revliter commited on
Commit
4b3c527
·
verified ·
1 Parent(s): b59d469

Delete models

Browse files
models/InternVideo_next.py DELETED
@@ -1,559 +0,0 @@
1
- import math
2
- import torch
3
- import torch.nn.functional as F
4
- from timm.models.layers import DropPath, to_2tuple, trunc_normal_
5
- from timm.models.registry import register_model
6
- from torch import nn
7
-
8
- import torch.utils.checkpoint as checkpoint
9
- from functools import partial
10
- from einops import rearrange
11
-
12
- from .pos_embed import get_3d_sincos_pos_embed, get_2d_sincos_pos_embed, get_1d_sincos_pos_embed
13
- from .flash_attention_class import FlashAttention
14
- from flash_attn.modules.mlp import FusedMLP
15
- from flash_attn.ops.rms_norm import DropoutAddRMSNorm
16
-
17
- import einops
18
-
19
- class CrossAttention(nn.Module):
20
- def __init__(
21
- self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
22
- proj_drop=0., attn_head_dim=None, out_dim=None):
23
- super().__init__()
24
- if out_dim is None:
25
- out_dim = dim
26
- self.num_heads = num_heads
27
- head_dim = dim // num_heads
28
- if attn_head_dim is not None:
29
- head_dim = attn_head_dim
30
- all_head_dim = head_dim * self.num_heads
31
- self.scale = qk_scale or head_dim ** -0.5
32
- assert all_head_dim == dim
33
-
34
- self.q = nn.Linear(dim, all_head_dim, bias=False)
35
- self.k = nn.Linear(dim, all_head_dim, bias=False)
36
- self.v = nn.Linear(dim, all_head_dim, bias=False)
37
-
38
- if qkv_bias:
39
- self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
40
- self.k_bias = nn.Parameter(torch.zeros(all_head_dim))
41
- self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
42
- else:
43
- self.q_bias = None
44
- self.k_bias = None
45
- self.v_bias = None
46
-
47
- self.attn_drop = nn.Dropout(attn_drop)
48
- self.proj = nn.Linear(all_head_dim, out_dim)
49
- self.proj_drop = nn.Dropout(proj_drop)
50
-
51
- def forward(self, x, k=None, v=None):
52
- B, N, C = x.shape
53
- N_k = k.shape[1]
54
- N_v = v.shape[1]
55
-
56
- q_bias, k_bias, v_bias = None, None, None
57
- if self.q_bias is not None:
58
- q_bias = self.q_bias
59
- k_bias = self.k_bias
60
- v_bias = self.v_bias
61
-
62
- q = F.linear(input=x, weight=self.q.weight, bias=q_bias)
63
- q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) # (B, N_head, N_q, dim)
64
-
65
- k = F.linear(input=k, weight=self.k.weight, bias=k_bias)
66
- k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)
67
-
68
- v = F.linear(input=v, weight=self.v.weight, bias=v_bias)
69
- v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)
70
-
71
- q = q * self.scale
72
- attn = (q @ k.transpose(-2, -1)) # (B, N_head, N_q, N_k)
73
-
74
- attn = attn.softmax(dim=-1)
75
- attn = self.attn_drop(attn)
76
-
77
- x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
78
- x = self.proj(x)
79
- x = self.proj_drop(x)
80
-
81
- return x
82
-
83
-
84
- class AttentiveBlock(nn.Module):
85
-
86
- def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
87
- drop_path=0., norm_layer=nn.LayerNorm, attn_head_dim=None, out_dim=None):
88
- super().__init__()
89
-
90
- self.norm1_q = norm_layer(dim)
91
- self.norm1_k = norm_layer(dim)
92
- self.norm1_v = norm_layer(dim)
93
- self.cross_attn = CrossAttention(
94
- dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
95
- proj_drop=drop, attn_head_dim=attn_head_dim, out_dim=out_dim)
96
-
97
- if drop_path > 0.:
98
- print(f"Use DropPath in projector: {drop_path}")
99
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
100
-
101
- def forward(self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None):
102
- x_q = self.norm1_q(x_q + pos_q)
103
- x_k = self.norm1_k(x_kv + pos_k)
104
- x_v = self.norm1_v(x_kv)
105
- x = self.cross_attn(x_q, k=x_k, v=x_v)
106
-
107
- return x
108
-
109
-
110
- class AttentionPoolingBlock(AttentiveBlock):
111
-
112
- def forward(self, x):
113
- x_q = x.mean(1, keepdim=True)
114
- x_kv, pos_q, pos_k = x, 0, 0
115
- x = super().forward(x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None)
116
- x = x.squeeze(1)
117
- return x
118
-
119
-
120
