Training in progress, step 12000
Browse files- 1_Pooling/config.json +3 -3
- Information-Retrieval_evaluation_val_results.csv +1 -0
- README.md +80 -234
- config.json +16 -51
- config_sentence_transformers.json +2 -14
- eval/Information-Retrieval_evaluation_val_results.csv +49 -0
- final_metrics.json +14 -14
- model.safetensors +2 -2
- modules.json +0 -18
- special_tokens_map.json +13 -9
- tokenizer.json +2 -2
- tokenizer_config.json +0 -0
- training_args.bin +1 -1
1_Pooling/config.json
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
{
|
| 2 |
-
"word_embedding_dimension":
|
| 3 |
-
"pooling_mode_cls_token":
|
| 4 |
-
"pooling_mode_mean_tokens":
|
| 5 |
"pooling_mode_max_tokens": false,
|
| 6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
"pooling_mode_weightedmean_tokens": false,
|
|
|
|
| 1 |
{
|
| 2 |
+
"word_embedding_dimension": 512,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
"pooling_mode_max_tokens": false,
|
| 6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
"pooling_mode_weightedmean_tokens": false,
|
Information-Retrieval_evaluation_val_results.csv
CHANGED
|
@@ -10,3 +10,4 @@ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Precisi
|
|
| 10 |
-1,-1,0.827675,0.903,0.928425,0.827675,0.827675,0.30099999999999993,0.903,0.18568500000000004,0.928425,0.827675,0.8671804166666619,0.8711970039682481,0.8922532953454642,0.87334664003711
|
| 11 |
-1,-1,0.83295,0.9071,0.9329,0.83295,0.83295,0.3023666666666666,0.9071,0.18658000000000005,0.9329,0.83295,0.872013749999996,0.8760916468253912,0.8970951855878305,0.8781372459990227
|
| 12 |
-1,-1,0.83545,0.911175,0.9366,0.83545,0.83545,0.303725,0.911175,0.18732000000000001,0.9366,0.83545,0.8751591666666616,0.8790415476190412,0.8999318372974409,0.8810239994800558
|
|
|
|
|
|
| 10 |
-1,-1,0.827675,0.903,0.928425,0.827675,0.827675,0.30099999999999993,0.903,0.18568500000000004,0.928425,0.827675,0.8671804166666619,0.8711970039682481,0.8922532953454642,0.87334664003711
|
| 11 |
-1,-1,0.83295,0.9071,0.9329,0.83295,0.83295,0.3023666666666666,0.9071,0.18658000000000005,0.9329,0.83295,0.872013749999996,0.8760916468253912,0.8970951855878305,0.8781372459990227
|
| 12 |
-1,-1,0.83545,0.911175,0.9366,0.83545,0.83545,0.303725,0.911175,0.18732000000000001,0.9366,0.83545,0.8751591666666616,0.8790415476190412,0.8999318372974409,0.8810239994800558
|
| 13 |
+
-1,-1,0.0,0.0,2.5e-05,0.0,0.0,0.0,0.0,5e-06,2.5e-05,0.0,5e-06,1.697420634920635e-05,4.0643645983386815e-05,5.219463554638405e-05
|
README.md
CHANGED
|
@@ -5,123 +5,51 @@ tags:
|
|
| 5 |
- feature-extraction
|
| 6 |
- dense
|
| 7 |
- generated_from_trainer
|
| 8 |
-
- dataset_size:
|
| 9 |
- loss:MultipleNegativesRankingLoss
|
| 10 |
-
base_model:
|
| 11 |
widget:
|
| 12 |
-
- source_sentence:
|
| 13 |
sentences:
|
| 14 |
-
-
|
| 15 |
-
-
|
| 16 |
-
- What
|
| 17 |
-
- source_sentence:
|
| 18 |
-
been underestimated?
|
| 19 |
sentences:
|
| 20 |
-
- How
|
| 21 |
-
-
|
| 22 |
-
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
sentences:
|
| 26 |
-
-
|
| 27 |
-
|
| 28 |
-
-
|
| 29 |
-
|
| 30 |
-
- Are there any platforms that provides end-to-end encryption for file transfer/
|
| 31 |
-
sharing?
|
| 32 |
-
- source_sentence: Why AAP’s MLA Dinesh Mohaniya has been arrested?
|
| 33 |
sentences:
|
| 34 |
-
- What are
|
| 35 |
-
-
|
| 36 |
-
-
|
| 37 |
-
- source_sentence: What is the
|
| 38 |
sentences:
|
| 39 |
-
-
|
| 40 |
-
|
| 41 |
-
- the
|
| 42 |
-
- What is the difference between economic growth and economic development?
|
| 43 |
pipeline_tag: sentence-similarity
|
| 44 |
library_name: sentence-transformers
|
| 45 |
-
metrics:
|
| 46 |
-
- cosine_accuracy@1
|
| 47 |
-
- cosine_accuracy@3
|
| 48 |
-
- cosine_accuracy@5
|
| 49 |
-
- cosine_precision@1
|
| 50 |
-
- cosine_precision@3
|
| 51 |
-
- cosine_precision@5
|
| 52 |
-
- cosine_recall@1
|
| 53 |
-
- cosine_recall@3
|
| 54 |
-
- cosine_recall@5
|
| 55 |
-
- cosine_ndcg@10
|
| 56 |
-
- cosine_mrr@1
|
| 57 |
-
- cosine_mrr@5
|
| 58 |
-
- cosine_mrr@10
|
| 59 |
-
- cosine_map@100
|
| 60 |
-
model-index:
|
| 61 |
-
- name: SentenceTransformer based on google/embeddinggemma-300m
|
| 62 |
-
results:
|
| 63 |
-
- task:
|
| 64 |
-
type: information-retrieval
|
| 65 |
-
name: Information Retrieval
|
| 66 |
-
dataset:
|
| 67 |
-
name: val
|
| 68 |
-
type: val
|
| 69 |
-
metrics:
|
| 70 |
-
- type: cosine_accuracy@1
|
| 71 |
-
value: 0.0
|
| 72 |
-
name: Cosine Accuracy@1
|
| 73 |
-
- type: cosine_accuracy@3
|
| 74 |
-
value: 0.0
|
| 75 |
-
name: Cosine Accuracy@3
|
| 76 |
-
- type: cosine_accuracy@5
|
| 77 |
-
value: 2.5e-05
|
| 78 |
-
name: Cosine Accuracy@5
|
| 79 |
-
- type: cosine_precision@1
|
| 80 |
-
value: 0.0
|
| 81 |
-
name: Cosine Precision@1
|
| 82 |
-
- type: cosine_precision@3
|
| 83 |
-
value: 0.0
|
| 84 |
-
name: Cosine Precision@3
|
| 85 |
-
- type: cosine_precision@5
|
| 86 |
-
value: 5.0e-06
|
| 87 |
-
name: Cosine Precision@5
|
| 88 |
-
- type: cosine_recall@1
|
| 89 |
-
value: 0.0
|
| 90 |
-
name: Cosine Recall@1
|
| 91 |
-
- type: cosine_recall@3
|
| 92 |
-
value: 0.0
|
| 93 |
-
name: Cosine Recall@3
|
| 94 |
-
- type: cosine_recall@5
|
| 95 |
-
value: 2.5e-05
|
| 96 |
-
name: Cosine Recall@5
|
| 97 |
-
- type: cosine_ndcg@10
|
| 98 |
-
value: 4.0643645983386815e-05
|
| 99 |
-
name: Cosine Ndcg@10
|
| 100 |
-
- type: cosine_mrr@1
|
| 101 |
-
value: 0.0
|
| 102 |
-
name: Cosine Mrr@1
|
| 103 |
-
- type: cosine_mrr@5
|
| 104 |
-
value: 5.0e-06
|
| 105 |
-
name: Cosine Mrr@5
|
| 106 |
-
- type: cosine_mrr@10
|
| 107 |
-
value: 1.697420634920635e-05
|
| 108 |
-
name: Cosine Mrr@10
|
| 109 |
-
- type: cosine_map@100
|
| 110 |
-
value: 5.219463554638405e-05
|
| 111 |
-
name: Cosine Map@100
|
| 112 |
---
|
| 113 |
|
| 114 |
-
# SentenceTransformer based on
|
| 115 |
|
| 116 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [
|
| 117 |
|
| 118 |
## Model Details
|
| 119 |
|
| 120 |
### Model Description
|
| 121 |
- **Model Type:** Sentence Transformer
|
| 122 |
-
- **Base model:** [
|
| 123 |
- **Maximum Sequence Length:** 128 tokens
|
| 124 |
-
- **Output Dimensionality:**
|
| 125 |
- **Similarity Function:** Cosine Similarity
|
| 126 |
<!-- - **Training Dataset:** Unknown -->
|
| 127 |
<!-- - **Language:** Unknown -->
|
|
@@ -137,11 +65,8 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [g
|
|
| 137 |
|
| 138 |
```
|
| 139 |
SentenceTransformer(
|
| 140 |
-
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': '
|
| 141 |
-
(1): Pooling({'word_embedding_dimension':
|
| 142 |
-
(2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
|
| 143 |
-
(3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
|
| 144 |
-
(4): Normalize()
|
| 145 |
)
|
| 146 |
```
|
| 147 |
|
|
@@ -160,25 +85,23 @@ Then you can load this model and run inference.
