--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense - generated_from_trainer - dataset_size:713743 - loss:MultipleNegativesRankingLoss base_model: Alibaba-NLP/gte-modernbert-base widget: - source_sentence: 'Abraham Lincoln: Why is the Gettysburg Address so memorable?' sentences: - 'Abraham Lincoln: Why is the Gettysburg Address so memorable?' - What does the Gettysburg Address really mean? - What is eatalo.com? - source_sentence: Has the influence of Ancient Carthage in science, math, and society been underestimated? sentences: - How does one earn money online without an investment from home? - Has the influence of Ancient Carthage in science, math, and society been underestimated? - Has the influence of the Ancient Etruscans in science and math been underestimated? - source_sentence: Is there any app that shares charging to others like share it how we transfer files? sentences: - How do you think of Chinese claims that the present Private Arbitration is illegal, its verdict violates the UNCLOS and is illegal? - Is there any app that shares charging to others like share it how we transfer files? - Are there any platforms that provides end-to-end encryption for file transfer/ sharing? - source_sentence: Why AAP’s MLA Dinesh Mohaniya has been arrested? sentences: - What are your views on the latest sex scandal by AAP MLA Sandeep Kumar? - What is a dc current? What are some examples? - Why AAP’s MLA Dinesh Mohaniya has been arrested? - source_sentence: What is the difference between economic growth and economic development? sentences: - How cold can the Gobi Desert get, and how do its average temperatures compare to the ones in the Simpson Desert? - the difference between economic growth and economic development is What? - What is the difference between economic growth and economic development? pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: SentenceTransformer based on Alibaba-NLP/gte-modernbert-base results: - task: type: information-retrieval name: Information Retrieval dataset: name: NanoMSMARCO type: NanoMSMARCO metrics: - type: cosine_accuracy@1 value: 0.38 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.54 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.68 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.38 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.18 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.136 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.38 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.54 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.68 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5686686381597302 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.49702380952380953 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5063338862610184 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoNQ type: NanoNQ metrics: - type: cosine_accuracy@1 value: 0.4 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.56 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.66 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.4 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.12800000000000003 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.36 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.54 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.58 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.63 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5105228253020769 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.48852380952380947 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4728184565167554 name: Cosine Map@100 - task: type: nano-beir name: Nano BEIR dataset: name: NanoBEIR mean type: NanoBEIR_mean metrics: - type: cosine_accuracy@1 value: 0.39 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.55 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.64 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.73 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.39 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.19 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.132 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07500000000000001 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.37 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.54 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.63 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7150000000000001 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5395957317309036 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4927738095238095 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.48957617138888687 name: Cosine Map@100 --- # SentenceTransformer based on Alibaba-NLP/gte-modernbert-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'ModernBertModel'}) (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("redis/model-b-structured") # Run inference sentences = [ 'What is the difference between economic growth and economic development?', 'What is the difference between economic growth and economic development?', 'the difference between economic growth and economic development is What?