revliter commited on
Commit
44144f0
·
verified ·
1 Parent(s): 2d884ee

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/petrelfs/wangchenting/code/internvideonext_hf_large",
3
+ "architectures": [
4
+ "InternVideoNext"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "modeling_config.InternVideoNextConfig",
8
+ "AutoModel": "modeling_internvideo_next.InternVideoNext"
9
+ },
10
+ "model_config": {
11
+ "attn_pool_num_heads": 16,
12
+ "clip_embed_dim": 768,
13
+ "depth": 24,
14
+ "embed_dim": 1024,
15
+ "img_size": 224,
16
+ "mlp_ratio": 4,
17
+ "num_frames": 16,
18
+ "num_heads": 16,
19
+ "patch_size": 14,
20
+ "tubelet_size": 1
21
+ },
22
+ "model_type": "InternVideoNext_Large",
23
+ "torch_dtype": "float16",
24
+ "transformers_version": "4.40.1",
25
+ "use_cache": true
26
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:538d64384706e96b7b01844bd9debc8fe8f9e3c86ee0162d8d0cb51c28fea51d
3
+ size 622102256
modeling_config.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import re, ast
3
+ from transformers import AutoConfig, LlamaConfig
4
+ from transformers.configuration_utils import PretrainedConfig
5
+ from transformers.utils import logging
6
+
7
+ from easydict import EasyDict as MyEasyDict
8
+ from importlib import import_module
9
+ import os.path as osp
10
+ import argparse
11
+ import json
12
+ from copy import deepcopy
13
+ import sys
14
+
15
+ class InternVideoNextConfig(PretrainedConfig):
16
+ model_type = 'InternVideoNext_Large'
17
+ def __init__(
18
+ self,
19
+ **kwargs
20
+ ):
21
+ super().__init__(**kwargs)
modeling_internvideo_next.py ADDED
@@ -0,0 +1,884 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from einops import rearrange
5
+
6
+ from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
7
+ from flash_attn.bert_padding import unpad_input, pad_input
8
+
9
+
10
+ class FlashAttention(nn.Module):
11
+ """Implement the scaled dot product attention with softmax.
12
+ Arguments
13
+ ---------
14
+ softmax_scale: The temperature to use for the softmax attention.
15
+ (default: 1/sqrt(d_keys) where d_keys is computed at
16
+ runtime)
17
+ attention_dropout: The dropout rate to apply to the attention
18
+ (default: 0.0)
19
+ """
20
+
21
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
22
+ super().__init__()
23
+ self.softmax_scale = softmax_scale
24
+ self.dropout_p = attention_dropout
25
+
26
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
27
+ max_s=None, need_weights=False):
28
+ """Implements the multihead softmax attention.
29
+ Arguments
30
+ ---------
31
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
32
+ if unpadded: (nnz, 3, h, d)
33
+ key_padding_mask: a bool tensor of shape (B, S)
34
+ """
35
+ assert not need_weights
36
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
37
+ assert qkv.is_cuda
38
+
39
+ if cu_seqlens is None:
40
+ batch_size = qkv.shape[0]
41
+ seqlen = qkv.shape[1]
42
+ if key_padding_mask is None:
43
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
44
+ max_s = seqlen
45
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
46
+ device=qkv.device)
47
+ output = flash_attn_varlen_qkvpacked_func(
48
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
49
+ softmax_scale=self.softmax_scale, causal=causal
50
+ )
51
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
52
+ else:
53
+ nheads = qkv.shape[-2]
54
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
55
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
56
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
57
+ output_unpad = flash_attn_varlen_qkvpacked_func(
58
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
59
+ softmax_scale=self.softmax_scale, causal=causal
60
+ )
61
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
62
+ indices, batch_size, seqlen),
63
+ 'b s (h d) -> b s h d', h=nheads)
64
+ else:
65
+ assert max_s is not None
66
+ output = flash_attn_varlen_qkvpacked_func(
67
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
68
+ softmax_scale=self.softmax_scale, causal=causal
69
+ )
70
+
71
+ return output, None
72
+
73
+ import numpy as np
74
+ import torch
75
+
76
+ # --------------------------------------------------------
77
