|
|
import torch |
|
|
import torch.nn as nn |
|
|
|
|
|
from einops import rearrange |
|
|
|
|
|
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func |
|
|
from flash_attn.bert_padding import unpad_input, pad_input |
|
|
|
|
|
|
|
|
class FlashAttention(nn.Module): |
|
|
"""Implement the scaled dot product attention with softmax. |
|
|
Arguments |
|
|
--------- |
|
|
softmax_scale: The temperature to use for the softmax attention. |
|
|
(default: 1/sqrt(d_keys) where d_keys is computed at |
|
|
runtime) |
|
|
attention_dropout: The dropout rate to apply to the attention |
|
|
(default: 0.0) |
|
|
""" |
|
|
|
|
|
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None): |
|
|
super().__init__() |
|
|
self.softmax_scale = softmax_scale |
|
|
self.dropout_p = attention_dropout |
|
|
|
|
|
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None, |
|
|
max_s=None, need_weights=False): |
|
|
"""Implements the multihead softmax attention. |
|
|
Arguments |
|
|
--------- |
|
|
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None |
|
|
if unpadded: (nnz, 3, h, d) |
|
|
key_padding_mask: a bool tensor of shape (B, S) |
|
|
""" |
|
|
assert not need_weights |
|
|
assert qkv.dtype in [torch.float16, torch.bfloat16] |
|
|
assert qkv.is_cuda |
|
|
|
|
|
if cu_seqlens is None: |
|
|
batch_size = qkv.shape[0] |
|
|
seqlen = qkv.shape[1] |
|
|
if key_padding_mask is None: |
|
|
qkv = rearrange(qkv, 'b s ... -> (b s) ...') |
|
|
max_s = seqlen |
|
|
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, |
|
|
device=qkv.device) |
|
|
output = flash_attn_varlen_qkvpacked_func( |
|
|
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, |
|
|
softmax_scale=self.softmax_scale, causal=causal |
|
|
) |
|
|
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) |
|
|
else: |
|
|
nheads = qkv.shape[-2] |
|
|
x = rearrange(qkv, 'b s three h d -> b s (three h d)') |
|
|
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask) |
|
|
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads) |
|
|
output_unpad = flash_attn_varlen_qkvpacked_func( |
|
|
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, |
|
|
softmax_scale=self.softmax_scale, causal=causal |
|
|
) |
|
|
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), |
|
|
indices, batch_size, seqlen), |
|
|
'b s (h d) -> b s h d', h=nheads) |
|
|
else: |
|
|
assert max_s is not None |
|
|
output = flash_attn_varlen_qkvpacked_func( |
|
|
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, |
|
|
softmax_scale=self.softmax_scale, causal=causal |
|
|
) |
|
|
|
|
|
return output, None |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_3d_sincos_pos_embed(embed_dim, grid_size, t_size, cls_token=False, cls_token_num=4): |
|
|
""" |
|
|
grid_size: int of the grid height and width |
|
|
t_size: int of the temporal size |
|
|
return: |
|
|
pos_embed: [t_size*grid_size*grid_size, embed_dim] or [1+t_size*grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
|
""" |
|
|
assert embed_dim % 4 == 0 |
|
|
embed_dim_spatial = embed_dim // 4 * 3 |
|
|
embed_dim_temporal = embed_dim // 4 |
|
|
|
|
|
|
|
|
grid_h = np.arange(grid_size, dtype=np.float32) |
|
|
grid_w = np.arange(grid_size, dtype=np.float32) |
|
|
grid = np.meshgrid(grid_w, grid_h) |
|
|
grid = np.stack(grid, axis=0) |
|
|
|
|
|
grid = grid.reshape([2, 1, grid_size, grid_size]) |
|
|
pos_embed_spatial = get_2d_sincos_pos_embed_from_grid( |
|
|
embed_dim_spatial, grid |
|
|
) |
|
|
|
|
|
|
|
|
grid_t = np.arange(t_size, dtype=np.float32) |
|
|
pos_embed_temporal = get_1d_sincos_pos_embed_from_grid( |
|
|
embed_dim_temporal, grid_t |
|
|
) |
|
|
|
|
|
|
|
|
pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :] |
|
|
pos_embed_temporal = np.repeat( |