|
|
| 160 |
from sentence_transformers import SentenceTransformer
|
| 161 |
|
| 162 |
# Download from the 🤗 Hub
|
| 163 |
-
model = SentenceTransformer("
|
| 164 |
# Run inference
|
| 165 |
-
|
| 166 |
-
|
|
|
|
|
|
|
| 167 |
]
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
'How cold can the Gobi Desert get, and how do its average temperatures compare to the ones in the Simpson Desert?',
|
| 172 |
-
]
|
| 173 |
-
query_embeddings = model.encode_query(queries)
|
| 174 |
-
document_embeddings = model.encode_document(documents)
|
| 175 |
-
print(query_embeddings.shape, document_embeddings.shape)
|
| 176 |
-
# [1, 768] [3, 768]
|
| 177 |
|
| 178 |
# Get the similarity scores for the embeddings
|
| 179 |
-
similarities = model.similarity(
|
| 180 |
print(similarities)
|
| 181 |
-
# tensor([[
|
|
|
|
|
|
|
| 182 |
```
|
| 183 |
|
| 184 |
<!--
|
|
@@ -205,32 +128,6 @@ You can finetune this model on your own dataset.
|
|
| 205 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 206 |
-->
|
| 207 |
|
| 208 |
-
## Evaluation
|
| 209 |
-
|
| 210 |
-
### Metrics
|
| 211 |
-
|
| 212 |
-
#### Information Retrieval
|
| 213 |
-
|
| 214 |
-
* Dataset: `val`
|
| 215 |
-
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
| 216 |
-
|
| 217 |
-
| Metric | Value |
|
| 218 |
-
|:-------------------|:--------|
|
| 219 |
-
| cosine_accuracy@1 | 0.0 |
|
| 220 |
-
| cosine_accuracy@3 | 0.0 |
|
| 221 |
-
| cosine_accuracy@5 | 0.0 |
|
| 222 |
-
| cosine_precision@1 | 0.0 |
|
| 223 |
-
| cosine_precision@3 | 0.0 |
|
| 224 |
-
| cosine_precision@5 | 0.0 |
|
| 225 |
-
| cosine_recall@1 | 0.0 |
|
| 226 |
-
| cosine_recall@3 | 0.0 |
|
| 227 |
-
| cosine_recall@5 | 0.0 |
|
| 228 |
-
| **cosine_ndcg@10** | **0.0** |
|
| 229 |
-
| cosine_mrr@1 | 0.0 |
|
| 230 |
-
| cosine_mrr@5 | 0.0 |
|
| 231 |
-
| cosine_mrr@10 | 0.0 |
|
| 232 |
-
| cosine_map@100 | 0.0001 |
|
| 233 |
-
|
| 234 |
<!--
|
| 235 |
## Bias, Risks and Limitations
|
| 236 |
|
|
@@ -249,49 +146,23 @@ You can finetune this model on your own dataset.
|
|
| 249 |
|
| 250 |
#### Unnamed Dataset
|
| 251 |
|
| 252 |
-
* Size:
|
| 253 |
-
* Columns: <code>
|
| 254 |
-
* Approximate statistics based on the first 1000 samples:
|
| 255 |
-
| | anchor | positive | negative |
|
| 256 |
-
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 257 |
-
| type | string | string | string |
|
| 258 |
-
| details | <ul><li>min: 6 tokens</li><li>mean: 15.9 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.86 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.63 tokens</li><li>max: 61 tokens</li></ul> |
|
| 259 |
-
* Samples:
|
| 260 |
-
| anchor | positive | negative |
|
| 261 |
-
|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|
|
| 262 |
-
| <code>Which one is better Linux OS? Ubuntu or Mint?</code> | <code>Why do you use Linux Mint?</code> | <code>Which one is not better Linux OS ? Ubuntu or Mint ?</code> |
|
| 263 |
-
| <code>What is flow?</code> | <code>What is flow?</code> | <code>What are flow lines?</code> |
|
| 264 |
-
| <code>How is Trump planning to get Mexico to pay for his supposed wall?</code> | <code>How is it possible for Donald Trump to force Mexico to pay for the wall?</code> | <code>Why do we connect the positive terminal before the negative terminal to ground in a vehicle battery?</code> |
|
| 265 |
-
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 266 |
-
```json
|
| 267 |
-
{
|
| 268 |
-
"scale": 7.0,
|
| 269 |
-
"similarity_fct": "cos_sim",
|
| 270 |
-
"gather_across_devices": false
|
| 271 |
-
}
|
| 272 |
-
```
|
| 273 |
-
|
| 274 |
-
### Evaluation Dataset
|
| 275 |
-
|
| 276 |
-
#### Unnamed Dataset
|
| 277 |
-
|
| 278 |
-
* Size: 40,000 evaluation samples
|
| 279 |
-
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
| 280 |
* Approximate statistics based on the first 1000 samples:
|
| 281 |
-
| |
|
| 282 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 283 |
| type | string | string | string |
|
| 284 |
-
| details | <ul><li>min: 6 tokens</li><li>mean: 15.
|
| 285 |
* Samples:
|
| 286 |
-
|
|
| 287 |
-
|
| 288 |
-
| <code>
|
| 289 |
-
| <code>
|
| 290 |
-
| <code>
|
| 291 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 292 |
```json
|
| 293 |
{
|
| 294 |
-
"scale":
|
| 295 |
"similarity_fct": "cos_sim",
|
| 296 |
"gather_across_devices": false
|
| 297 |
}
|
|
@@ -300,30 +171,17 @@ You can finetune this model on your own dataset.