+ # 3D sine-cosine position embedding
78
+ # References:
79
+ # MVD: https://github.com/ruiwang2021/mvd/blob/main/modeling_finetune.py
80
+ # --------------------------------------------------------
81
+ def get_3d_sincos_pos_embed(embed_dim, grid_size, t_size, cls_token=False, cls_token_num=4):
82
+ """
83
+ grid_size: int of the grid height and width
84
+ t_size: int of the temporal size
85
+ return:
86
+ pos_embed: [t_size*grid_size*grid_size, embed_dim] or [1+t_size*grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
87
+ """
88
+ assert embed_dim % 4 == 0
89
+ embed_dim_spatial = embed_dim // 4 * 3
90
+ embed_dim_temporal = embed_dim // 4
91
+
92
+ # spatial
93
+ grid_h = np.arange(grid_size, dtype=np.float32)
94
+ grid_w = np.arange(grid_size, dtype=np.float32)
95
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
96
+ grid = np.stack(grid, axis=0)
97
+
98
+ grid = grid.reshape([2, 1, grid_size, grid_size])
99
+ pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(
100
+ embed_dim_spatial, grid
101
+ )
102
+
103
+ # temporal
104
+ grid_t = np.arange(t_size, dtype=np.float32)
105
+ pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(
106
+ embed_dim_temporal, grid_t
107
+ )
108
+
109
+ # concate: [T, H, W] order
110
+ pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :]
111
+ pos_embed_temporal = np.repeat(
112
+ pos_embed_temporal, grid_size**2, axis=1
113
+ ) # [T, H*W, D // 4]
114
+ pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :]
115
+ pos_embed_spatial = np.repeat(
116
+ pos_embed_spatial, t_size, axis=0
117
+ ) # [T, H*W, D // 4 * 3]
118
+
119
+ pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1)
120
+ pos_embed = pos_embed.reshape([-1, embed_dim]) # [T*H*W, D]
121
+
122
+ if cls_token:
123
+ pos_embed = np.concatenate(
124
+ [np.zeros([cls_token_num, embed_dim]), pos_embed], axis=0
125
+ )
126
+ return pos_embed
127
+
128
+ def get_3d_sincos_pos_embed_new(embed_dim, grid_size, t_size, cls_token=False, cls_token_num=4):
129
+ """
130
+ grid_size: tuple or list of (grid_height, grid_width)
131
+ t_size: int of the temporal size
132
+ return:
133
+ pos_embed: [t_size*grid_height*grid_width, embed_dim] or [1+t_size*grid_height*grid_width, embed_dim] (w/ or w/o cls_token)
134
+ """
135
+ assert embed_dim % 4 == 0
136
+ embed_dim_spatial = embed_dim // 4 * 3
137
+ embed_dim_temporal = embed_dim // 4
138
+
139
+ # 处理 grid_size 参数,支持 int 或 tuple/list
140
+ if isinstance(grid_size, int):
141
+ grid_h = grid_size
142
+ grid_w = grid_size
143
+ else:
144
+ grid_h, grid_w = grid_size
145
+
146
+ # spatial
147
+ grid_h_arange = np.arange(grid_h, dtype=np.float32)
148
+ grid_w_arange = np.arange(grid_w, dtype=np.float32)
149
+ grid = np.meshgrid(grid_w_arange, grid_h_arange) # here w goes first
150
+ grid = np.stack(grid, axis=0)
151
+
152
+ grid = grid.reshape([2, 1, grid_h, grid_w])
153
+ pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(
154
+ embed_dim_spatial, grid
155
+ )
156
+
157
+ # temporal
158
+ grid_t = np.arange(t_size, dtype=np.float32)
159
+ pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(
160
+ embed_dim_temporal, grid_t
161
+ )
162
+
163
+ # concate: [T, H, W] order
164
+ pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :]
165
+ pos_embed_temporal = np.repeat(
166
+ pos_embed_temporal, grid_h * grid_w, axis=1 # 修改为 grid_h * grid_w
167
+ ) # [T, H*W, D // 4]
168
+
169
+ pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :]
170
+ pos_embed_spatial = np.repeat(
171
+ pos_embed_spatial, t_size, axis=0
172
+ ) # [T, H*W, D // 4 * 3]
173
+
174
+ pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1)
175
+ pos_embed = pos_embed.reshape([-1, embed_dim]) # [T*H*W, D]
176
+
177
+ if cls_token:
178
+ pos_embed = np.concatenate(
179
+ [np.zeros([cls_token_num, embed_dim]), pos_embed], axis=0
180
+ )
181
+ return pos_embed
182
+
183
+ # --------------------------------------------------------
184
+ # 2D sine-cosine position embedding
185
+ # References:
186
+ # Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py
187
+ # MoCo v3: https://github.com/facebookresearch/moco-v3
188
+ # --------------------------------------------------------
189
+ def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
