
3
+ size 90864192
modules.json CHANGED
@@ -10,23 +10,5 @@
10
  "name": "1",
11
  "path": "1_Pooling",
12
  "type": "sentence_transformers.models.Pooling"
13
- },
14
- {
15
- "idx": 2,
16
- "name": "2",
17
- "path": "2_Dense",
18
- "type": "sentence_transformers.models.Dense"
19
- },
20
- {
21
- "idx": 3,
22
- "name": "3",
23
- "path": "3_Dense",
24
- "type": "sentence_transformers.models.Dense"
25
- },
26
- {
27
- "idx": 4,
28
- "name": "4",
29
- "path": "4_Normalize",
30
- "type": "sentence_transformers.models.Normalize"
31
  }
32
  ]
 
10
  "name": "1",
11
  "path": "1_Pooling",
12
  "type": "sentence_transformers.models.Pooling"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  }
14
  ]
special_tokens_map.json CHANGED
@@ -1,30 +1,34 @@
1
  {
2
- "boi_token": "<start_of_image>",
3
- "bos_token": {
4
- "content": "<bos>",
5
  "lstrip": false,
6
  "normalized": false,
7
  "rstrip": false,
8
  "single_word": false
9
  },
10
- "eoi_token": "<end_of_image>",
11
- "eos_token": {
12
- "content": "<eos>",
13
  "lstrip": false,
14
  "normalized": false,
15
  "rstrip": false,
16
  "single_word": false
17
  },
18
- "image_token": "<image_soft_token>",
19
  "pad_token": {
20
- "content": "<pad>",
 
 
 
 
 
 
 
21
  "lstrip": false,
22
  "normalized": false,
23
  "rstrip": false,
24
  "single_word": false
25
  },
26
  "unk_token": {
27
- "content": "<unk>",
28
  "lstrip": false,
29
  "normalized": false,
30
  "rstrip": false,
 
1
  {
2
+ "cls_token": {
3
+ "content": "[CLS]",
 
4
  "lstrip": false,
5
  "normalized": false,
6
  "rstrip": false,
7
  "single_word": false
8
  },
9
+ "mask_token": {
10
+ "content": "[MASK]",
 
11
  "lstrip": false,
12
  "normalized": false,
13
  "rstrip": false,
14
  "single_word": false
15
  },
 
16
  "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
  "lstrip": false,
26
  "normalized": false,
27
  "rstrip": false,
28
  "single_word": false
29
  },
30
  "unk_token": {
31
+ "content": "[UNK]",
32
  "lstrip": false,
33
  "normalized": false,
34
  "rstrip": false,
tokenizer.json CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d7ae06c2d5423018713138be1af08ead828be6d5aec3dcaf4004830d73339843
3
- size 33385261
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fc687b11de0bc1b3d8348f92e3b49ef1089a621506c7661fbf3248fcd54947e
3
+ size 711649
tokenizer_config.json CHANGED
The diff for this file is too large to render. See raw diff
 
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0550728e68dcb4297a5ed369ce43e645f35ae6cb79deed45333999adba8e4c4e
3
  size 6161
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b00bfe28f1f5c19078fccb765b6539914861c7d57b38fb16b169199ec0cec5c
3
  size 6161