|
|
| 300 |
### Training Hyperparameters
|
| 301 |
#### Non-Default Hyperparameters
|
| 302 |
|
| 303 |
-
- `eval_strategy`: steps
|
| 304 |
- `per_device_train_batch_size`: 64
|
| 305 |
- `per_device_eval_batch_size`: 64
|
| 306 |
-
- `learning_rate`: 2e-05
|
| 307 |
-
- `weight_decay`: 0.0001
|
| 308 |
-
- `max_steps`: 5000
|
| 309 |
-
- `warmup_ratio`: 0.1
|
| 310 |
- `fp16`: True
|
| 311 |
-
- `
|
| 312 |
-
- `dataloader_num_workers`: 1
|
| 313 |
-
- `dataloader_prefetch_factor`: 1
|
| 314 |
-
- `load_best_model_at_end`: True
|
| 315 |
-
- `optim`: adamw_torch
|
| 316 |
-
- `ddp_find_unused_parameters`: False
|
| 317 |
-
- `push_to_hub`: True
|
| 318 |
-
- `hub_model_id`: redis/model-b-structured
|
| 319 |
-
- `eval_on_start`: True
|
| 320 |
|
| 321 |
#### All Hyperparameters
|
| 322 |
<details><summary>Click to expand</summary>
|
| 323 |
|
| 324 |
- `overwrite_output_dir`: False
|
| 325 |
- `do_predict`: False
|
| 326 |
-
- `eval_strategy`:
|
| 327 |
- `prediction_loss_only`: True
|
| 328 |
- `per_device_train_batch_size`: 64
|
| 329 |
- `per_device_eval_batch_size`: 64
|
|
@@ -332,17 +190,17 @@ You can finetune this model on your own dataset.
|
|
| 332 |
- `gradient_accumulation_steps`: 1
|
| 333 |
- `eval_accumulation_steps`: None
|
| 334 |
- `torch_empty_cache_steps`: None
|
| 335 |
-
- `learning_rate`:
|
| 336 |
-
- `weight_decay`: 0.
|
| 337 |
- `adam_beta1`: 0.9
|
| 338 |
- `adam_beta2`: 0.999
|
| 339 |
- `adam_epsilon`: 1e-08
|
| 340 |
-
- `max_grad_norm`: 1
|
| 341 |
-
- `num_train_epochs`: 3
|
| 342 |
-
- `max_steps`:
|
| 343 |
- `lr_scheduler_type`: linear
|
| 344 |
- `lr_scheduler_kwargs`: {}
|
| 345 |
-
- `warmup_ratio`: 0.
|
| 346 |
- `warmup_steps`: 0
|
| 347 |
- `log_level`: passive
|
| 348 |
- `log_level_replica`: warning
|
|
@@ -370,14 +228,14 @@ You can finetune this model on your own dataset.
|
|
| 370 |
- `tpu_num_cores`: None
|
| 371 |
- `tpu_metrics_debug`: False
|
| 372 |
- `debug`: []
|
| 373 |
-
- `dataloader_drop_last`:
|
| 374 |
-
- `dataloader_num_workers`:
|
| 375 |
-
- `dataloader_prefetch_factor`:
|
| 376 |
- `past_index`: -1
|
| 377 |
- `disable_tqdm`: False
|
| 378 |
- `remove_unused_columns`: True
|
| 379 |
- `label_names`: None
|
| 380 |
-
- `load_best_model_at_end`:
|
| 381 |
- `ignore_data_skip`: False
|
| 382 |
- `fsdp`: []
|
| 383 |
- `fsdp_min_num_params`: 0
|
|
@@ -387,23 +245,23 @@ You can finetune this model on your own dataset.
|
|
| 387 |
- `parallelism_config`: None
|
| 388 |
- `deepspeed`: None
|
| 389 |
- `label_smoothing_factor`: 0.0
|
| 390 |
-
- `optim`:
|
| 391 |
- `optim_args`: None
|
| 392 |
- `adafactor`: False
|
| 393 |
- `group_by_length`: False
|
| 394 |
- `length_column_name`: length
|
| 395 |
- `project`: huggingface
|
| 396 |
- `trackio_space_id`: trackio
|
| 397 |
-
- `ddp_find_unused_parameters`:
|
| 398 |
- `ddp_bucket_cap_mb`: None
|
| 399 |
- `ddp_broadcast_buffers`: False
|
| 400 |
- `dataloader_pin_memory`: True
|
| 401 |
- `dataloader_persistent_workers`: False
|
| 402 |
- `skip_memory_metrics`: True
|
| 403 |
- `use_legacy_prediction_loop`: False
|
| 404 |
-
- `push_to_hub`:
|
| 405 |
- `resume_from_checkpoint`: None
|
| 406 |
-
- `hub_model_id`:
|
| 407 |
- `hub_strategy`: every_save
|
| 408 |
- `hub_private_repo`: None
|
| 409 |
- `hub_always_push`: False
|
|
@@ -430,43 +288,31 @@ You can finetune this model on your own dataset.
|
|
| 430 |
- `neftune_noise_alpha`: None
|
| 431 |
- `optim_target_modules`: None
|
| 432 |
- `batch_eval_metrics`: False
|
| 433 |
-
- `eval_on_start`:
|
| 434 |
- `use_liger_kernel`: False
|
| 435 |
- `liger_kernel_config`: None
|
| 436 |
- `eval_use_gather_object`: False
|
| 437 |
- `average_tokens_across_devices`: True
|
| 438 |
- `prompts`: None
|
| 439 |
- `batch_sampler`: batch_sampler
|
| 440 |
-
- `multi_dataset_batch_sampler`:
|
| 441 |
- `router_mapping`: {}
|
| 442 |
- `learning_rate_mapping`: {}
|
| 443 |
|
| 444 |
</details>
|
| 445 |
|
| 446 |
### Training Logs
|
| 447 |
-
| Epoch | Step | Training Loss |
|
| 448 |
-
|
| 449 |
-
| 0
|
| 450 |
-
| 0.
|
| 451 |
-
| 0.
|
| 452 |
-
|
|
| 453 |
-
|
|
| 454 |
-
|
|
| 455 |
-
|
|
| 456 |
-
|
|
| 457 |
-
|
|
| 458 |
-
| 0.2018 | 2250 | 0.2012 | 0.2087 | 0.8929 |
|
| 459 |
-
| 0.2242 | 2500 | 0.2175 | 0.2187 | 0.8960 |
|
| 460 |
-
| 0.2466 | 2750 | 0.2311 | nan | 0.2274 |
|
| 461 |
-
| 0.2690 | 3000 | 0.2477 | nan | 0.1686 |
|
| 462 |
-
| 0.2914 | 3250 | 0.2484 | nan | 0.1686 |
|
| 463 |
-
| 0.3138 | 3500 | 0.253 | nan | 0.1686 |
|
| 464 |
-
| 0.3363 | 3750 | 0.249 | nan | 0.1686 |
|
| 465 |
-
| 0.3587 | 4000 | 0.2524 | nan | 0.1686 |
|
| 466 |
-
| 0.3811 | 4250 | 0.2502 | nan | 0.0000 |
|
| 467 |
-
| 0.4035 | 4500 | 0.0 | nan | 0.0000 |
|
| 468 |
-
| 0.4259 | 4750 | 0.0 | nan | 0.0000 |
|
| 469 |
-
| 0.4484 | 5000 | 0.0 | nan | 0.0000 |
|
| 470 |
|
| 471 |
|
| 472 |
### Framework Versions
|
|
|
|
| 5 |
- feature-extraction
|
| 6 |
- dense
|
| 7 |
- generated_from_trainer
|
| 8 |
+
- dataset_size:100000
|
| 9 |
- loss:MultipleNegativesRankingLoss
|
| 10 |
+
base_model: prajjwal1/bert-small
|
| 11 |
widget:
|
| 12 |
+
- source_sentence: How do I calculate IQ?