|
|
pos_embed_temporal, grid_size**2, axis=1 |
|
|
) |
|
|
pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :] |
|
|
pos_embed_spatial = np.repeat( |
|
|
pos_embed_spatial, t_size, axis=0 |
|
|
) |
|
|
|
|
|
pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1) |
|
|
pos_embed = pos_embed.reshape([-1, embed_dim]) |
|
|
|
|
|
if cls_token: |
|
|
pos_embed = np.concatenate( |
|
|
[np.zeros([cls_token_num, embed_dim]), pos_embed], axis=0 |
|
|
) |
|
|
return pos_embed |
|
|
|
|
|
def get_3d_sincos_pos_embed_new(embed_dim, grid_size, t_size, cls_token=False, cls_token_num=4): |
|
|
""" |
|
|
grid_size: tuple or list of (grid_height, grid_width) |
|
|
t_size: int of the temporal size |
|
|
return: |
|
|
pos_embed: [t_size*grid_height*grid_width, embed_dim] or [1+t_size*grid_height*grid_width, embed_dim] (w/ or w/o cls_token) |
|
|
""" |
|
|
assert embed_dim % 4 == 0 |
|
|
embed_dim_spatial = embed_dim // 4 * 3 |
|
|
embed_dim_temporal = embed_dim // 4 |
|
|
|
|
|
|
|
|
if isinstance(grid_size, int): |
|
|
grid_h = grid_size |
|
|
grid_w = grid_size |
|
|
else: |
|
|
grid_h, grid_w = grid_size |
|
|
|
|
|
|
|
|
grid_h_arange = np.arange(grid_h, dtype=np.float32) |
|
|
grid_w_arange = np.arange(grid_w, dtype=np.float32) |
|
|
grid = np.meshgrid(grid_w_arange, grid_h_arange) |
|
|
grid = np.stack(grid, axis=0) |
|
|
|
|
|
grid = grid.reshape([2, 1, grid_h, grid_w]) |
|
|
pos_embed_spatial = get_2d_sincos_pos_embed_from_grid( |
|
|
embed_dim_spatial, grid |
|
|
) |
|
|
|
|
|
|
|
|
grid_t = np.arange(t_size, dtype=np.float32) |
|
|
pos_embed_temporal = get_1d_sincos_pos_embed_from_grid( |
|
|
embed_dim_temporal, grid_t |
|
|
) |
|
|
|
|
|
|
|
|
pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :] |
|
|
pos_embed_temporal = np.repeat( |
|
|
pos_embed_temporal, grid_h * grid_w, axis=1 |
|
|
) |
|
|
|
|
|
pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :] |
|
|
pos_embed_spatial = np.repeat( |
|
|
pos_embed_spatial, t_size, axis=0 |
|
|
) |
|
|
|
|
|
pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1) |
|
|
pos_embed = pos_embed.reshape([-1, embed_dim]) |
|
|
|
|
|
if cls_token: |
|
|
pos_embed = np.concatenate( |
|
|
[np.zeros([cls_token_num, embed_dim]), pos_embed], axis=0 |
|
|
) |
|
|
return pos_embed |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): |
|
|
""" |
|
|
grid_size: int of the grid height and width |
|
|
return: |
|
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
|
""" |
|
|
grid_h = np.arange(grid_size, dtype=np.float32) |
|
|
grid_w = np.arange(grid_size, dtype=np.float32) |
|
|
grid = np.meshgrid(grid_w, grid_h) |
|
|
grid = np.stack(grid, axis=0) |
|
|
|
|
|
grid = grid.reshape([2, 1, grid_size, grid_size]) |
|
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) |
|
|
if cls_token: |
|
|
pos_embed = np.concatenate( |
|
|
[np.zeros([1, embed_dim]), pos_embed], axis=0 |
|
|
) |
|
|
return pos_embed |
|
|
|
|
|
|
|
|
def get_1d_sincos_pos_embed(embed_dim, t_size, cls_token=False): |
|
|
""" |
|
|
t_size: int of the temporal size |
|
|
return: |
|
|
pos_embed: [t_size, embed_dim] or [1+t_size, embed_dim] (w/ or w/o cls_token) |
|
|
""" |
|
|
grid_t = np.arange(t_size, dtype=np.float32) |
|
|
pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid_t) |
|
|
if cls_token: |
|
|
pos_embed = np.concatenate( |
|
|
[np.zeros([1, embed_dim]), pos_embed], axis=0 |
|
|
) |
|
|
return pos_embed |
|
|
|
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
|
assert embed_dim % 2 == 0 |
|
|
|
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid( |
|
|
embed_dim // 2, grid[0] |
|
|
) |
|
|
emb_w = get_1d_sincos_pos_embed_from_grid( |
|
|
embed_dim // 2, grid[1] |
|
|
) |
|
|