- class RMSNorm(nn.Module):
121
- def __init__(self, hidden_size, eps=1e-6):
122
- super().__init__()
123
- self.weight = nn.Parameter(torch.ones(hidden_size))
124
- self.variance_epsilon = eps
125
-
126
- def forward(self, hidden_states):
127
- input_dtype = hidden_states.dtype
128
- hidden_states = hidden_states.to(torch.float32)
129
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
130
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
131
- return self.weight * hidden_states.to(input_dtype)
132
-
133
-
134
- class LayerScale(nn.Module):
135
- def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False):
136
- super().__init__()
137
- self.inplace = inplace
138
- self.gamma = nn.Parameter(init_values * torch.ones(dim))
139
- self.force_fp32 = force_fp32
140
-
141
- @torch.cuda.amp.autocast(enabled=False)
142
- def forward(self, x):
143
- if self.force_fp32:
144
- output_type = x.dtype
145
- out = x.float().mul_(self.gamma.float()) if self.inplace else x.float() * self.gamma.float()
146
- return out.to(dtype=output_type)
147
- else:
148
- out = x.mul_(self.gamma) if self.inplace else x * self.gamma
149
- return out
150
-
151
-
152
- class Attention(nn.Module):
153
- def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_flash_attn=False,
154
- causal=False, norm_layer=nn.LayerNorm, qk_normalization=False, use_fused_rmsnorm=False):
155
- super().__init__()
156
- assert dim % num_heads == 0, 'dim should be divisible by num_heads'
157
- self.num_heads = num_heads
158
- head_dim = dim // num_heads
159
- self.scale = head_dim ** -0.5
160
-
161
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
162
- self.attn_drop = nn.Dropout(attn_drop)
163
- self.proj = nn.Linear(dim, dim)
164
- self.proj_drop = nn.Dropout(proj_drop)
165
-
166
- self.use_flash_attn = use_flash_attn
167
- if use_flash_attn:
168
- self.causal = causal
169
- self.inner_attn = FlashAttention(attention_dropout=attn_drop)
170
-
171
- self.qk_normalization = qk_normalization
172
- self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity()
173
- self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity()
174
- self.use_fused_rmsnorm = use_fused_rmsnorm
175
-
176
- def _naive_attn(self, x):
177
- B, N, C = x.shape
178
- qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
179
- q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
180
-
181
- if self.qk_normalization:
182
- B_, H_, N_, D_ = q.shape
183
- q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
184
- k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
185
-
186
- attn = ((q * self.scale) @ k.transpose(-2, -1))
187
- # attn = attn - attn.max(-1)[0].unsqueeze(-1) # in case of overflow for fp16
188
- attn = attn.softmax(dim=-1)
189
- attn = self.attn_drop(attn)
190
-
191
- x = (attn @ v).transpose(1, 2).reshape(B, N, C)
192
- x = self.proj(x)
193
- x = self.proj_drop(x)
194
- return x
195
-
196
- def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
197
-
198
- qkv = self.qkv(x)
199
- qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads)
200
-
201
- if self.qk_normalization:
202
- q, k, v = qkv.unbind(2)
203
- if self.use_fused_rmsnorm:
204
- q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape)
205
- k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape)
206
- else:
207
- q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
208
- k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
209
- qkv = torch.stack([q, k, v], dim=2)
210
-
211
- context, _ = self.inner_attn(
212
- qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal
213
- )
214
- outs = self.proj(rearrange(context, "b s h d -> b s (h d)"))
215
- outs = self.proj_drop(outs)
216
- return outs
217
-
218
- def forward(self, x):
219
- x = self._naive_attn(x) if not self.use_flash_attn else self._flash_attn(x)
220
- return x
221
-
222
-
223
- class Mlp(nn.Module):
224
- """ MLP as used in Vision Transformer, MLP-Mixer and related networks
225
- """
226
-
227
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU,
228
- bias=True, drop=0.):
229
- super().__init__()
230