|
| 13 |
sentences:
|
| 14 |
+
- What is the easiest way to know my IQ?
|
| 15 |
+
- How do I calculate not IQ ?
|
| 16 |
+
- What are some creative and innovative business ideas with less investment in India?
|
| 17 |
+
- source_sentence: How can I learn martial arts in my home?
|
|
|
|
| 18 |
sentences:
|
| 19 |
+
- How can I learn martial arts by myself?
|
| 20 |
+
- What are the advantages and disadvantages of investing in gold?
|
| 21 |
+
- Can people see that I have looked at their pictures on instagram if I am not following
|
| 22 |
+
them?
|
| 23 |
+
- source_sentence: When Enterprise picks you up do you have to take them back?
|
| 24 |
sentences:
|
| 25 |
+
- Are there any software Training institute in Tuticorin?
|
| 26 |
+
- When Enterprise picks you up do you have to take them back?
|
| 27 |
+
- When Enterprise picks you up do them have to take youback?
|
| 28 |
+
- source_sentence: What are some non-capital goods?
|
|
|
|
|
|
|
|
|
|
| 29 |
sentences:
|
| 30 |
+
- What are capital goods?
|
| 31 |
+
- How is the value of [math]\pi[/math] calculated?
|
| 32 |
+
- What are some non-capital goods?
|
| 33 |
+
- source_sentence: What is the QuickBooks technical support phone number in New York?
|
| 34 |
sentences:
|
| 35 |
+
- What caused the Great Depression?
|
| 36 |
+
- Can I apply for PR in Canada?
|
| 37 |
+
- Which is the best QuickBooks Hosting Support Number in New York?
|
|
|
|
| 38 |
pipeline_tag: sentence-similarity
|
| 39 |
library_name: sentence-transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
---
|
| 41 |
|
| 42 |
+
# SentenceTransformer based on prajjwal1/bert-small
|
| 43 |
|
| 44 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small). It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 45 |
|
| 46 |
## Model Details
|
| 47 |
|
| 48 |
### Model Description
|
| 49 |
- **Model Type:** Sentence Transformer
|
| 50 |
+
- **Base model:** [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small) <!-- at revision 0ec5f86f27c1a77d704439db5e01c307ea11b9d4 -->
|
| 51 |
- **Maximum Sequence Length:** 128 tokens
|
| 52 |
+
- **Output Dimensionality:** 512 dimensions
|
| 53 |
- **Similarity Function:** Cosine Similarity
|
| 54 |
<!-- - **Training Dataset:** Unknown -->
|
| 55 |
<!-- - **Language:** Unknown -->
|
|
|
|
| 65 |
|
| 66 |
```
|
| 67 |
SentenceTransformer(
|
| 68 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
|
| 69 |
+
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
|
|
|
|
|
|
|
|
| 70 |
)
|
| 71 |
```
|
| 72 |
|
|
|
|
| 85 |
from sentence_transformers import SentenceTransformer
|
| 86 |
|
| 87 |
# Download from the 🤗 Hub
|
| 88 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 89 |
# Run inference
|
| 90 |
+
sentences = [
|
| 91 |
+
'What is the QuickBooks technical support phone number in New York?',
|
| 92 |
+
'Which is the best QuickBooks Hosting Support Number in New York?',
|
| 93 |
+
'Can I apply for PR in Canada?',
|
| 94 |
]
|
| 95 |
+
embeddings = model.encode(sentences)
|
| 96 |
+
print(embeddings.shape)
|
| 97 |
+
# [3, 512]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
# Get the similarity scores for the embeddings
|
| 100 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 101 |
print(similarities)
|
| 102 |
+
# tensor([[1.0000, 0.8563, 0.0594],
|
| 103 |
+
# [0.8563, 1.0000, 0.1245],
|
| 104 |
+
# [0.0594, 0.1245, 1.0000]])
|
| 105 |
```
|
| 106 |
|
| 107 |
<!--
|
|
|
|
| 128 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 129 |
-->
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
<!--
|
| 132 |
## Bias, Risks and Limitations
|
| 133 |
|
|
|
|
| 146 |
|
| 147 |
#### Unnamed Dataset
|
| 148 |
|
| 149 |
+
* Size: 100,000 training samples
|
| 150 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
* Approximate statistics based on the first 1000 samples:
|
| 152 |
+
| | sentence_0 | sentence_1 | sentence_2 |
|
| 153 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 154 |
| type | string | string | string |
|
| 155 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 15.79 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.68 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.37 tokens</li><li>max: 67 tokens</li></ul> |
|
| 156 |
* Samples:
|
| 157 |
+
| sentence_0 | sentence_1 | sentence_2 |
|
| 158 |
+
|:-----------------------------------------------------------------|:-----------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 159 |
+
| <code>Is masturbating bad for boys?</code> | <code>Is masturbating bad for boys?</code> | <code>How harmful or unhealthy is masturbation?</code> |
|
| 160 |
+
| <code>Does a train engine move in reverse?</code> | <code>Does a train engine move in reverse?</code> | <code>Time moves forward, not in reverse. Doesn't that make time a vector?</code> |
|
| 161 |
+
| <code>What is the most badass thing anyone has ever done?</code> | <code>What is the most badass thing anyone has ever done?</code> | <code>anyone is the most badass thing Whathas ever done?</code> |
|
| 162 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 163 |
```json
|
| 164 |
{
|
| 165 |
+
"scale": 20.0,
|
| 166 |
"similarity_fct": "cos_sim",
|
| 167 |
"gather_across_devices": false
|
| 168 |
}
|
|
|
|
| 171 |
### Training Hyperparameters
|
| 172 |
#### Non-Default Hyperparameters
|
| 173 |
|
|
|
|
| 174 |
- `per_device_train_batch_size`: 64
|
| 175 |
- `per_device_eval_batch_size`: 64
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
- `fp16`: True
|
| 177 |
+
- `multi_dataset_batch_sampler`: round_robin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
#### All Hyperparameters
|
| 180 |
<details><summary>Click to expand</summary>
|
| 181 |
|
| 182 |
- `overwrite_output_dir`: False
|
| 183 |
- `do_predict`: False
|
| 184 |
+
- `eval_strategy`: no
|
| 185 |
- `prediction_loss_only`: True
|
| 186 |
- `per_device_train_batch_size`: 64
|
| 187 |
- `per_device_eval_batch_size`: 64
|
|
|
|
| 190 |
- `gradient_accumulation_steps`: 1
|
| 191 |
- `eval_accumulation_steps`: None
|
| 192 |
- `torch_empty_cache_steps`: None
|
| 193 |
+
- `learning_rate`: 5e-05
|
| 194 |
+