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) |
|
|
return emb |
|
|
|
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
|
""" |
|
|
embed_dim: output dimension for each position |
|
|
pos: a list of positions to be encoded: size (M,) |
|
|
out: (M, D) |
|
|
""" |
|
|
assert embed_dim % 2 == 0 |
|
|
omega = np.arange(embed_dim // 2, dtype=np.float32) |
|
|
omega /= embed_dim / 2.0 |
|
|
omega = 1.0 / 10000**omega |
|
|
|
|
|
pos = pos.reshape(-1) |
|
|
out = np.einsum("m,d->md", pos, omega) |
|
|
|
|
|
emb_sin = np.sin(out) |
|
|
emb_cos = np.cos(out) |
|
|
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) |
|
|
return emb |
|
|
|
|
|
|
|
|
def interpolate_pos_embed(checkpoint_model, model, orig_t_size=4, pos_name='vision_encoder.pos_embed'): |
|
|
if pos_name in checkpoint_model: |
|
|
pos_embed_checkpoint = checkpoint_model[pos_name] |
|
|
embedding_size = pos_embed_checkpoint.shape[-1] |
|
|
num_patches = model.patch_embed.num_patches |
|
|
num_extra_tokens = model.pos_embed.shape[-2] - num_patches |
|
|
|
|
|
|
|
|
new_t_size = model.T |
|
|
|
|
|
orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5) |
|
|
|
|
|
new_size = int((num_patches // (new_t_size))** 0.5) |
|
|
|
|
|
|
|
|
if orig_t_size != new_t_size: |
|
|
print(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})") |
|
|
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] |
|
|
|
|
|
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] |
|
|
|
|
|
pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size) |
|
|
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size) |
|
|
pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear') |
|
|
pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size) |
|
|
pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size) |
|
|
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) |
|
|
checkpoint_model[pos_name] = new_pos_embed |
|
|
pos_embed_checkpoint = new_pos_embed |
|
|
|
|
|
|
|
|
if orig_size != new_size: |
|
|
print(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})") |
|
|
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] |
|
|
|
|
|
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] |
|
|
|
|
|
pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size) |
|
|
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) |
|
|
pos_tokens = torch.nn.functional.interpolate( |
|
|
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) |
|
|
|
|
|
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) |
|
|
pos_tokens = pos_tokens.flatten(1, 3) |
|
|
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) |
|
|
checkpoint_model[pos_name] = new_pos_embed |
|
|
else: |
|
|
raise NotImplementedError |
|
|
|
|
|
import math |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
|
from timm.models.registry import register_model |
|
|
from torch import nn |
|
|
|
|
|
import torch.utils.checkpoint as checkpoint |
|
|
from functools import partial |
|
|
from einops import rearrange |
|
|
|
|
|
from flash_attn.modules.mlp import FusedMLP |
|
|
from flash_attn.ops.rms_norm import DropoutAddRMSNorm |
|
|
|
|
|
import einops |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
|
def __init__( |
|
|
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., |
|
|
proj_drop=0., attn_head_dim=None, out_dim=None): |
|
|
super().__init__() |
|
|
if out_dim is None: |
|
|
out_dim = dim |
|
|
self.num_heads = num_heads |
|
|
head_dim = dim // num_heads |
|
|
if attn_head_dim is not None: |
|
|
head_dim = attn_head_dim |
|
|
all_head_dim = head_dim * self.num_heads |
|
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
assert all_head_dim == dim |
|
|
|
|
|
self.q = nn.Linear(dim, all_head_dim, bias=False) |
|
|