190
+ """
191
+ grid_size: int of the grid height and width
192
+ return:
193
+ pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
194
+ """
195
+ grid_h = np.arange(grid_size, dtype=np.float32)
196
+ grid_w = np.arange(grid_size, dtype=np.float32)
197
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
198
+ grid = np.stack(grid, axis=0)
199
+
200
+ grid = grid.reshape([2, 1, grid_size, grid_size])
201
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
202
+ if cls_token:
203
+ pos_embed = np.concatenate(
204
+ [np.zeros([1, embed_dim]), pos_embed], axis=0
205
+ )
206
+ return pos_embed
207
+
208
+
209
+ def get_1d_sincos_pos_embed(embed_dim, t_size, cls_token=False):
210
+ """
211
+ t_size: int of the temporal size
212
+ return:
213
+ pos_embed: [t_size, embed_dim] or [1+t_size, embed_dim] (w/ or w/o cls_token)
214
+ """
215
+ grid_t = np.arange(t_size, dtype=np.float32)
216
+ pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid_t)
217
+ if cls_token:
218
+ pos_embed = np.concatenate(
219
+ [np.zeros([1, embed_dim]), pos_embed], axis=0
220
+ )
221
+ return pos_embed
222
+
223
+
224
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
225
+ assert embed_dim % 2 == 0
226
+
227
+ # use half of dimensions to encode grid_h
228
+ emb_h = get_1d_sincos_pos_embed_from_grid(
229
+ embed_dim // 2, grid[0]
230
+ ) # (H*W, D/2)
231
+ emb_w = get_1d_sincos_pos_embed_from_grid(
232
+ embed_dim // 2, grid[1]
233
+ ) # (H*W, D/2)
234
+
235
+ emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
236
+ return emb
237
+
238
+
239
+ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
240
+ """
241
+ embed_dim: output dimension for each position
242
+ pos: a list of positions to be encoded: size (M,)
243
+ out: (M, D)
244
+ """
245
+ assert embed_dim % 2 == 0
246
+ omega = np.arange(embed_dim // 2, dtype=np.float32)
247
+ omega /= embed_dim / 2.0
248
+ omega = 1.0 / 10000**omega # (D/2,)
249
+
250
+ pos = pos.reshape(-1) # (M,)
251
+ out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
252
+
253
+ emb_sin = np.sin(out) # (M, D/2)
254
+ emb_cos = np.cos(out) # (M, D/2)
255
+
256
+ emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
257
+ return emb
258
+
259
+
260
+ def interpolate_pos_embed(checkpoint_model, model, orig_t_size=4, pos_name='vision_encoder.pos_embed'):
261
+ if pos_name in checkpoint_model:
262
+ pos_embed_checkpoint = checkpoint_model[pos_name]
263
+ embedding_size = pos_embed_checkpoint.shape[-1] # channel dim
264
+ num_patches = model.patch_embed.num_patches #
265
+ num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1
266
+
267
+ # we use 4 frames for pretraining
268
+ new_t_size = model.T
269
+ # height (== width) for the checkpoint position embedding
270
+ orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5)
271
+ # height (== width) for the new position embedding
272
+ new_size = int((num_patches // (new_t_size))** 0.5)
273
+
274
+ # class_token and dist_token are kept unchanged
275
+ if orig_t_size != new_t_size:
276
+ print(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})")
277
+ extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
278
+ # only the position tokens are interpolated
279
+ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
280
+ # B, L, C -> B, T, HW, C -> BHW, C, T (B = 1)
281
+ pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size)
282
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size)
283
+ pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear')
284
+ pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
285
+ pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
286
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
287
+ checkpoint_model[pos_name] = new_pos_embed
288
+ pos_embed_checkpoint = new_pos_embed
289
+
290
+ # class_token and dist_token are kept unchanged
291
+ if orig_size != new_size:
292
+ print(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})")
293
+ extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
294
+ # only the position tokens are interpolated
295
+ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
296
+ # B, L, C -> BT, H, W, C -> BT, C, H, W
297
+ pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