- `weight_decay`: 0.0
|
| 195 |
- `adam_beta1`: 0.9
|
| 196 |
- `adam_beta2`: 0.999
|
| 197 |
- `adam_epsilon`: 1e-08
|
| 198 |
+
- `max_grad_norm`: 1
|
| 199 |
+
- `num_train_epochs`: 3
|
| 200 |
+
- `max_steps`: -1
|
| 201 |
- `lr_scheduler_type`: linear
|
| 202 |
- `lr_scheduler_kwargs`: {}
|
| 203 |
+
- `warmup_ratio`: 0.0
|
| 204 |
- `warmup_steps`: 0
|
| 205 |
- `log_level`: passive
|
| 206 |
- `log_level_replica`: warning
|
|
|
|
| 228 |
- `tpu_num_cores`: None
|
| 229 |
- `tpu_metrics_debug`: False
|
| 230 |
- `debug`: []
|
| 231 |
+
- `dataloader_drop_last`: False
|
| 232 |
+
- `dataloader_num_workers`: 0
|
| 233 |
+
- `dataloader_prefetch_factor`: None
|
| 234 |
- `past_index`: -1
|
| 235 |
- `disable_tqdm`: False
|
| 236 |
- `remove_unused_columns`: True
|
| 237 |
- `label_names`: None
|
| 238 |
+
- `load_best_model_at_end`: False
|
| 239 |
- `ignore_data_skip`: False
|
| 240 |
- `fsdp`: []
|
| 241 |
- `fsdp_min_num_params`: 0
|
|
|
|
| 245 |
- `parallelism_config`: None
|
| 246 |
- `deepspeed`: None
|
| 247 |
- `label_smoothing_factor`: 0.0
|
| 248 |
+
- `optim`: adamw_torch_fused
|
| 249 |
- `optim_args`: None
|
| 250 |
- `adafactor`: False
|
| 251 |
- `group_by_length`: False
|
| 252 |
- `length_column_name`: length
|
| 253 |
- `project`: huggingface
|
| 254 |
- `trackio_space_id`: trackio
|
| 255 |
+
- `ddp_find_unused_parameters`: None
|
| 256 |
- `ddp_bucket_cap_mb`: None
|
| 257 |
- `ddp_broadcast_buffers`: False
|
| 258 |
- `dataloader_pin_memory`: True
|
| 259 |
- `dataloader_persistent_workers`: False
|
| 260 |
- `skip_memory_metrics`: True
|
| 261 |
- `use_legacy_prediction_loop`: False
|
| 262 |
+
- `push_to_hub`: False
|
| 263 |
- `resume_from_checkpoint`: None
|
| 264 |
+
- `hub_model_id`: None
|
| 265 |
- `hub_strategy`: every_save
|
| 266 |
- `hub_private_repo`: None
|
| 267 |
- `hub_always_push`: False
|
|
|
|
| 288 |
- `neftune_noise_alpha`: None
|
| 289 |
- `optim_target_modules`: None
|
| 290 |
- `batch_eval_metrics`: False
|
| 291 |
+
- `eval_on_start`: False
|
| 292 |
- `use_liger_kernel`: False
|
| 293 |
- `liger_kernel_config`: None
|
| 294 |
- `eval_use_gather_object`: False
|
| 295 |
- `average_tokens_across_devices`: True
|
| 296 |
- `prompts`: None
|
| 297 |
- `batch_sampler`: batch_sampler
|
| 298 |
+
- `multi_dataset_batch_sampler`: round_robin
|
| 299 |
- `router_mapping`: {}
|
| 300 |
- `learning_rate_mapping`: {}
|
| 301 |
|
| 302 |
</details>
|
| 303 |
|
| 304 |
### Training Logs
|
| 305 |
+
| Epoch | Step | Training Loss |
|
| 306 |
+
|:------:|:----:|:-------------:|
|
| 307 |
+
| 0.3199 | 500 | 0.4294 |
|
| 308 |
+
| 0.6398 | 1000 | 0.1268 |
|
| 309 |
+
| 0.9597 | 1500 | 0.1 |
|
| 310 |
+
| 1.2796 | 2000 | 0.0792 |
|
| 311 |
+
| 1.5995 | 2500 | 0.0706 |
|
| 312 |
+
| 1.9194 | 3000 | 0.0687 |
|
| 313 |
+
| 2.2393 | 3500 | 0.0584 |
|
| 314 |
+
| 2.5592 | 4000 | 0.057 |
|
| 315 |
+
| 2.8791 | 4500 | 0.0581 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
|
| 318 |
### Framework Versions
|
config.json
CHANGED
|
@@ -1,60 +1,25 @@
|
|
| 1 |
{
|
| 2 |
-
"_sliding_window_pattern": 6,
|
| 3 |
"architectures": [
|
| 4 |
-
"
|
| 5 |
],
|
| 6 |
-
"
|
| 7 |
-
"
|
| 8 |
-
"attn_logit_softcapping": null,
|
| 9 |
-
"bos_token_id": 2,
|
| 10 |
"dtype": "float32",
|
| 11 |
-
"
|
| 12 |
-
"
|
| 13 |
-
"
|
| 14 |
-
"
|
| 15 |
-
"hidden_size": 768,
|
| 16 |
"initializer_range": 0.02,
|
| 17 |
-
"intermediate_size":
|
| 18 |
-
"
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
"sliding_attention",
|
| 24 |
-
"full_attention",
|
| 25 |
-
"sliding_attention",
|
| 26 |
-
"sliding_attention",
|
| 27 |
-
"sliding_attention",
|
| 28 |
-
"sliding_attention",
|
| 29 |
-
"sliding_attention",
|
| 30 |
-
"full_attention",
|
| 31 |
-
"sliding_attention",
|
| 32 |
-
"sliding_attention",
|
| 33 |
-
"sliding_attention",
|
| 34 |
-
"sliding_attention",
|
| 35 |
-
"sliding_attention",
|
| 36 |
-
"full_attention",
|
| 37 |
-
"sliding_attention",
|
| 38 |
-
"sliding_attention",
|
| 39 |
-
"sliding_attention",
|
| 40 |
-
"sliding_attention",
|
| 41 |
-
"sliding_attention",
|
| 42 |
-
"full_attention"
|
| 43 |
-
],
|
| 44 |
-
"max_position_embeddings": 2048,
|
| 45 |
-
"model_type": "gemma3_text",
|
| 46 |
-
"num_attention_heads": 3,
|
| 47 |
-
"num_hidden_layers": 24,
|
| 48 |
-
"num_key_value_heads": 1,
|
| 49 |
"pad_token_id": 0,
|
| 50 |
-
"
|
| 51 |
-
"rms_norm_eps": 1e-06,
|
| 52 |
-
"rope_local_base_freq": 10000.0,
|
| 53 |
-
"rope_scaling": null,
|
| 54 |
-
"rope_theta": 1000000.0,
|
| 55 |
-
"sliding_window": 257,
|
| 56 |
"transformers_version": "4.57.3",
|
| 57 |
-
"
|
| 58 |
"use_cache": true,
|
| 59 |
-
"vocab_size":
|
| 60 |
}
|
|
|
|
| 1 |
{
|
|
|
|
| 2 |
"architectures": [
|
| 3 |
+
"BertModel"
|
| 4 |
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
|
|
|
|
|
|
| 7 |
"dtype": "float32",
|
| 8 |
+
"gradient_checkpointing": false,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 384,
|
|
|
|
| 12 |
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 1536,
|
| 14 |
+
"layer_norm_eps": 1e-12,
|
| 15 |
+
"max_position_embeddings": 512,
|
| 16 |
+
"model_type": "bert",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 6,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
"pad_token_id": 0,
|
| 20 |
+
"position_embedding_type": "absolute",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
"transformers_version": "4.57.3",
|
| 22 |
+
"type_vocab_size": 2,
|
| 23 |
"use_cache": true,
|
| 24 |
+
"vocab_size": 30522
|
| 25 |
}
|
config_sentence_transformers.json
CHANGED
|
@@ -6,20 +6,8 @@
|
|
| 6 |
"pytorch": "2.9.1+cu128"
|
| 7 |
},
|
| 8 |
"prompts": {
|
| 9 |
-
"query": "
|
| 10 |
-
"document": "
|
| 11 |
-
"BitextMining": "task: search result | query: ",
|
| 12 |
-
"Clustering": "task: clustering | query: ",
|
| 13 |
-
"Classification": "task: classification | query: ",
|
| 14 |
-
"InstructionRetrieval": "task: code retrieval | query: ",
|
| 15 |
-
"MultilabelClassification": "task: classification | query: ",
|
| 16 |
-
"PairClassification": "task: sentence similarity | query: ",
|
| 17 |
-
"Reranking": "task: search result | query: ",
|
| 18 |