self.k = nn.Linear(dim, all_head_dim, bias=False) |
|
|
self.v = nn.Linear(dim, all_head_dim, bias=False) |
|
|
|
|
|
if qkv_bias: |
|
|
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
|
self.k_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
|
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
|
else: |
|
|
self.q_bias = None |
|
|
self.k_bias = None |
|
|
self.v_bias = None |
|
|
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
|
self.proj = nn.Linear(all_head_dim, out_dim) |
|
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
|
|
def forward(self, x, k=None, v=None): |
|
|
B, N, C = x.shape |
|
|
N_k = k.shape[1] |
|
|
N_v = v.shape[1] |
|
|
|
|
|
q_bias, k_bias, v_bias = None, None, None |
|
|
if self.q_bias is not None: |
|
|
q_bias = self.q_bias |
|
|
k_bias = self.k_bias |
|
|
v_bias = self.v_bias |
|
|
|
|
|
q = F.linear(input=x, weight=self.q.weight, bias=q_bias) |
|
|
q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) |
|
|
|
|
|
k = F.linear(input=k, weight=self.k.weight, bias=k_bias) |
|
|
k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) |
|
|
|
|
|
v = F.linear(input=v, weight=self.v.weight, bias=v_bias) |
|
|
v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) |
|
|
|
|
|
q = q * self.scale |
|
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
|
|
attn = attn.softmax(dim=-1) |
|
|
attn = self.attn_drop(attn) |
|
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) |
|
|
x = self.proj(x) |
|
|
x = self.proj_drop(x) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
class AttentiveBlock(nn.Module): |
|
|
|
|
|
def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
|
drop_path=0., norm_layer=nn.LayerNorm, attn_head_dim=None, out_dim=None): |
|
|
super().__init__() |
|
|
|
|
|
self.norm1_q = norm_layer(dim) |
|
|
self.norm1_k = norm_layer(dim) |
|
|
self.norm1_v = norm_layer(dim) |
|
|
self.cross_attn = CrossAttention( |
|
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, |
|
|
proj_drop=drop, attn_head_dim=attn_head_dim, out_dim=out_dim) |
|
|
|
|
|
if drop_path > 0.: |
|
|
print(f"Use DropPath in projector: {drop_path}") |
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
|
|
def forward(self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None): |
|
|
x_q = self.norm1_q(x_q + pos_q) |
|
|
x_k = self.norm1_k(x_kv + pos_k) |
|
|
x_v = self.norm1_v(x_kv) |
|
|
x = self.cross_attn(x_q, k=x_k, v=x_v) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
class AttentionPoolingBlock(AttentiveBlock): |
|
|
|
|
|
def forward(self, x): |
|
|
x_q = x.mean(1, keepdim=True) |
|
|
x_kv, pos_q, pos_k = x, 0, 0 |
|
|
x = super().forward(x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None) |
|
|
x = x.squeeze(1) |
|
|
return x |
|
|
|
|
|
|
|
|
class RMSNorm(nn.Module): |
|
|
def __init__(self, hidden_size, eps=1e-6): |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
|
|
|
class LayerScale(nn.Module): |
|
|
def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False): |
|
|
super().__init__() |
|
|
self.inplace = inplace |
|
|
self.lr_scale = nn.Parameter(init_values * torch.ones(dim)) |
|
|
self.force_fp32 = force_fp32 |
|
|
|
|
|
@torch.cuda.amp.autocast(enabled=False) |
|
|
def forward(self, x): |
|
|
if self.force_fp32: |
|
|
output_type = x.dtype |
|
|
out = x.float().mul_(self.lr_scale.float()) if self.inplace else x.float() * self.lr_scale.float() |
|
|
return out.to(dtype=output_type) |
|
|
else: |
|
|
out = x.mul_(self.lr_scale) if self.inplace else x * self.lr_scale |
|
|
return out |
|
|
|
|
|
|
|
|
class Attention(nn.Module): |
|
|
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_flash_attn=False, |
|
|
causal=False, norm_layer=nn.LayerNorm, qk_normalization=False, use_fused_rmsnorm=False): |