298
+ pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
299
+ pos_tokens = torch.nn.functional.interpolate(
300
+ pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
301
+ # BT, C, H, W -> BT, H, W, C -> B, T, H, W, C
302
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size)
303
+ pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
304
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
305
+ checkpoint_model[pos_name] = new_pos_embed
306
+ else:
307
+ raise NotImplementedError
308
+
309
+ import math
310
+ import torch
311
+ import torch.nn.functional as F
312
+ from timm.models.layers import DropPath, to_2tuple, trunc_normal_
313
+ from timm.models.registry import register_model
314
+ from torch import nn
315
+
316
+ import torch.utils.checkpoint as checkpoint
317
+ from functools import partial
318
+ from einops import rearrange
319
+
320
+ from flash_attn.modules.mlp import FusedMLP
321
+ from flash_attn.ops.rms_norm import DropoutAddRMSNorm
322
+
323
+ import einops
324
+
325
+ class CrossAttention(nn.Module):
326
+ def __init__(
327
+ self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
328
+ proj_drop=0., attn_head_dim=None, out_dim=None):
329
+ super().__init__()
330
+ if out_dim is None:
331
+ out_dim = dim
332
+ self.num_heads = num_heads
333
+ head_dim = dim // num_heads
334
+ if attn_head_dim is not None:
335
+ head_dim = attn_head_dim
336
+ all_head_dim = head_dim * self.num_heads
337
+ self.scale = qk_scale or head_dim ** -0.5
338
+ assert all_head_dim == dim
339
+
340
+ self.q = nn.Linear(dim, all_head_dim, bias=False)
341
+ self.k = nn.Linear(dim, all_head_dim, bias=False)
342
+ self.v = nn.Linear(dim, all_head_dim, bias=False)
343
+
344
+ if qkv_bias:
345
+ self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
346
+ self.k_bias = nn.Parameter(torch.zeros(all_head_dim))
347
+ self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
348
+ else:
349
+ self.q_bias = None
350
+ self.k_bias = None
351
+ self.v_bias = None
352
+
353
+ self.attn_drop = nn.Dropout(attn_drop)
354
+ self.proj = nn.Linear(all_head_dim, out_dim)
355
+ self.proj_drop = nn.Dropout(proj_drop)
356
+
357
+ def forward(self, x, k=None, v=None):
358
+ B, N, C = x.shape
359
+ N_k = k.shape[1]
360
+ N_v = v.shape[1]
361
+
362
+ q_bias, k_bias, v_bias = None, None, None
363
+ if self.q_bias is not None:
364
+ q_bias = self.q_bias
365
+ k_bias = self.k_bias
366
+ v_bias = self.v_bias
367
+
368
+ q = F.linear(input=x, weight=self.q.weight, bias=q_bias)
369
+ q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) # (B, N_head, N_q, dim)
370
+
371
+ k = F.linear(input=k, weight=self.k.weight, bias=k_bias)
372
+ k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)
373
+
374
+ v = F.linear(input=v, weight=self.v.weight, bias=v_bias)
375
+ v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)
376
+
377
+ q = q * self.scale
378
+ attn = (q @ k.transpose(-2, -1)) # (B, N_head, N_q, N_k)
379
+
380
+ attn = attn.softmax(dim=-1)
381
+ attn = self.attn_drop(attn)
382
+
383
+ x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
384
+ x = self.proj(x)
385
+ x = self.proj_drop(x)
386
+
387
+ return x
388
+
389
+
390
+ class AttentiveBlock(nn.Module):
391
+
392
+ def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
393
+ drop_path=0., norm_layer=nn.LayerNorm, attn_head_dim=None, out_dim=None):
394
+ super().__init__()
395
+
396
+ self.norm1_q = norm_layer(dim)
397
+ self.norm1_k = norm_layer(dim)
398
+ self.norm1_v = norm_layer(dim)
399
+ self.cross_attn = CrossAttention(
400
+ dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
401
+ proj_drop=drop, attn_head_dim=attn_head_dim, out_dim=out_dim)
402
+
403
+ if drop_path > 0.:
404
+ print(f"Use DropPath in projector: {drop_path}")
405
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
406
+
407
+ def forward(self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None):
408
+ x_q = self.norm1_q(x_q + pos_q)
409
+ x_k = self.norm1_k(x_kv + pos_k)
410
+ x_v = self.norm1_v(x_kv)
411
+ x = self.cross_attn(x_q, k=x_k, v=x_v)
412
+
413
+ return x
414
+
415
+
416
+ class AttentionPoolingBlock(AttentiveBlock):
417
+
418
+ def forward(self, x):
419