-
"Retrieval": "task: search result | query: ",
|
| 19 |
-
"Retrieval-query": "task: search result | query: ",
|
| 20 |
-
"Retrieval-document": "title: none | text: ",
|
| 21 |
-
"STS": "task: sentence similarity | query: ",
|
| 22 |
-
"Summarization": "task: summarization | query: "
|
| 23 |
},
|
| 24 |
"default_prompt_name": null,
|
| 25 |
"similarity_fn_name": "cosine"
|
|
|
|
| 6 |
"pytorch": "2.9.1+cu128"
|
| 7 |
},
|
| 8 |
"prompts": {
|
| 9 |
+
"query": "",
|
| 10 |
+
"document": ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
"default_prompt_name": null,
|
| 13 |
"similarity_fn_name": "cosine"
|
eval/Information-Retrieval_evaluation_val_results.csv
CHANGED
|
@@ -679,3 +679,52 @@ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Precisi
|
|
| 679 |
0.4035150645624103,4500,0.0,0.0,2.5e-05,0.0,0.0,0.0,0.0,5e-06,2.5e-05,0.0,5e-06,1.697420634920635e-05,4.0643645983386815e-05,5.219463554638405e-05
|
| 680 |
0.4259325681492109,4750,0.0,0.0,2.5e-05,0.0,0.0,0.0,0.0,5e-06,2.5e-05,0.0,5e-06,1.697420634920635e-05,4.0643645983386815e-05,5.219463554638405e-05
|
| 681 |
0.4483500717360115,5000,0.0,0.0,2.5e-05,0.0,0.0,0.0,0.0,5e-06,2.5e-05,0.0,5e-06,1.697420634920635e-05,4.0643645983386815e-05,5.219463554638405e-05
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 679 |
0.4035150645624103,4500,0.0,0.0,2.5e-05,0.0,0.0,0.0,0.0,5e-06,2.5e-05,0.0,5e-06,1.697420634920635e-05,4.0643645983386815e-05,5.219463554638405e-05
|
| 680 |
0.4259325681492109,4750,0.0,0.0,2.5e-05,0.0,0.0,0.0,0.0,5e-06,2.5e-05,0.0,5e-06,1.697420634920635e-05,4.0643645983386815e-05,5.219463554638405e-05
|
| 681 |
0.4483500717360115,5000,0.0,0.0,2.5e-05,0.0,0.0,0.0,0.0,5e-06,2.5e-05,0.0,5e-06,1.697420634920635e-05,4.0643645983386815e-05,5.219463554638405e-05
|
| 682 |
+
0,0,0.751925,0.887,0.917,0.751925,0.751925,0.29566666666666663,0.887,0.18340000000000004,0.917,0.751925,0.821192916666658,0.8254150297618993,0.8556052902179354,0.8278830901193039
|
| 683 |
+
0.0896700143472023,250,0.80465,0.896325,0.924375,0.80465,0.80465,0.298775,0.896325,0.184875,0.924375,0.80465,0.852659999999995,0.8565211904761864,0.8800328213130088,0.8588291102423605
|
| 684 |
+
0.1793400286944046,500,0.820025,0.89875,0.9253,0.820025,0.820025,0.2995833333333333,0.89875,0.18506,0.9253,0.820025,0.8615108333333292,0.8654402579365047,0.8870095227636031,0.8676799907230608
|
| 685 |
+
0.26901004304160686,750,0.821125,0.899775,0.925575,0.821125,0.821125,0.2999249999999999,0.899775,0.185115,0.925575,0.821125,0.8624174999999963,0.86642163690476,0.8879143529201894,0.8686602623965786
|
| 686 |
+
0.3586800573888092,1000,0.822575,0.89985,0.9263,0.822575,0.822575,0.29994999999999994,0.89985,0.18526,0.9263,0.822575,0.8632583333333298,0.8672305357142832,0.8886276582361335,0.8694671920858201
|
| 687 |
+
0.4483500717360115,1250,0.822725,0.9006,0.926475,0.822725,0.822725,0.3001999999999999,0.9006,0.18529500000000004,0.926475,0.822725,0.8636683333333298,0.8676871031746004,0.8890995637213502,0.869907342550433
|
| 688 |
+
0.5380200860832137,1500,0.823925,0.900825,0.926275,0.823925,0.823925,0.300275,0.900825,0.18525500000000003,0.926275,0.823925,0.8643383333333308,0.8683831448412673,0.8896475955998834,0.8706135646799439
|
| 689 |
+
0.6276901004304161,1750,0.82525,0.902,0.927425,0.82525,0.82525,0.30066666666666664,0.902,0.185485,0.927425,0.82525,0.8655337499999965,0.8696110317460287,0.8909058933560547,0.8717896326318644
|
| 690 |
+
0.7173601147776184,2000,0.8246,0.902325,0.92685,0.8246,0.8246,0.30077499999999996,0.902325,0.18537000000000003,0.92685,0.8246,0.8651599999999963,0.8692929960317426,0.8906287939435462,0.8714942451461398
|
| 691 |
+
0.8070301291248206,2250,0.82515,0.902525,0.927075,0.82515,0.82515,0.3008416666666666,0.902525,0.185415,0.927075,0.82515,0.8654974999999964,0.8697102480158696,0.8911223828711662,0.8718783764760456
|
| 692 |
+
0.896700143472023,2500,0.824625,0.902775,0.927675,0.824625,0.824625,0.3009249999999999,0.902775,0.185535,0.927675,0.824625,0.8654166666666628,0.8695106051587264,0.8909426642160327,0.8717054008785079
|
| 693 |
+
0.9863701578192252,2750,0.825375,0.9027,0.9276,0.825375,0.825375,0.3009,0.9027,0.18552000000000002,0.9276,0.825375,0.8658224999999957,0.8699597023809489,0.891320667068452,0.8721370407336589
|
| 694 |
+
1.0760401721664274,3000,0.826025,0.9025,0.927675,0.826025,0.826025,0.30083333333333323,0.9025,0.18553500000000003,0.927675,0.826025,0.8662079166666632,0.8702979464285674,0.8915119967833314,0.872510571142309
|
| 695 |
+
1.16571018651363,3250,0.825725,0.90265,0.9274,0.825725,0.825725,0.3008833333333333,0.90265,0.18548,0.9274,0.825725,0.8659145833333294,0.8700107539682509,0.891222478634554,0.8722470996330639
|
| 696 |
+
1.2553802008608321,3500,0.82525,0.90305,0.928175,0.82525,0.82525,0.3010166666666666,0.90305,0.18563500000000002,0.928175,0.82525,0.8659366666666619,0.8700273908730114,0.8914502713155418,0.8722180663314848
|
| 697 |
+
1.3450502152080344,3750,0.826225,0.902825,0.928275,0.826225,0.826225,0.3009416666666666,0.902825,0.18565500000000001,0.928275,0.826225,0.8664804166666623,0.8706096130952335,0.8919543885192465,0.8727891622700147
|
| 698 |
+
1.4347202295552366,4000,0.8264,0.902725,0.927975,0.8264,0.8264,0.3009083333333333,0.902725,0.18559500000000004,0.927975,0.8264,0.8664483333333288,0.8706402281745992,0.891983843733548,0.8728380784984238
|
| 699 |
+
1.524390243902439,4250,0.8266,0.9036,0.929175,0.8266,0.8266,0.30119999999999997,0.9036,0.18583500000000003,0.929175,0.8266,0.8670083333333283,0.871095853174598,0.8924808083686762,0.8732574599816396
|
| 700 |
+
1.6140602582496413,4500,0.826675,0.90375,0.928825,0.826675,0.826675,0.30124999999999996,0.90375,0.185765,0.928825,0.826675,0.8669558333333298,0.8710873214285674,0.892471870823939,0.8732517911596164
|
| 701 |
+
1.7037302725968435,4750,0.826025,0.90415,0.9284,0.826025,0.826025,0.3013833333333333,0.90415,0.18567999999999998,0.9284,0.826025,0.866584999999996,0.8707971230158688,0.8922687828652679,0.8729724881673945
|
| 702 |
+
1.793400286944046,5000,0.8265,0.9048,0.929275,0.8265,0.8265,0.3016,0.9048,0.18585500000000002,0.929275,0.8265,0.8670866666666623,0.8711956349206301,0.8926408625431878,0.8733700026530962