|
|
super().__init__() |
|
|
assert dim % num_heads == 0, 'dim should be divisible by num_heads' |
|
|
self.num_heads = num_heads |
|
|
head_dim = dim // num_heads |
|
|
self.scale = head_dim ** -0.5 |
|
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
|
self.proj = nn.Linear(dim, dim) |
|
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
|
|
self.use_flash_attn = use_flash_attn |
|
|
if use_flash_attn: |
|
|
self.causal = causal |
|
|
self.inner_attn = FlashAttention(attention_dropout=attn_drop) |
|
|
|
|
|
self.qk_normalization = qk_normalization |
|
|
self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity() |
|
|
self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity() |
|
|
self.use_fused_rmsnorm = use_fused_rmsnorm |
|
|
|
|
|
def _naive_attn(self, x): |
|
|
B, N, C = x.shape |
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
|
q, k, v = qkv.unbind(0) |
|
|
|
|
|
if self.qk_normalization: |
|
|
B_, H_, N_, D_ = q.shape |
|
|
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) |
|
|
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) |
|
|
|
|
|
attn = ((q * self.scale) @ k.transpose(-2, -1)) |
|
|
|
|
|
attn = attn.softmax(dim=-1) |
|
|
attn = self.attn_drop(attn) |
|
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
|
x = self.proj(x) |
|
|
x = self.proj_drop(x) |
|
|
return x |
|
|
|
|
|
def _flash_attn(self, x, key_padding_mask=None, need_weights=False): |
|
|
|
|
|
qkv = self.qkv(x) |
|
|
qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads) |
|
|
|
|
|
if self.qk_normalization: |
|
|
q, k, v = qkv.unbind(2) |
|
|
if self.use_fused_rmsnorm: |
|
|
q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape) |
|
|
k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape) |
|
|
else: |
|
|
q = self.q_norm(q.flatten(-2, -1)).view(q.shape) |
|
|
k = self.k_norm(k.flatten(-2, -1)).view(k.shape) |
|
|
qkv = torch.stack([q, k, v], dim=2) |
|
|
|
|
|
context, _ = self.inner_attn( |
|
|
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal |
|
|
) |
|
|
outs = self.proj(rearrange(context, "b s h d -> b s (h d)")) |
|
|
outs = self.proj_drop(outs) |
|
|
return outs |
|
|
|
|
|
def forward(self, x): |
|
|
x = self._naive_attn(x) if not self.use_flash_attn else self._flash_attn(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class Mlp(nn.Module): |
|
|
""" MLP as used in Vision Transformer, MLP-Mixer and related networks |
|
|
""" |
|
|
|
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, |
|
|
bias=True, drop=0.): |
|
|
super().__init__() |
|
|
out_features = out_features or in_features |
|
|
hidden_features = hidden_features or in_features |
|
|
bias = to_2tuple(bias) |
|
|
drop_probs = to_2tuple(drop) |
|
|
|
|
|
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0]) |
|
|
self.act = act_layer() |
|
|
self.drop1 = nn.Dropout(drop_probs[0]) |
|
|
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) |
|
|
self.drop2 = nn.Dropout(drop_probs[1]) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.fc1(x) |
|
|
x = self.act(x) |
|
|
x = self.drop1(x) |
|
|
x = self.fc2(x) |
|
|
x = self.drop2(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class Block(nn.Module): |
|
|
|
|
|
def __init__( |
|
|
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None, |
|
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flash_attn=False, use_fused_mlp=False, |
|
|
fused_mlp_heuristic=1, with_cp=False, qk_normalization=False, layerscale_no_force_fp32=False, |
|
|
use_fused_rmsnorm=False): |
|
|
super().__init__() |
|
|
|
|
|
self.norm1 = norm_layer(dim) |
|
|
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, |
|
|
use_flash_attn=use_flash_attn, causal=False, norm_layer=norm_layer, |