- out_features = out_features or in_features
231
- hidden_features = hidden_features or in_features
232
- bias = to_2tuple(bias)
233
- drop_probs = to_2tuple(drop)
234
-
235
- self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
236
- self.act = act_layer()
237
- self.drop1 = nn.Dropout(drop_probs[0])
238
- self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
239
- self.drop2 = nn.Dropout(drop_probs[1])
240
-
241
- def forward(self, x):
242
- x = self.fc1(x)
243
- x = self.act(x)
244
- x = self.drop1(x)
245
- x = self.fc2(x)
246
- x = self.drop2(x)
247
- return x
248
-
249
-
250
- class Block(nn.Module):
251
-
252
- def __init__(
253
- self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
254
- drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flash_attn=False, use_fused_mlp=False,
255
- fused_mlp_heuristic=1, with_cp=False, qk_normalization=False, layerscale_no_force_fp32=False,
256
- use_fused_rmsnorm=False):
257
- super().__init__()
258
-
259
- self.norm1 = norm_layer(dim)
260
- self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
261
- use_flash_attn=use_flash_attn, causal=False, norm_layer=norm_layer,
262
- qk_normalization=qk_normalization,
263
- use_fused_rmsnorm=use_fused_rmsnorm)
264
- self.ls1 = LayerScale(dim, init_values=init_values,
265
- force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity()
266
- # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
267
- self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
268
-
269
- self.norm2 = norm_layer(dim)
270
- mlp_hidden_dim = int(dim * mlp_ratio)
271
- if use_fused_mlp:
272
- self.mlp = FusedMLP(in_features=dim, hidden_features=mlp_hidden_dim, heuristic=fused_mlp_heuristic)
273
- else:
274
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
275
- self.ls2 = LayerScale(dim, init_values=init_values,
276
- force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity()
277
- self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
278
-
279
- self.with_cp = with_cp
280
- self.use_fused_rmsnorm = use_fused_rmsnorm
281
-
282
- def forward(self, x, residual=None):
283
-
284
- def _inner_forward(x, residual=None):
285
- if self.use_fused_rmsnorm:
286
- x, residual = self.norm1(x, residual)
287
- x = self.drop_path1(self.ls1(self.attn(x)))
288
- x, residual = self.norm2(x, residual)
289
- x = self.drop_path2(self.ls2(self.mlp(x)))
290
- return x, residual
291
- else:
292
- assert residual is None
293
- x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
294
- x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
295
- return x
296
-
297
- if self.with_cp:
298
- return checkpoint.checkpoint(_inner_forward, x, residual)
299
- else:
300
- return _inner_forward(x, residual=residual)
301
-
302
- class PatchEmbed(nn.Module):
303
- """ 3D Image to Patch Embedding
304
- """
305
-
306
- def __init__(
307
- self, img_size=224, patch_size=16, in_chans=3, embed_dim=768,
308
- num_frames=8, tubelet_size=1, norm_layer=None
309
- ):
310
- super().__init__()
311
- img_size = to_2tuple(img_size)
312
- patch_size = to_2tuple(patch_size)
313
- self.img_size = img_size
314
- self.patch_size = patch_size
315
- self.tubelet_size = tubelet_size
316
- self.grid_size = (
317
- num_frames // tubelet_size,
318
- img_size[0] // patch_size[0],
319
- img_size[1] // patch_size[1]
320
- ) # (T, H, W)
321
- self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
322
-
323
- self.proj = nn.Conv3d(
324
- in_channels=in_chans, out_channels=embed_dim,
325
- kernel_size=(tubelet_size, patch_size[0], patch_size[1]),
326
- stride=(tubelet_size, patch_size[0], patch_size[1])
327
- )
328
-
329
- self.norm = norm_layer(embed_dim)
330
- self.norm_before = norm_layer(tubelet_size * math.prod(patch_size) * 3)
331
-
332
- def forward(self, x):
333
- B, C, T, H, W = x.shape
334
- x = x.permute(0, 2, 3, 4, 1)
335
- x = einops.rearrange(x, "b (t1 t2) (ht hp) (wt wp) c -> b (t1 ht wt) (t2 hp wp c)", t2=self.tubelet_size, hp=self.patch_size[0], wp=self.patch_size[1])
336
- x = self.norm_before(x) # x.shape: [B, T, HW, C]
337