|
| 703 |
+
1.8830703012912482,5250,0.8266,0.903875,0.92895,0.8266,0.8266,0.3012916666666666,0.903875,0.18579000000000004,0.92895,0.8266,0.8669020833333292,0.8710456150793603,0.8924858518633457,0.8732353782999096
|
| 704 |
+
1.9727403156384504,5500,0.8271,0.904475,0.928975,0.8271,0.8271,0.3014916666666666,0.904475,0.18579500000000002,0.928975,0.8271,0.867337916666662,0.8714944543650747,0.892834931269629,0.8736889896748274
|
| 705 |
+
2.062410329985653,5750,0.827175,0.90435,0.92955,0.827175,0.827175,0.30144999999999994,0.90435,0.18591000000000005,0.92955,0.827175,0.8675820833333281,0.8716831349206297,0.8930074386378707,0.8738795306452989
|
| 706 |
+
2.152080344332855,6000,0.8271,0.904575,0.929575,0.8271,0.8271,0.30152499999999993,0.904575,0.18591500000000005,0.929575,0.8271,0.8676179166666625,0.8717332341269798,0.8931109587880816,0.8739079151666905
|
| 707 |
+
2.2417503586800573,6250,0.827225,0.904475,0.92955,0.827225,0.827225,0.3014916666666666,0.904475,0.18591000000000005,0.92955,0.827225,0.8675649999999959,0.8717064186507892,0.8931235559174038,0.873877398407616
|
| 708 |
+
2.33142037302726,6500,0.8273,0.905225,0.929775,0.8273,0.8273,0.30174166666666663,0.905225,0.185955,0.929775,0.8273,0.8677670833333289,0.8718472718253913,0.8932079921309838,0.8740305777000185
|
| 709 |
+
2.421090387374462,6750,0.827425,0.905075,0.9297,0.827425,0.827425,0.3016916666666666,0.905075,0.18594000000000002,0.9297,0.827425,0.8678008333333294,0.8718941964285661,0.8932542348032559,0.8740757678933109
|
| 710 |
+
2.5107604017216643,7000,0.8269,0.90525,0.9296,0.8269,0.8269,0.3017499999999999,0.90525,0.18592,0.9296,0.8269,0.867580833333329,0.8717025595238047,0.8931301877553839,0.8738871433454486
|
| 711 |
+
2.6004304160688667,7250,0.827225,0.904975,0.929675,0.827225,0.827225,0.3016583333333333,0.904975,0.185935,0.929675,0.827225,0.8677058333333296,0.8717949007936467,0.8931569064335827,0.8739934443060552
|
| 712 |
+
2.6901004304160687,7500,0.82755,0.9051,0.93,0.82755,0.82755,0.3017,0.9051,0.18600000000000003,0.93,0.82755,0.8679774999999965,0.8720509126984096,0.8933746803361129,0.8742608501545442
|
| 713 |
+
2.779770444763271,7750,0.827825,0.9054,0.929975,0.827825,0.827825,0.30179999999999996,0.9054,0.18599500000000002,0.929975,0.827825,0.8681562499999959,0.8722401388888844,0.8935616290842326,0.8744330985543757
|
| 714 |
+
2.869440459110473,8000,0.828275,0.905375,0.92995,0.828275,0.828275,0.3017916666666666,0.905375,0.18599000000000004,0.92995,0.828275,0.8683970833333294,0.8725187599206307,0.8937878693376755,0.8747118448510659
|
| 715 |
+
2.9591104734576756,8250,0.8276,0.905175,0.9303,0.8276,0.8276,0.301725,0.905175,0.18606000000000003,0.9303,0.8276,0.8680820833333295,0.8721759920634872,0.8935945905099506,0.8743330189280194
|
| 716 |
+
3.048780487804878,8500,0.828325,0.90515,0.930475,0.828325,0.828325,0.30171666666666663,0.90515,0.18609500000000004,0.930475,0.828325,0.8684974999999953,0.8725453273809473,0.8938128351914529,0.8747440172400296
|
| 717 |
+
3.1384505021520805,8750,0.82795,0.9052,0.9302,0.82795,0.82795,0.30173333333333324,0.9052,0.18604,0.9302,0.82795,0.8682741666666624,0.8724082142857096,0.893791889973397,0.8745838158482304
|
| 718 |
+
3.2281205164992826,9000,0.8283,0.905375,0.930825,0.8283,0.8283,0.3017916666666666,0.905375,0.186165,0.930825,0.8283,0.8685966666666627,0.8726080357142809,0.8938966727680374,0.8747960624601541
|
| 719 |
+
3.317790530846485,9250,0.82835,0.905475,0.930475,0.82835,0.82835,0.30182499999999995,0.905475,0.18609500000000004,0.930475,0.82835,0.8685666666666628,0.8726975595238055,0.8940499889166927,0.8748546291176182
|
| 720 |
+
3.407460545193687,9500,0.8283,0.9056,0.930575,0.8283,0.8283,0.30186666666666667,0.9056,0.18611500000000003,0.930575,0.8283,0.8685999999999962,0.8727170337301539,0.8940961677203971,0.8748585659281131
|
| 721 |
+
3.4971305595408895,9750,0.82805,0.90565,0.930775,0.82805,0.82805,0.3018833333333333,0.90565,0.18615500000000001,0.930775,0.82805,0.8685420833333294,0.8726378075396779,0.8940545972391326,0.8747808576034762
|
| 722 |
+
3.586800573888092,10000,0.828125,0.9052,0.9304,0.828125,0.828125,0.30173333333333324,0.9052,0.18608000000000002,0.9304,0.828125,0.8683999999999958,0.872550267857138,0.8939721843580628,0.8746969389189057
|
| 723 |
+
3.6764705882352944,10250,0.828325,0.9055,0.930675,0.828325,0.828325,0.3018333333333333,0.9055,0.18613500000000002,0.930675,0.828325,0.8685495833333294,0.8726263194444398,0.893987547028647,0.874796265410846
|
| 724 |
+
3.7661406025824964,10500,0.828175,0.905125,0.930675,0.828175,0.828175,0.30170833333333325,0.905125,0.18613500000000002,0.930675,0.828175,0.8684674999999954,0.8725678670634869,0.8939775062267301,0.8747340075836931
|
| 725 |
+
3.855810616929699,10750,0.82815,0.905175,0.93075,0.82815,0.82815,0.3017249999999999,0.905175,0.18615000000000004,0.93075,0.82815,0.8684716666666625,0.8725727777777725,0.8940086829611978,0.8747196153860665
|
| 726 |
+
3.945480631276901,11000,0.828675,0.9054,0.93065,0.828675,0.828675,0.3018,0.9054,0.18613000000000002,0.93065,0.828675,0.8687779166666618,0.8729081150793602,0.8942634666022241,0.8750627536951296
|
| 727 |
+
4.035150645624103,11250,0.8284,0.90535,0.9306,0.8284,0.8284,0.3017833333333333,0.90535,0.18612000000000004,0.9306,0.8284,0.8686220833333292,0.8727696130952336,0.8941853658108053,0.874910002213559
|
| 728 |
+
4.124820659971306,11500,0.828425,0.905575,0.9308,0.828425,0.828425,0.3018583333333333,0.905575,0.18616000000000002,0.9308,0.828425,0.8687266666666623,0.872845128968249,0.8942524642669559,0.8749859334121904
|
| 729 |
+
4.214490674318508,11750,0.828225,0.905425,0.930775,0.828225,0.828225,0.30180833333333323,0.905425,0.18615500000000001,0.930775,0.828225,0.8685866666666623,0.8726996329365029,0.8941203987290073,0.8748458978394003
|
| 730 |
+
4.30416068866571,12000,0.828275,0.90535,0.930675,0.828275,0.828275,0.3017833333333333,0.90535,0.186135,0.930675,0.828275,0.8685570833333288,0.8726829662698361,0.8940991092644636,0.8748315667834753
|
final_metrics.json
CHANGED
|
@@ -1,16 +1,16 @@
|
|
| 1 |
{
|
| 2 |
-
"val_cosine_accuracy@1": 0.