|
|
qk_normalization=qk_normalization, |
|
|
use_fused_rmsnorm=use_fused_rmsnorm) |
|
|
self.ls1 = LayerScale(dim, init_values=init_values, |
|
|
force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity() |
|
|
|
|
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
|
|
self.norm2 = norm_layer(dim) |
|
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
|
if use_fused_mlp: |
|
|
self.mlp = FusedMLP(in_features=dim, hidden_features=mlp_hidden_dim, heuristic=fused_mlp_heuristic) |
|
|
else: |
|
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
self.ls2 = LayerScale(dim, init_values=init_values, |
|
|
force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity() |
|
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
|
|
self.with_cp = with_cp |
|
|
self.use_fused_rmsnorm = use_fused_rmsnorm |
|
|
|
|
|
def forward(self, x, residual=None): |
|
|
|
|
|
def _inner_forward(x, residual=None): |
|
|
if self.use_fused_rmsnorm: |
|
|
x, residual = self.norm1(x, residual) |
|
|
x = self.drop_path1(self.ls1(self.attn(x))) |
|
|
x, residual = self.norm2(x, residual) |
|
|
x = self.drop_path2(self.ls2(self.mlp(x))) |
|
|
return x, residual |
|
|
else: |
|
|
assert residual is None |
|
|
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) |
|
|
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) |
|
|
return x |
|
|
|
|
|
if self.with_cp: |
|
|
return checkpoint.checkpoint(_inner_forward, x, residual) |
|
|
else: |
|
|
return _inner_forward(x, residual=residual) |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
|
""" 3D Image to Patch Embedding |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, |
|
|
num_frames=8, tubelet_size=1, norm_layer=None |
|
|
): |
|
|
super().__init__() |
|
|
img_size = to_2tuple(img_size) |
|
|
patch_size = to_2tuple(patch_size) |
|
|
self.img_size = img_size |
|
|
self.patch_size = patch_size |
|
|
self.tubelet_size = tubelet_size |
|
|
self.grid_size = ( |
|
|
num_frames // tubelet_size, |
|
|
img_size[0] // patch_size[0], |
|
|
img_size[1] // patch_size[1] |
|
|
) |
|
|
self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2] |
|
|
|
|
|
self.proj = nn.Conv3d( |
|
|
in_channels=in_chans, out_channels=embed_dim, |
|
|
kernel_size=(tubelet_size, patch_size[0], patch_size[1]), |
|
|
stride=(tubelet_size, patch_size[0], patch_size[1]) |
|
|
) |
|
|
|
|
|
self.norm = norm_layer(embed_dim) |
|
|
self.norm_before = norm_layer(tubelet_size * math.prod(patch_size) * 3) |
|
|
|
|
|
def forward(self, x): |
|
|
B, C, T, H, W = x.shape |
|
|
x = x.permute(0, 2, 3, 4, 1) |
|
|
x = einops.rearrange(x, "b (t1 t2) (ht hp) (wt wp) c -> b (t1 ht wt) (t2 hp wp c)", t2=self.tubelet_size, hp=self.patch_size[0], wp=self.patch_size[1]) |
|
|
x = self.norm_before(x) |
|
|
x = einops.rearrange(x, "b (t1 ht wt) (t2 hp wp c) -> b (t1 t2) (ht hp) (wt wp) c", t1=T//self.tubelet_size, ht=H//self.patch_size[0], t2=self.tubelet_size, hp=self.patch_size[0], wp=self.patch_size[1]) |
|
|
x = x.permute(0, 4, 1, 2, 3) |
|
|
x = self.proj(x) |
|
|
x = x.flatten(3).permute(0, 2, 3, 1) |
|
|
x = self.norm(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class InternVideoNextBackbone(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
in_chans: int = 3, |
|
|
patch_size: int = 14, |
|
|
img_size: int = 224, |
|
|
qkv_bias: bool = False, |
|
|
drop_path_rate: float = 0.25, |
|
|
embed_dim: int = 1408, |
|
|
head_drop_path_rate: float = 0., |
|
|
num_heads: int = 16, |
|
|
mlp_ratio: float = 4.3637, |
|
|
init_values: float = 1e-5, |
|
|
qk_normalization: bool = True, |
|
|
depth: int = 40, |
|
|
use_flash_attn: bool = True, |
|
|
use_fused_rmsnorm: bool = True, |
|
|
use_fused_mlp: bool = True, |
|
|