+ x_q = x.mean(1, keepdim=True)
420
+ x_kv, pos_q, pos_k = x, 0, 0
421
+ x = super().forward(x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None)
422
+ x = x.squeeze(1)
423
+ return x
424
+
425
+
426
+ class RMSNorm(nn.Module):
427
+ def __init__(self, hidden_size, eps=1e-6):
428
+ super().__init__()
429
+ self.weight = nn.Parameter(torch.ones(hidden_size))
430
+ self.variance_epsilon = eps
431
+
432
+ def forward(self, hidden_states):
433
+ input_dtype = hidden_states.dtype
434
+ hidden_states = hidden_states.to(torch.float32)
435
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
436
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
437
+ return self.weight * hidden_states.to(input_dtype)
438
+
439
+
440
+ class LayerScale(nn.Module):
441
+ def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False):
442
+ super().__init__()
443
+ self.inplace = inplace
444
+ self.lr_scale = nn.Parameter(init_values * torch.ones(dim))
445
+ self.force_fp32 = force_fp32
446
+
447
+ @torch.cuda.amp.autocast(enabled=False)
448
+ def forward(self, x):
449
+ if self.force_fp32:
450
+ output_type = x.dtype
451
+ out = x.float().mul_(self.lr_scale.float()) if self.inplace else x.float() * self.lr_scale.float()
452
+ return out.to(dtype=output_type)
453
+ else:
454
+ out = x.mul_(self.lr_scale) if self.inplace else x * self.lr_scale
455
+ return out
456
+
457
+
458
+ class Attention(nn.Module):
459
+ def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_flash_attn=False,
460
+ causal=False, norm_layer=nn.LayerNorm, qk_normalization=False, use_fused_rmsnorm=False):
461
+ super().__init__()
462
+ assert dim % num_heads == 0, 'dim should be divisible by num_heads'
463
+ self.num_heads = num_heads
464
+ head_dim = dim // num_heads
465
+ self.scale = head_dim ** -0.5
466
+
467
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
468
+ self.attn_drop = nn.Dropout(attn_drop)
469
+ self.proj = nn.Linear(dim, dim)
470
+ self.proj_drop = nn.Dropout(proj_drop)
471
+
472
+ self.use_flash_attn = use_flash_attn
473
+ if use_flash_attn:
474
+ self.causal = causal
475
+ self.inner_attn = FlashAttention(attention_dropout=attn_drop)
476
+
477
+ self.qk_normalization = qk_normalization
478
+ self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity()
479
+ self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity()
480
+ self.use_fused_rmsnorm = use_fused_rmsnorm
481
+
482
+ def _naive_attn(self, x):
483
+ B, N, C = x.shape
484
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
485
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
486
+
487
+ if self.qk_normalization:
488
+ B_, H_, N_, D_ = q.shape
489
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
490
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
491
+
492
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
493
+ # attn = attn - attn.max(-1)[0].unsqueeze(-1) # in case of overflow for fp16
494
+ attn = attn.softmax(dim=-1)
495
+ attn = self.attn_drop(attn)
496
+
497
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
498
+ x = self.proj(x)
499
+ x = self.proj_drop(x)
500
+ return x
501
+
502
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
503
+
504
+ qkv = self.qkv(x)
505
+ qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads)
506
+
507
+ if self.qk_normalization:
508
+ q, k, v = qkv.unbind(2)
509
+ if self.use_fused_rmsnorm:
510
+ q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape)
511
+ k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape)
512
+ else:
513
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
514
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
515
+ qkv = torch.stack([q, k, v], dim=2)
516
+
517
+ context, _ = self.inner_attn(
518
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal
519
+ )
520
+ outs = self.proj(rearrange(context, "b s h d -> b s (h d)"))
521
+ outs = self.proj_drop(outs)
522
+ return outs
523
+
524
+ def forward(self, x):
525
+ x = self._naive_attn(x) if not self.use_flash_attn else self._flash_attn(x)
526
+ return x
527
+
528
+
529
+ class Mlp(nn.Module):
530
+ """ MLP as used in Vision Transformer, MLP-Mixer and related networks
531
+ """
532
+
533
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU,