|
| 3 |
-
"val_cosine_accuracy@3": 0.
|
| 4 |
-
"val_cosine_accuracy@5":
|
| 5 |
-
"val_cosine_precision@1": 0.
|
| 6 |
-
"val_cosine_precision@3": 0.
|
| 7 |
-
"val_cosine_precision@5":
|
| 8 |
-
"val_cosine_recall@1": 0.
|
| 9 |
-
"val_cosine_recall@3": 0.
|
| 10 |
-
"val_cosine_recall@5":
|
| 11 |
-
"val_cosine_ndcg@10":
|
| 12 |
-
"val_cosine_mrr@1": 0.
|
| 13 |
-
"val_cosine_mrr@5":
|
| 14 |
-
"val_cosine_mrr@10":
|
| 15 |
-
"val_cosine_map@100":
|
| 16 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"val_cosine_accuracy@1": 0.0,
|
| 3 |
+
"val_cosine_accuracy@3": 0.0,
|
| 4 |
+
"val_cosine_accuracy@5": 2.5e-05,
|
| 5 |
+
"val_cosine_precision@1": 0.0,
|
| 6 |
+
"val_cosine_precision@3": 0.0,
|
| 7 |
+
"val_cosine_precision@5": 5e-06,
|
| 8 |
+
"val_cosine_recall@1": 0.0,
|
| 9 |
+
"val_cosine_recall@3": 0.0,
|
| 10 |
+
"val_cosine_recall@5": 2.5e-05,
|
| 11 |
+
"val_cosine_ndcg@10": 4.0643645983386815e-05,
|
| 12 |
+
"val_cosine_mrr@1": 0.0,
|
| 13 |
+
"val_cosine_mrr@5": 5e-06,
|
| 14 |
+
"val_cosine_mrr@10": 1.697420634920635e-05,
|
| 15 |
+
"val_cosine_map@100": 5.219463554638405e-05
|
| 16 |
}
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c16a8a0c066ce6670147940dcb6ed642b624b948c9a93d349a3f2c82687151c3
|
| 3 |
+
size 90864192
|
modules.json
CHANGED
|
@@ -10,23 +10,5 @@
|
|
| 10 |
"name": "1",
|
| 11 |
"path": "1_Pooling",
|
| 12 |
"type": "sentence_transformers.models.Pooling"
|
| 13 |
-
},
|
| 14 |
-
{
|
| 15 |
-
"idx": 2,
|
| 16 |
-
"name": "2",
|
| 17 |
-
"path": "2_Dense",
|
| 18 |
-
"type": "sentence_transformers.models.Dense"
|
| 19 |
-
},
|
| 20 |
-
{
|
| 21 |
-
"idx": 3,
|
| 22 |
-
"name": "3",
|
| 23 |
-
"path": "3_Dense",
|
| 24 |
-
"type": "sentence_transformers.models.Dense"
|
| 25 |
-
},
|
| 26 |
-
{
|
| 27 |
-
"idx": 4,
|
| 28 |
-
"name": "4",
|
| 29 |
-
"path": "4_Normalize",
|
| 30 |
-
"type": "sentence_transformers.models.Normalize"
|
| 31 |
}
|
| 32 |
]
|
|
|
|
| 10 |
"name": "1",
|
| 11 |
"path": "1_Pooling",
|
| 12 |
"type": "sentence_transformers.models.Pooling"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
}
|
| 14 |
]
|
special_tokens_map.json
CHANGED
|
@@ -1,30 +1,34 @@
|
|
| 1 |
{
|
| 2 |
-
"
|
| 3 |
-
|
| 4 |
-
"content": "<bos>",
|
| 5 |
"lstrip": false,
|
| 6 |
"normalized": false,
|
| 7 |
"rstrip": false,
|
| 8 |
"single_word": false
|
| 9 |
},
|
| 10 |
-
"
|
| 11 |
-
|
| 12 |
-
"content": "<eos>",
|
| 13 |
"lstrip": false,
|
| 14 |
"normalized": false,
|
| 15 |
"rstrip": false,
|
| 16 |
"single_word": false
|
| 17 |
},
|
| 18 |
-
"image_token": "<image_soft_token>",
|
| 19 |
"pad_token": {
|
| 20 |
-
"content": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
"lstrip": false,
|
| 22 |
"normalized": false,
|
| 23 |
"rstrip": false,
|
| 24 |
"single_word": false
|
| 25 |
},
|
| 26 |
"unk_token": {
|
| 27 |
-
"content": "
|
| 28 |
"lstrip": false,
|
| 29 |
"normalized": false,
|
| 30 |
"rstrip": false,
|
|
|
|
| 1 |
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
|
|
|
| 4 |
"lstrip": false,
|
| 5 |
"normalized": false,
|
| 6 |
"rstrip": false,
|
| 7 |
"single_word": false
|
| 8 |
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
|
|
|
| 11 |
"lstrip": false,
|
| 12 |
"normalized": false,
|
| 13 |
"rstrip": false,
|
| 14 |
"single_word": false
|
| 15 |
},
|
|
|
|
| 16 |
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
"lstrip": false,
|
| 26 |
"normalized": false,
|
| 27 |
"rstrip": false,
|
| 28 |
"single_word": false
|
| 29 |
},
|
| 30 |
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
"lstrip": false,
|
| 33 |
"normalized": false,
|
| 34 |
"rstrip": false,
|
tokenizer.json
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2fc687b11de0bc1b3d8348f92e3b49ef1089a621506c7661fbf3248fcd54947e
|
| 3 |
+
size 711649
|
tokenizer_config.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
training_args.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 6161
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9b00bfe28f1f5c19078fccb765b6539914861c7d57b38fb16b169199ec0cec5c
|
| 3 |
size 6161
|