- x = einops.rearrange(x, "b (t1 ht wt) (t2 hp wp c) -> b (t1 t2) (ht hp) (wt wp) c", t1=T//self.tubelet_size, ht=H//self.patch_size[0], t2=self.tubelet_size, hp=self.patch_size[0], wp=self.patch_size[1])
338
- x = x.permute(0, 4, 1, 2, 3)
339
- x = self.proj(x)
340
- x = x.flatten(3).permute(0, 2, 3, 1)
341
- x = self.norm(x)
342
- return x
343
-
344
-
345
- class InternVideo2(nn.Module):
346
- def __init__(
347
- self,
348
- in_chans: int = 3,
349
- patch_size: int = 14,
350
- img_size: int = 224,
351
- qkv_bias: bool = False,
352
- drop_path_rate: float = 0.25,
353
- embed_dim: int = 1408,
354
- head_drop_path_rate: float = 0.,
355
- num_heads: int = 16,
356
- mlp_ratio: float = 4.3637,
357
- init_values: float = 1e-5,
358
- qk_normalization: bool = True,
359
- depth: int = 40,
360
- use_flash_attn: bool = True,
361
- use_fused_rmsnorm: bool = True,
362
- use_fused_mlp: bool = True,
363
- fused_mlp_heuristic: int = 1,
364
- attn_pool_num_heads: int = 16,
365
- clip_embed_dim: int = 768,
366
- layerscale_no_force_fp32: bool = False,
367
- num_frames: int = 16,
368
- tubelet_size: int = 1,
369
- sep_pos_embed: bool = False,
370
- use_checkpoint: bool = False,
371
- checkpoint_num: int = 0,
372
- cls_token_num: int = 4,
373
- ):
374
- super().__init__()
375
- self.cls_token_num = cls_token_num
376
- assert use_flash_attn == use_fused_rmsnorm == use_fused_mlp, print(
377
- 'use_flash_attn, use_fused_rmsnorm and use_fused_mlp should be consistent')
378
- print(mlp_ratio)
379
-
380
- self.use_flash_attn = use_flash_attn
381
- self.embed_dim = embed_dim
382
-
383
- if use_fused_rmsnorm:
384
- norm_layer_for_blocks = partial(DropoutAddRMSNorm, eps=1e-6, prenorm=True)
385
- else:
386
- norm_layer_for_blocks = partial(RMSNorm, eps=1e-6)
387
- self.norm_layer_for_blocks = norm_layer_for_blocks
388
- self.patch_embed = PatchEmbed(
389
- img_size, patch_size, in_chans, embed_dim,
390
- num_frames=num_frames, tubelet_size=tubelet_size, norm_layer=partial(RMSNorm, eps=1e-6)
391
- )
392
- num_patches = self.patch_embed.num_patches
393
- self.cls_token = nn.Parameter(torch.zeros(1, cls_token_num, embed_dim))
394
-
395
- self.sep_pos_embed = sep_pos_embed
396
- if sep_pos_embed:
397
- print("Use seperable position embedding")
398
- grid_size = self.patch_embed.grid_size
399
- self.grid_size = grid_size
400
- self.pos_embed_spatial = nn.Parameter(torch.zeros(1, grid_size[1] * grid_size[2], embed_dim))
401
- self.pos_embed_temporal = nn.Parameter(torch.zeros(1, grid_size[0], embed_dim))
402
- self.pos_embed_cls = nn.Parameter(torch.zeros(1, 1, embed_dim))
403
- else:
404
- print("Use joint position embedding")
405
- self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + cls_token_num, embed_dim))
406
-
407
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
408
- # choose which layer to use checkpoint
409
- with_cp_list = [False] * depth
410
- if use_checkpoint:
411
- for idx in range(depth):
412
- if idx < checkpoint_num:
413
- with_cp_list[idx] = True
414
- print(f"Droppath rate: {dpr}")
415
- print(f"Checkpoint list: {with_cp_list}")
416
-
417
- self.blocks = nn.ModuleList([
418
- Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias,
419
- norm_layer=norm_layer_for_blocks,
420
- drop_path=dpr[i], init_values=init_values, attn_drop=0.,
421
- use_flash_attn=use_flash_attn, use_fused_mlp=use_fused_mlp,
422
- fused_mlp_heuristic=fused_mlp_heuristic,
423
- with_cp=with_cp_list[i],
424
- qk_normalization=qk_normalization,
425
- layerscale_no_force_fp32=layerscale_no_force_fp32,
426
- use_fused_rmsnorm=use_fused_rmsnorm)
427
- for i in range(depth)])
428
- self.clip_projector = AttentionPoolingBlock(
429
- dim=embed_dim, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None,
430
- drop=0., attn_drop=0., drop_path=head_drop_path_rate,
431
- norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim
432
- )
433
-
434
- self.init_pos_embed()
435
- trunc_normal_(self.cls_token, std=.02)
436
- self.apply(self._init_weights)
437
- self.fix_init_weight()
438
-
439
- def init_pos_embed(self):
440
- print("Init pos_embed from sincos pos_embed")
441
- if self.sep_pos_embed:
442
- pos_embed_spatial = get_2d_sincos_pos_embed(
443
- self.pos_embed_spatial.shape[-1],
444
- self.patch_embed.grid_size[1], # height & weight
445
- )
446
- self.pos_embed_spatial.data.copy_(torch.from_numpy(pos_embed_spatial).float().unsqueeze(0))
447
- pos_embed_temporal = get_1d_sincos_pos_embed(
448
- self.pos_embed_spatial.shape[-1],
449
- self.patch_embed.grid_size[0], # t_size
450
- )
451
- self.pos_embed_temporal.data.copy_(torch.from_numpy(pos_embed_temporal).float().unsqueeze(0))
452
- else:
453
- pos_embed = get_3d_sincos_pos_embed(
454
- self.pos_embed.shape[-1],
455
- self.patch_embed.grid_size[1], # height & weight
456
- self.patch_embed.grid_size[0], # t_size
457
- cls_token=True,
458
- cls_token_num=self.cls_token_num
459
- )
460
- self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
461
-
462
- def _init_weights(self, m):
463
- if isinstance(m, nn.Linear):
464
- trunc_normal_(m.weight, std=.02)
465
- if isinstance(m, nn.Linear) and m.bias is not None:
466
- nn.init.constant_(m.bias, 0)
467
- elif isinstance(m, nn.LayerNorm):
468
- nn.init.constant_(m.bias, 0)
469
- nn.init.constant_(m.weight, 1.0)
470
-
471
- def fix_init_weight(self):
472
- def rescale(param, layer_id):
473
- param.div_(math.sqrt(2.0 * layer_id))
474
-
475
- for layer_id, layer in enumerate(self.blocks):
476
- rescale(layer.attn.proj.weight.data, layer_id + 1)
477
- rescale(layer.mlp.fc2.weight.data, layer_id + 1)
478
-
479
- @property
480
- def dtype(self):
481
- return self.patch_embed.proj.weight.dtype
482
-
483
- def get_num_layers(self):
484
- return len(self.blocks)
485
-
486
- @torch.jit.ignore
487
- def no_weight_decay(self):
488
- return {
489
- 'pos_embed',
490
- 'pos_embed_spatial',
491
- 'pos_embed_temporal',
492
- 'pos_embed_cls',
493
- 'cls_token'
494
- }
495
-
496
- def forward(self, x, projected=False):
497
- x = self.patch_embed(x.type(self.dtype))
498
- B, T, L, C = x.shape # T: temporal; L: spatial
499
- x = x.view([B, T * L, C])
500
-
501
- # append cls token
502
- cls_tokens = self.cls_token.expand(B, -1, -1)
503
- x = torch.cat((cls_tokens, x), dim=1)
504
-
505
- # add pos_embed
506
- if self.sep_pos_embed:
507
- pos_embed = self.pos_embed_spatial.repeat(
508
- 1, self.grid_size[0], 1
509
- ) + torch.repeat_interleave(
510
- self.pos_embed_temporal,
511
- self.grid_size[1] * self.grid_size[2],
512
- dim=1,
513
- )
514
- pos_embed = torch.cat(
515
- [
516
- self.pos_embed_cls.expand(pos_embed.shape[0], -1, -1),
517
- pos_embed,
518
- ],
519
- 1,
520
- )
521
- else:
522
- pos_embed = self.pos_embed
523
- x = x + pos_embed
524
-
525
- residual = None
526
- for blk in self.blocks:
527
- if isinstance(x, tuple) and len(x) == 2:
528
- x, residual = x
529
- x = blk(x, residual=residual)
530
- if isinstance(x, tuple) and len(x) == 2:
531
- x, residual = x
532
- if residual is not None:
533
- x = x + residual
534
-
535
- if projected:
536
- return self.clip_projector(x)
537
-
538
- return x[:, self.cls_token_num:, :]
539
-
540
-
541
- @register_model
542
- def internvideo_next_base_patch14_224(pretrained=False, **kwargs):
543
- model = InternVideo2(
544
- img_size=224, patch_size=14, embed_dim=768,
545
- depth=12, num_heads=12, mlp_ratio=4,
546
- attn_pool_num_heads=16, clip_embed_dim=768,
547
- **kwargs
548
- )
549
- return model
550
-
551
- @register_model
552
- def internvideo_next_large_patch14_224(pretrained=False, **kwargs):
553
- model = InternVideo2(
554
- img_size=224, patch_size=14, embed_dim=1024,
555
- depth=24, num_heads=16, mlp_ratio=4,
556
- attn_pool_num_heads=16, clip_embed_dim=768,
557
- **kwargs
558
- )
559
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/__init__.py DELETED
File without changes
models/flash_attention_class.py DELETED
@@ -1,71 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
- from einops import rearrange
5
-
6
- from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
7
- from flash_attn.bert_padding import unpad_input, pad_input
8
-
9
-
10
- class FlashAttention(nn.Module):
11
- """Implement the scaled dot product attention with softmax.
