---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:713743
- loss:MultipleNegativesRankingLoss
base_model: Alibaba-NLP/gte-modernbert-base
widget:
- source_sentence: 'Abraham Lincoln: Why is the Gettysburg Address so memorable?'
sentences:
- 'Abraham Lincoln: Why is the Gettysburg Address so memorable?'
- What does the Gettysburg Address really mean?
- What is eatalo.com?
- source_sentence: Has the influence of Ancient Carthage in science, math, and society
been underestimated?
sentences:
- How does one earn money online without an investment from home?
- Has the influence of Ancient Carthage in science, math, and society been underestimated?
- Has the influence of the Ancient Etruscans in science and math been underestimated?
- source_sentence: Is there any app that shares charging to others like share it how
we transfer files?
sentences:
- How do you think of Chinese claims that the present Private Arbitration is illegal,
its verdict violates the UNCLOS and is illegal?
- Is there any app that shares charging to others like share it how we transfer
files?
- Are there any platforms that provides end-to-end encryption for file transfer/
sharing?
- source_sentence: Why AAP’s MLA Dinesh Mohaniya has been arrested?
sentences:
- What are your views on the latest sex scandal by AAP MLA Sandeep Kumar?
- What is a dc current? What are some examples?
- Why AAP’s MLA Dinesh Mohaniya has been arrested?
- source_sentence: What is the difference between economic growth and economic development?
sentences:
- How cold can the Gobi Desert get, and how do its average temperatures compare
to the ones in the Simpson Desert?
- the difference between economic growth and economic development is What?
- What is the difference between economic growth and economic development?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: cosine_accuracy@1
value: 0.38
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.54
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.68
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.38
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.136
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.38
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.54
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.68
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5686686381597302
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.49702380952380953
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5063338862610184
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: cosine_accuracy@1
value: 0.4
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.56
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.66
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.4
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12800000000000003
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.36
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.54
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.58
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.63
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5105228253020769
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.48852380952380947
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4728184565167554
name: Cosine Map@100
- task:
type: nano-beir
name: Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: cosine_accuracy@1
value: 0.39
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.55
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.64
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.73
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.39
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.19
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.132
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07500000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.37
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.54
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.63
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7150000000000001
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5395957317309036
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4927738095238095
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.48957617138888687
name: Cosine Map@100
---
# SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("redis/model-b-structured")
# Run inference
sentences = [
'What is the difference between economic growth and economic development?',
'What is the difference between economic growth and economic development?',
'the difference between economic growth and economic development is What?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 1.0000, -0.0629],
# [ 1.0000, 1.0000, -0.0629],
# [-0.0629, -0.0629, 1.0001]])
```
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `NanoMSMARCO` and `NanoNQ`
* Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | NanoMSMARCO | NanoNQ |
|:--------------------|:------------|:-----------|
| cosine_accuracy@1 | 0.38 | 0.4 |
| cosine_accuracy@3 | 0.54 | 0.56 |
| cosine_accuracy@5 | 0.68 | 0.6 |
| cosine_accuracy@10 | 0.8 | 0.66 |
| cosine_precision@1 | 0.38 | 0.4 |
| cosine_precision@3 | 0.18 | 0.2 |
| cosine_precision@5 | 0.136 | 0.128 |
| cosine_precision@10 | 0.08 | 0.07 |
| cosine_recall@1 | 0.38 | 0.36 |
| cosine_recall@3 | 0.54 | 0.54 |
| cosine_recall@5 | 0.68 | 0.58 |
| cosine_recall@10 | 0.8 | 0.63 |
| **cosine_ndcg@10** | **0.5687** | **0.5105** |
| cosine_mrr@10 | 0.497 | 0.4885 |
| cosine_map@100 | 0.5063 | 0.4728 |
#### Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with [NanoBEIREvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nq"
],
"dataset_id": "lightonai/NanoBEIR-en"
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.39 |
| cosine_accuracy@3 | 0.55 |
| cosine_accuracy@5 | 0.64 |
| cosine_accuracy@10 | 0.73 |
| cosine_precision@1 | 0.39 |
| cosine_precision@3 | 0.19 |
| cosine_precision@5 | 0.132 |
| cosine_precision@10 | 0.075 |
| cosine_recall@1 | 0.37 |
| cosine_recall@3 | 0.54 |
| cosine_recall@5 | 0.63 |
| cosine_recall@10 | 0.715 |
| **cosine_ndcg@10** | **0.5396** |
| cosine_mrr@10 | 0.4928 |
| cosine_map@100 | 0.4896 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 713,743 training samples
* Columns: anchor, positive, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details |
Which one is better Linux OS? Ubuntu or Mint? | Why do you use Linux Mint? | Which one is not better Linux OS ? Ubuntu or Mint ? |
| What is flow? | What is flow? | What are flow lines? |
| How is Trump planning to get Mexico to pay for his supposed wall? | How is it possible for Donald Trump to force Mexico to pay for the wall? | Why do we connect the positive terminal before the negative terminal to ground in a vehicle battery? |
* Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 7.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 40,000 evaluation samples
* Columns: anchor, positive, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | Why are all my questions on Quora marked needing improvement? | Why are all my questions immediately being marked as needing improvement? | For a post-graduate student in IIT, is it allowed to take an external scholarship as a top-up to his/her MHRD assistantship? |
| Can blue butter fly needle with vaccum tube be reused? Is it HIV risk? . Heard the needle is too small to be reused . Had blood draw at clinic? | Can blue butter fly needle with vaccum tube be reused? Is it HIV risk? . Heard the needle is too small to be reused . Had blood draw at clinic? | Can blue butter fly needle with vaccum tube be reused not ? Is it HIV risk ? . Heard the needle is too small to be reused . Had blood draw at clinic ? |
| Why do people still believe the world is flat? | Why are there still people who believe the world is flat? | I'm not able to buy Udemy course .it is not accepting mine and my friends debit card.my card can be used for Flipkart .how to purchase now? |
* Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 7.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `learning_rate`: 2e-05
- `weight_decay`: 0.0001
- `max_steps`: 5000
- `warmup_ratio`: 0.1
- `fp16`: True
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 1
- `dataloader_prefetch_factor`: 1
- `load_best_model_at_end`: True
- `optim`: adamw_torch
- `ddp_find_unused_parameters`: False
- `push_to_hub`: True
- `hub_model_id`: redis/model-b-structured
- `eval_on_start`: True
#### All Hyperparameters