534
+ bias=True, drop=0.):
535
+ super().__init__()
536
+ out_features = out_features or in_features
537
+ hidden_features = hidden_features or in_features
538
+ bias = to_2tuple(bias)
539
+ drop_probs = to_2tuple(drop)
540
+
541
+ self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
542
+ self.act = act_layer()
543
+ self.drop1 = nn.Dropout(drop_probs[0])
544
+ self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
545
+ self.drop2 = nn.Dropout(drop_probs[1])
546
+
547
+ def forward(self, x):
548
+ x = self.fc1(x)
549
+ x = self.act(x)
550
+ x = self.drop1(x)
551
+ x = self.fc2(x)
552
+ x = self.drop2(x)
553
+ return x
554
+
555
+
556
+ class Block(nn.Module):
557
+
558
+ def __init__(
559
+ self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
560
+ drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flash_attn=False, use_fused_mlp=False,
561
+ fused_mlp_heuristic=1, with_cp=False, qk_normalization=False, layerscale_no_force_fp32=False,
562
+ use_fused_rmsnorm=False):
563
+ super().__init__()
564
+
565
+ self.norm1 = norm_layer(dim)
566
+ self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
567
+ use_flash_attn=use_flash_attn, causal=False, norm_layer=norm_layer,
568
+ qk_normalization=qk_normalization,
569
+ use_fused_rmsnorm=use_fused_rmsnorm)
570
+ self.ls1 = LayerScale(dim, init_values=init_values,
571
+ force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity()
572
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
573
+ self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
574
+
575
+ self.norm2 = norm_layer(dim)
576
+ mlp_hidden_dim = int(dim * mlp_ratio)
577
+ if use_fused_mlp:
578
+ self.mlp = FusedMLP(in_features=dim, hidden_features=mlp_hidden_dim, heuristic=fused_mlp_heuristic)
579
+ else:
580
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
581
+ self.ls2 = LayerScale(dim, init_values=init_values,
582
+ force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity()
583
+ self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
584
+
585
+ self.with_cp = with_cp
586
+ self.use_fused_rmsnorm = use_fused_rmsnorm
587
+
588
+ def forward(self, x, residual=None):
589
+
590
+ def _inner_forward(x, residual=None):
591
+ if self.use_fused_rmsnorm:
592
+ x, residual = self.norm1(x, residual)
593
+ x = self.drop_path1(self.ls1(self.attn(x)))
594
+ x, residual = self.norm2(x, residual)
595
+ x = self.drop_path2(self.ls2(self.mlp(x)))
596
+ return x, residual
597
+ else:
598
+ assert residual is None
599
+ x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
600
+ x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
601
+ return x
602
+
603
+ if self.with_cp:
604
+ return checkpoint.checkpoint(_inner_forward, x, residual)
605
+ else:
606
+ return _inner_forward(x, residual=residual)
607
+
608
+ class PatchEmbed(nn.Module):
609
+ """ 3D Image to Patch Embedding
610
+ """
611
+
612
+ def __init__(
613
+ self, img_size=224, patch_size=16, in_chans=3, embed_dim=768,
614
+ num_frames=8, tubelet_size=1, norm_layer=None
615
+ ):
616
+ super().__init__()
617
+ img_size = to_2tuple(img_size)
618
+ patch_size = to_2tuple(patch_size)
619
+ self.img_size = img_size
620
+ self.patch_size = patch_size
621
+ self.tubelet_size = tubelet_size
622
+ self.grid_size = (
623
+ num_frames // tubelet_size,
624
+ img_size[0] // patch_size[0],
625
+ img_size[1] // patch_size[1]
626
+ ) # (T, H, W)
627
+ self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
628
+
629
+ self.proj = nn.Conv3d(
630
+ in_channels=in_chans, out_channels=embed_dim,
631
+ kernel_size=(tubelet_size, patch_size[0], patch_size[1]),
632
+ stride=(tubelet_size, patch_size[0], patch_size[1])
633
+ )
634
+
635
+ self.norm = norm_layer(embed_dim)
636
+ self.norm_before = norm_layer(tubelet_size * math.prod(patch_size) * 3)
637
+
638
+ def forward(self, x):
639
+ B, C, T, H, W = x.shape
640
+ x = x.permute(0, 2, 3, 4, 1)
641
+ x = einops.rearrange(x, "b (t1 t2) (ht hp) (wt wp) c -> b (t1 ht wt) (t2 hp wp c)", t2=self.tubelet_size, hp=self.patch_size[0], wp=self.patch_size[1])
642
+ x = self.norm_before(x) # x.shape: [B, T, HW, C]
643