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities) # tensor([[ 1.0000, 1.0000, -0.0629], # [ 1.0000, 1.0000, -0.0629], # [-0.0629, -0.0629, 1.0001]]) ``` ## Evaluation ### Metrics #### Information Retrieval * Datasets: `NanoMSMARCO` and `NanoNQ` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | NanoMSMARCO | NanoNQ | |:--------------------|:------------|:-----------| | cosine_accuracy@1 | 0.38 | 0.4 | | cosine_accuracy@3 | 0.54 | 0.56 | | cosine_accuracy@5 | 0.68 | 0.6 | | cosine_accuracy@10 | 0.8 | 0.66 | | cosine_precision@1 | 0.38 | 0.4 | | cosine_precision@3 | 0.18 | 0.2 | | cosine_precision@5 | 0.136 | 0.128 | | cosine_precision@10 | 0.08 | 0.07 | | cosine_recall@1 | 0.38 | 0.36 | | cosine_recall@3 | 0.54 | 0.54 | | cosine_recall@5 | 0.68 | 0.58 | | cosine_recall@10 | 0.8 | 0.63 | | **cosine_ndcg@10** | **0.5687** | **0.5105** | | cosine_mrr@10 | 0.497 | 0.4885 | | cosine_map@100 | 0.5063 | 0.4728 | #### Nano BEIR * Dataset: `NanoBEIR_mean` * Evaluated with [NanoBEIREvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco", "nq" ], "dataset_id": "lightonai/NanoBEIR-en" } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.39 | | cosine_accuracy@3 | 0.55 | | cosine_accuracy@5 | 0.64 | | cosine_accuracy@10 | 0.73 | | cosine_precision@1 | 0.39 | | cosine_precision@3 | 0.19 | | cosine_precision@5 | 0.132 | | cosine_precision@10 | 0.075 | | cosine_recall@1 | 0.37 | | cosine_recall@3 | 0.54 | | cosine_recall@5 | 0.63 | | cosine_recall@10 | 0.715 | | **cosine_ndcg@10** | **0.5396** | | cosine_mrr@10 | 0.4928 | | cosine_map@100 | 0.4896 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 713,743 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------| | Which one is better Linux OS? Ubuntu or Mint? | Why do you use Linux Mint? | Which one is not better Linux OS ? Ubuntu or Mint ? | | What is flow? | What is flow? | What are flow lines? | | How is Trump planning to get Mexico to pay for his supposed wall? | How is it possible for Donald Trump to force Mexico to pay for the wall? | Why do we connect the positive terminal before the negative terminal to ground in a vehicle battery? | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 7.0, "similarity_fct": "cos_sim", "gather_across_devices": false } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 40,000 evaluation samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Why are all my questions on Quora marked needing improvement? | Why are all my questions immediately being marked as needing improvement? | For a post-graduate student in IIT, is it allowed to take an external scholarship as a top-up to his/her MHRD assistantship? | | Can blue butter fly needle with vaccum tube be reused? Is it HIV risk? . Heard the needle is too small to be reused . Had blood draw at clinic? | Can blue butter fly needle with vaccum tube be reused? Is it HIV risk? . Heard the needle is too small to be reused . Had blood draw at clinic? | Can blue butter fly needle with vaccum tube be reused not ? Is it HIV risk ? . Heard the needle is too small to be reused . Had blood draw at clinic ? | | Why do people still believe the world is flat? | Why are there still people who believe the world is flat? | I'm not able to buy Udemy course .it is not accepting mine and my friends debit card.my card can be used for Flipkart .how to purchase now? | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 7.0, "similarity_fct": "cos_sim", "gather_across_devices": false } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `learning_rate`: 2e-05 - `weight_decay`: 0.0001 - `max_steps`: 5000 - `warmup_ratio`: 0.1 - `fp16`: True - `dataloader_drop_last`: True - `dataloader_num_workers`: 1 - `dataloader_prefetch_factor`: 1 - `load_best_model_at_end`: True - `optim`: adamw_torch - `ddp_find_unused_parameters`: False - `push_to_hub`: True - `hub_model_id`: redis/model-b-structured - `eval_on_start`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0001 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3.0 - `max_steps`: 5000 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: True - `dataloader_num_workers`: 1 - `dataloader_prefetch_factor`: 1 - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `parallelism_config`: None - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `project`: huggingface - `trackio_space_id`: trackio - `ddp_find_unused_parameters`: False - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: True - `resume_from_checkpoint`: None - `hub_model_id`: redis/model-b-structured - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: no - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: True - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: True - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {}
### Training Logs | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 | |:------:|:----:|:-------------:|:---------------:|:--------------------------:|:---------------------:|:----------------------------:| | 0 | 0 | - | 2.2389 | 0.6530 | 0.6552 | 0.6541 | | 0.0448 | 250 | 1.0022 | 0.4154 | 0.6615 | 0.5429 | 0.6022 | | 0.0897 | 500 | 0.3871 | 0.3658 | 0.6042 | 0.4458 | 0.5250 | | 0.1345 | 750 | 0.3575 | 0.3479 | 0.5819 | 0.5160 | 0.5489 | | 0.1793 | 1000 | 0.3454 | 0.3355 | 0.5976 | 0.5595 | 0.5785 | | 0.2242 | 1250 | 0.337 | 0.3284 | 0.5901 | 0.4544 | 0.5223 | | 0.2690 | 1500 | 0.3291 | 0.3235 | 0.6138 | 0.5729 | 0.5933 | | 0.3138 | 1750 | 0.323 | 0.3182 | 0.6210 | 0.5608 | 0.5909 | | 0.3587 | 2000 | 0.3206 | 0.3141 | 0.6139 | 0.5474 | 0.5807 | | 0.4035 | 2250 | 0.3151 | 0.3120 | 0.6275 | 0.5665 | 0.5970 | | 0.4484 | 2500 | 0.3132 | 0.3093 | 0.6059 | 0.5349 | 0.5704 | | 0.4932 | 2750 | 0.3087 | 0.3072 | 0.6011 | 0.5305 | 0.5658 | | 0.5380 | 3000 | 0.3065 | 0.3051 | 0.5816 | 0.5057 | 0.5436 | | 0.5829 | 3250 | 0.3044 | 0.3033 | 0.5959 | 0.5203 | 0.5581 | | 0.6277 | 3500 | 0.3053 | 0.3018 | 0.5817 | 0.5185 | 0.5501 | | 0.6725 | 3750 | 0.3028 | 0.3006 | 0.5744 | 0.5052 | 0.5398 | | 0.7174 | 4000 | 0.3018 | 0.2996 | 0.5783 | 0.5190 | 0.5487 | | 0.7622 | 4250 | 0.3011 | 0.2994 | 0.5679 | 0.4959 | 0.5319 | | 0.8070 | 4500 | 0.3009 | 0.2979 | 0.5689 | 0.5068 | 0.5378 | | 0.8519 | 4750 | 0.2985 | 0.2975 | 0.5687 | 0.5135 | 0.5411 | | 0.8967 | 5000 | 0.2995 | 0.2971 | 0.5687 | 0.5105 | 0.5396 | ### Framework Versions - Python: 3.10.18 - Sentence Transformers: 5.2.0 - Transformers: 4.57.3 - PyTorch: 2.9.1+cu128 - Accelerate: 1.12.0 - Datasets: 2.21.0 - Tokenizers: 0.22.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```