fused_mlp_heuristic: int = 1, |
|
|
attn_pool_num_heads: int = 16, |
|
|
clip_embed_dim: int = 768, |
|
|
layerscale_no_force_fp32: bool = False, |
|
|
num_frames: int = 16, |
|
|
tubelet_size: int = 1, |
|
|
sep_pos_embed: bool = False, |
|
|
use_checkpoint: bool = False, |
|
|
checkpoint_num: int = 0, |
|
|
cls_token_num: int = 4, |
|
|
): |
|
|
super().__init__() |
|
|
self.cls_token_num = cls_token_num |
|
|
assert use_flash_attn == use_fused_rmsnorm == use_fused_mlp, print( |
|
|
'use_flash_attn, use_fused_rmsnorm and use_fused_mlp should be consistent') |
|
|
print(mlp_ratio) |
|
|
|
|
|
self.use_flash_attn = use_flash_attn |
|
|
self.embed_dim = embed_dim |
|
|
|
|
|
if use_fused_rmsnorm: |
|
|
norm_layer_for_blocks = partial(DropoutAddRMSNorm, eps=1e-6, prenorm=True) |
|
|
else: |
|
|
norm_layer_for_blocks = partial(RMSNorm, eps=1e-6) |
|
|
self.norm_layer_for_blocks = norm_layer_for_blocks |
|
|
self.patch_embed = PatchEmbed( |
|
|
img_size, patch_size, in_chans, embed_dim, |
|
|
num_frames=num_frames, tubelet_size=tubelet_size, norm_layer=partial(RMSNorm, eps=1e-6) |
|
|
) |
|
|
num_patches = self.patch_embed.num_patches |
|
|
self.cls_token = nn.Parameter(torch.zeros(1, cls_token_num, embed_dim)) |
|
|
|
|
|
self.sep_pos_embed = sep_pos_embed |
|
|
if sep_pos_embed: |
|
|
print("Use seperable position embedding") |
|
|
grid_size = self.patch_embed.grid_size |
|
|
self.grid_size = grid_size |
|
|
self.pos_embed_spatial = nn.Parameter(torch.zeros(1, grid_size[1] * grid_size[2], embed_dim)) |
|
|
self.pos_embed_temporal = nn.Parameter(torch.zeros(1, grid_size[0], embed_dim)) |
|
|
self.pos_embed_cls = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
|
else: |
|
|
print("Use joint position embedding") |
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + cls_token_num, embed_dim)) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
|
|
|
|
with_cp_list = [False] * depth |
|
|
if use_checkpoint: |
|
|
for idx in range(depth): |
|
|
if idx < checkpoint_num: |
|
|
with_cp_list[idx] = True |
|
|
print(f"Droppath rate: {dpr}") |
|
|
print(f"Checkpoint list: {with_cp_list}") |
|
|
|
|
|
self.blocks = nn.ModuleList([ |
|
|
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias, |
|
|
norm_layer=norm_layer_for_blocks, |
|
|
drop_path=dpr[i], init_values=init_values, attn_drop=0., |
|
|
use_flash_attn=use_flash_attn, use_fused_mlp=use_fused_mlp, |
|
|
fused_mlp_heuristic=fused_mlp_heuristic, |
|
|
with_cp=with_cp_list[i], |
|
|
qk_normalization=qk_normalization, |
|
|
layerscale_no_force_fp32=layerscale_no_force_fp32, |
|
|
use_fused_rmsnorm=use_fused_rmsnorm) |
|
|
for i in range(depth)]) |
|
|
self.clip_projector = AttentionPoolingBlock( |
|
|
dim=embed_dim, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None, |
|
|
drop=0., attn_drop=0., drop_path=head_drop_path_rate, |
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim |
|
|
) |
|
|
|
|
|
self.init_pos_embed() |
|
|
trunc_normal_(self.cls_token, std=.02) |
|
|
self.apply(self._init_weights) |
|
|
self.fix_init_weight() |
|
|
|
|
|
def init_pos_embed(self): |
|
|
print("Init pos_embed from sincos pos_embed") |
|
|
if self.sep_pos_embed: |
|
|
pos_embed_spatial = get_2d_sincos_pos_embed( |
|
|
self.pos_embed_spatial.shape[-1], |
|
|
self.patch_embed.grid_size[1], |
|
|
) |
|
|
self.pos_embed_spatial.data.copy_(torch.from_numpy(pos_embed_spatial).float().unsqueeze(0)) |
|
|
pos_embed_temporal = get_1d_sincos_pos_embed( |
|
|
self.pos_embed_spatial.shape[-1], |
|
|
self.patch_embed.grid_size[0], |
|
|
) |
|
|
self.pos_embed_temporal.data.copy_(torch.from_numpy(pos_embed_temporal).float().unsqueeze(0)) |
|
|
else: |
|
|
pos_embed = get_3d_sincos_pos_embed( |
|
|
self.pos_embed.shape[-1], |