+ x = einops.rearrange(x, "b (t1 ht wt) (t2 hp wp c) -> b (t1 t2) (ht hp) (wt wp) c", t1=T//self.tubelet_size, ht=H//self.patch_size[0], t2=self.tubelet_size, hp=self.patch_size[0], wp=self.patch_size[1])
644
+ x = x.permute(0, 4, 1, 2, 3)
645
+ x = self.proj(x)
646
+ x = x.flatten(3).permute(0, 2, 3, 1)
647
+ x = self.norm(x)
648
+ return x
649
+
650
+
651
+ class InternVideoNextBackbone(nn.Module):
652
+ def __init__(
653
+ self,
654
+ in_chans: int = 3,
655
+ patch_size: int = 14,
656
+ img_size: int = 224,
657
+ qkv_bias: bool = False,
658
+ drop_path_rate: float = 0.25,
659
+ embed_dim: int = 1408,
660
+ head_drop_path_rate: float = 0.,
661
+ num_heads: int = 16,
662
+ mlp_ratio: float = 4.3637,
663
+ init_values: float = 1e-5,
664
+ qk_normalization: bool = True,
665
+ depth: int = 40,
666
+ use_flash_attn: bool = True,
667
+ use_fused_rmsnorm: bool = True,
668
+ use_fused_mlp: bool = True,
669
+ fused_mlp_heuristic: int = 1,
670
+ attn_pool_num_heads: int = 16,
671
+ clip_embed_dim: int = 768,
672
+ layerscale_no_force_fp32: bool = False,
673
+ num_frames: int = 16,
674
+ tubelet_size: int = 1,
675
+ sep_pos_embed: bool = False,
676
+ use_checkpoint: bool = False,
677
+ checkpoint_num: int = 0,
678
+ cls_token_num: int = 4,
679
+ ):
680
+ super().__init__()
681
+ self.cls_token_num = cls_token_num
682
+ assert use_flash_attn == use_fused_rmsnorm == use_fused_mlp, print(
683
+ 'use_flash_attn, use_fused_rmsnorm and use_fused_mlp should be consistent')
684
+ print(mlp_ratio)
685
+
686
+ self.use_flash_attn = use_flash_attn
687
+ self.embed_dim = embed_dim
688
+
689
+ if use_fused_rmsnorm:
690
+ norm_layer_for_blocks = partial(DropoutAddRMSNorm, eps=1e-6, prenorm=True)
691
+ else:
692
+ norm_layer_for_blocks = partial(RMSNorm, eps=1e-6)
693
+ self.norm_layer_for_blocks = norm_layer_for_blocks
694
+ self.patch_embed = PatchEmbed(
695
+ img_size, patch_size, in_chans, embed_dim,
696
+ num_frames=num_frames, tubelet_size=tubelet_size, norm_layer=partial(RMSNorm, eps=1e-6)
697
+ )
698
+ num_patches = self.patch_embed.num_patches
699
+ self.cls_token = nn.Parameter(torch.zeros(1, cls_token_num, embed_dim))
700
+
701
+ self.sep_pos_embed = sep_pos_embed
702
+ if sep_pos_embed:
703
+ print("Use seperable position embedding")
704
+ grid_size = self.patch_embed.grid_size
705
+ self.grid_size = grid_size
706
+ self.pos_embed_spatial = nn.Parameter(torch.zeros(1, grid_size[1] * grid_size[2], embed_dim))
707
+ self.pos_embed_temporal = nn.Parameter(torch.zeros(1, grid_size[0], embed_dim))
708
+ self.pos_embed_cls = nn.Parameter(torch.zeros(1, 1, embed_dim))
709
+ else:
710
+ print("Use joint position embedding")
711
+ self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + cls_token_num, embed_dim))
712
+
713
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
714
+ # choose which layer to use checkpoint
715
+ with_cp_list = [False] * depth
716
+ if use_checkpoint:
717
+ for idx in range(depth):
718
+ if idx < checkpoint_num:
719
+ with_cp_list[idx] = True
720
+ print(f"Droppath rate: {dpr}")
721
+ print(f"Checkpoint list: {with_cp_list}")
722
+
723
+ self.blocks = nn.ModuleList([
724
+ Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias,
725
+ norm_layer=norm_layer_for_blocks,
726
+ drop_path=dpr[i], init_values=init_values, attn_drop=0.,
727
+ use_flash_attn=use_flash_attn, use_fused_mlp=use_fused_mlp,
728
+ fused_mlp_heuristic=fused_mlp_heuristic,
729
+ with_cp=with_cp_list[i],
730
+ qk_normalization=qk_normalization,
731
+ layerscale_no_force_fp32=layerscale_no_force_fp32,
732
+ use_fused_rmsnorm=use_fused_rmsnorm)
733
+ for i in range(depth)])
734
+ self.clip_projector = AttentionPoolingBlock(
735
+ dim=embed_dim, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None,
736
+ drop=0., attn_drop=0., drop_path=head_drop_path_rate,
737
+ norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim
738
+ )
739
+
740
+ self.init_pos_embed()
741
+ trunc_normal_(self.cls_token, std=.02)
742
+ self.apply(self._init_weights)
743
+ self.fix_init_weight()
744
+
745
+ def init_pos_embed(self):
746
+ print("Init pos_embed from sincos pos_embed")
747
+ if self.sep_pos_embed:
748
+ pos_embed_spatial = get_2d_sincos_pos_embed(
749
+ self.pos_embed_spatial.shape[-1],
750
+ self.patch_embed.grid_size[1], # height & weight
751
+ )