|
|
self.patch_embed.grid_size[1], |
|
|
self.patch_embed.grid_size[0], |
|
|
cls_token=True, |
|
|
cls_token_num=self.cls_token_num |
|
|
) |
|
|
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) |
|
|
|
|
|
def _init_weights(self, m): |
|
|
if isinstance(m, nn.Linear): |
|
|
trunc_normal_(m.weight, std=.02) |
|
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
|
nn.init.constant_(m.bias, 0) |
|
|
elif isinstance(m, nn.LayerNorm): |
|
|
nn.init.constant_(m.bias, 0) |
|
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
|
|
def fix_init_weight(self): |
|
|
def rescale(param, layer_id): |
|
|
param.div_(math.sqrt(2.0 * layer_id)) |
|
|
|
|
|
for layer_id, layer in enumerate(self.blocks): |
|
|
rescale(layer.attn.proj.weight.data, layer_id + 1) |
|
|
rescale(layer.mlp.fc2.weight.data, layer_id + 1) |
|
|
|
|
|
@property |
|
|
def dtype(self): |
|
|
return self.patch_embed.proj.weight.dtype |
|
|
|
|
|
def get_num_layers(self): |
|
|
return len(self.blocks) |
|
|
|
|
|
@torch.jit.ignore |
|
|
def no_weight_decay(self): |
|
|
return { |
|
|
'pos_embed', |
|
|
'pos_embed_spatial', |
|
|
'pos_embed_temporal', |
|
|
'pos_embed_cls', |
|
|
'cls_token' |
|
|
} |
|
|
|
|
|
def forward(self, x, projected=False): |
|
|
x = self.patch_embed(x.type(self.dtype)) |
|
|
B, T, L, C = x.shape |
|
|
x = x.view([B, T * L, C]) |
|
|
|
|
|
|
|
|
cls_tokens = self.cls_token.expand(B, -1, -1) |
|
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
|
|
|
|
|
if self.sep_pos_embed: |
|
|
pos_embed = self.pos_embed_spatial.repeat( |
|
|
1, self.grid_size[0], 1 |
|
|
) + torch.repeat_interleave( |
|
|
self.pos_embed_temporal, |
|
|
self.grid_size[1] * self.grid_size[2], |
|
|
dim=1, |
|
|
) |
|
|
pos_embed = torch.cat( |
|
|
[ |
|
|
self.pos_embed_cls.expand(pos_embed.shape[0], -1, -1), |
|
|
pos_embed, |
|
|
], |
|
|
1, |
|
|
) |
|
|
else: |
|
|
pos_embed = self.pos_embed |
|
|
x = x + pos_embed |
|
|
|
|
|
residual = None |
|
|
for blk in self.blocks: |
|
|
if isinstance(x, tuple) and len(x) == 2: |
|
|
x, residual = x |
|
|
x = blk(x, residual=residual) |
|
|
if isinstance(x, tuple) and len(x) == 2: |
|
|
x, residual = x |
|
|
if residual is not None: |
|
|
x = x + residual |
|
|
|
|
|
if projected: |
|
|
return self.clip_projector(x) |
|
|
|
|
|
return x[:, self.cls_token_num:, :] |
|
|
|
|
|
|
|
|
@register_model |
|
|
def internvideo_next_base_patch14_224(pretrained=False, **kwargs): |
|
|
model = InternVideoNextBackbone( |
|
|
img_size=224, patch_size=14, embed_dim=768, |
|
|
depth=12, num_heads=12, mlp_ratio=4, |
|
|
attn_pool_num_heads=16, clip_embed_dim=768, |
|
|
**kwargs |
|
|
) |
|
|
return model |
|
|
|
|
|
@register_model |
|
|
def internvideo_next_large_patch14_224(pretrained=False, **kwargs): |
|
|
model = InternVideoNextBackbone( |
|
|
img_size=224, patch_size=14, embed_dim=1024, |
|
|
depth=24, num_heads=16, mlp_ratio=4, |
|
|
attn_pool_num_heads=16, clip_embed_dim=768, |
|
|
**kwargs |
|
|
) |
|
|
return model |
|
|
|
|
|
from transformers import AutoConfig, PreTrainedModel |
|
|
from .modeling_config import InternVideoNextConfig |
|
|
import logging |
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class InternVideoNext(PreTrainedModel): |
|
|
config_class = InternVideoNextConfig |
|
|
def __init__(self, config=None): |
|
|
super().__init__(config=config) |
|
|
self.model_config = config.model_config |
|
|
logger.info("Model config: {}".format(self.model_config)) |
|
|
self.model = InternVideoNextBackbone(**self.model_config) |
|
|
|
|
|
def forward(self, pixel_values): |
|
|
return self.model(pixel_values, projected=True) |
|
|
|
|
|
def extract_features(self, pixel_values): |
|
|
return self.model(pixel_values) |