752
+ self.pos_embed_spatial.data.copy_(torch.from_numpy(pos_embed_spatial).float().unsqueeze(0))
753
+ pos_embed_temporal = get_1d_sincos_pos_embed(
754
+ self.pos_embed_spatial.shape[-1],
755
+ self.patch_embed.grid_size[0], # t_size
756
+ )
757
+ self.pos_embed_temporal.data.copy_(torch.from_numpy(pos_embed_temporal).float().unsqueeze(0))
758
+ else:
759
+ pos_embed = get_3d_sincos_pos_embed(
760
+ self.pos_embed.shape[-1],
761
+ self.patch_embed.grid_size[1], # height & weight
762
+ self.patch_embed.grid_size[0], # t_size
763
+ cls_token=True,
764
+ cls_token_num=self.cls_token_num
765
+ )
766
+ self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
767
+
768
+ def _init_weights(self, m):
769
+ if isinstance(m, nn.Linear):
770
+ trunc_normal_(m.weight, std=.02)
771
+ if isinstance(m, nn.Linear) and m.bias is not None:
772
+ nn.init.constant_(m.bias, 0)
773
+ elif isinstance(m, nn.LayerNorm):
774
+ nn.init.constant_(m.bias, 0)
775
+ nn.init.constant_(m.weight, 1.0)
776
+
777
+ def fix_init_weight(self):
778
+ def rescale(param, layer_id):
779
+ param.div_(math.sqrt(2.0 * layer_id))
780
+
781
+ for layer_id, layer in enumerate(self.blocks):
782
+ rescale(layer.attn.proj.weight.data, layer_id + 1)
783
+ rescale(layer.mlp.fc2.weight.data, layer_id + 1)
784
+
785
+ @property
786
+ def dtype(self):
787
+ return self.patch_embed.proj.weight.dtype
788
+
789
+ def get_num_layers(self):
790
+ return len(self.blocks)
791
+
792
+ @torch.jit.ignore
793
+ def no_weight_decay(self):
794
+ return {
795
+ 'pos_embed',
796
+ 'pos_embed_spatial',
797
+ 'pos_embed_temporal',
798
+ 'pos_embed_cls',
799
+ 'cls_token'
800
+ }
801
+
802
+ def forward(self, x, projected=False):
803
+ x = self.patch_embed(x.type(self.dtype))
804
+ B, T, L, C = x.shape # T: temporal; L: spatial
805
+ x = x.view([B, T * L, C])
806
+
807
+ # append cls token
808
+ cls_tokens = self.cls_token.expand(B, -1, -1)
809
+ x = torch.cat((cls_tokens, x), dim=1)
810
+
811
+ # add pos_embed
812
+ if self.sep_pos_embed:
813
+ pos_embed = self.pos_embed_spatial.repeat(
814
+ 1, self.grid_size[0], 1
815
+ ) + torch.repeat_interleave(
816
+ self.pos_embed_temporal,
817
+ self.grid_size[1] * self.grid_size[2],
818
+ dim=1,
819
+ )
820
+ pos_embed = torch.cat(
821
+ [
822
+ self.pos_embed_cls.expand(pos_embed.shape[0], -1, -1),
823
+ pos_embed,
824
+ ],
825
+ 1,
826
+ )
827
+ else:
828
+ pos_embed = self.pos_embed
829
+ x = x + pos_embed
830
+
831
+ residual = None
832
+ for blk in self.blocks:
833
+ if isinstance(x, tuple) and len(x) == 2:
834
+ x, residual = x
835
+ x = blk(x, residual=residual)
836
+ if isinstance(x, tuple) and len(x) == 2:
837
+ x, residual = x
838
+ if residual is not None:
839
+ x = x + residual
840
+
841
+ if projected:
842
+ return self.clip_projector(x)
843
+
844
+ return x[:, self.cls_token_num:, :]
845
+
846
+
847
+ @register_model
848
+ def internvideo_next_base_patch14_224(pretrained=False, **kwargs):
849
+ model = InternVideoNextBackbone(
850
+ img_size=224, patch_size=14, embed_dim=768,
851
+ depth=12, num_heads=12, mlp_ratio=4,
852
+ attn_pool_num_heads=16, clip_embed_dim=768,
853
+ **kwargs
854
+ )
855
+ return model
856
+
857
+ @register_model
858
+ def internvideo_next_large_patch14_224(pretrained=False, **kwargs):
859
+ model = InternVideoNextBackbone(
860
+ img_size=224, patch_size=14, embed_dim=1024,
861
+ depth=24, num_heads=16, mlp_ratio=4,
862
+ attn_pool_num_heads=16, clip_embed_dim=768,
863
+ **kwargs
864
+ )
865
+ return model
866
+
867
+ from transformers import AutoConfig, PreTrainedModel
868
+ from .modeling_config import InternVideoNextConfig
869
+ import logging
870
+ logger = logging.getLogger(__name__)
871
+
872
+ class InternVideoNext(PreTrainedModel):
873
+ config_class = InternVideoNextConfig
874
+ def __init__(self, config=None):
875
+ super().__init__(config=config)
876
+ self.model_config = config.model_config
877
+ logger.info("Model config: {}".format(self.model_config))
878
+ self.model = InternVideoNextBackbone(**self.model_config)
879
+
880
+ def forward(self, pixel_values):
881
+ return self.model(pixel_values, projected=True)
882
+
883
+ def extract_features(self, pixel_values):
884
+ return self.model(pixel_values)