12
- Arguments
13
- ---------
14
- softmax_scale: The temperature to use for the softmax attention.
15
- (default: 1/sqrt(d_keys) where d_keys is computed at
16
- runtime)
17
- attention_dropout: The dropout rate to apply to the attention
18
- (default: 0.0)
19
- """
20
-
21
- def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
22
- super().__init__()
23
- self.softmax_scale = softmax_scale
24
- self.dropout_p = attention_dropout
25
-
26
- def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
27
- max_s=None, need_weights=False):
28
- """Implements the multihead softmax attention.
29
- Arguments
30
- ---------
31
- qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
32
- if unpadded: (nnz, 3, h, d)
33
- key_padding_mask: a bool tensor of shape (B, S)
34
- """
35
- assert not need_weights
36
- assert qkv.dtype in [torch.float16, torch.bfloat16]
37
- assert qkv.is_cuda
38
-
39
- if cu_seqlens is None:
40
- batch_size = qkv.shape[0]
41
- seqlen = qkv.shape[1]
42
- if key_padding_mask is None:
43
- qkv = rearrange(qkv, 'b s ... -> (b s) ...')
44
- max_s = seqlen
45
- cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
46
- device=qkv.device)
47
- output = flash_attn_varlen_qkvpacked_func(
48
- qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
49
- softmax_scale=self.softmax_scale, causal=causal
50
- )
51
- output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
52
- else:
53
- nheads = qkv.shape[-2]
54
- x = rearrange(qkv, 'b s three h d -> b s (three h d)')
55
- x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
56
- x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
57
- output_unpad = flash_attn_varlen_qkvpacked_func(
58
- x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
59
- softmax_scale=self.softmax_scale, causal=causal
60
- )
61
- output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
62
- indices, batch_size, seqlen),
63
- 'b s (h d) -> b s h d', h=nheads)
64
- else:
65
- assert max_s is not None
66
- output = flash_attn_varlen_qkvpacked_func(
67
- qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
68
- softmax_scale=self.softmax_scale, causal=causal
69
- )
70
-
71
- return output, None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/pos_embed.py DELETED
@@ -1,235 +0,0 @@
1
- import numpy as np
2
- import torch
3
-
4
- # --------------------------------------------------------
5
- # 3D sine-cosine position embedding
6
- # References:
7
- # MVD: https://github.com/ruiwang2021/mvd/blob/main/modeling_finetune.py
8
- # --------------------------------------------------------
9
- def get_3d_sincos_pos_embed(embed_dim, grid_size, t_size, cls_token=False, cls_token_num=4):
10
- """
11
- grid_size: int of the grid height and width
12
- t_size: int of the temporal size
13
- return:
14
- pos_embed: [t_size*grid_size*grid_size, embed_dim] or [1+t_size*grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
15
- """
16
- assert embed_dim % 4 == 0
17
- embed_dim_spatial = embed_dim // 4 * 3
18
- embed_dim_temporal = embed_dim // 4
19
-
20
- # spatial
21
- grid_h = np.arange(grid_size, dtype=np.float32)
22
- grid_w = np.arange(grid_size, dtype=np.float32)
23
- grid = np.meshgrid(grid_w, grid_h) # here w goes first
24
- grid = np.stack(grid, axis=0)
25
-
26
- grid = grid.reshape([2, 1, grid_size, grid_size])
27
- pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(
28
- embed_dim_spatial, grid
29
- )
30
-
31
- # temporal
32
- grid_t = np.arange(t_size, dtype=np.float32)
33
- pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(
34
- embed_dim_temporal, grid_t
35
- )
36
-
37
- # concate: [T, H, W] order
38
- pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :]
39
- pos_embed_temporal = np.repeat(
40
- pos_embed_temporal, grid_size**2, axis=1
41
- ) # [T, H*W, D // 4]
42
- pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :]
43
- pos_embed_spatial = np.repeat(
44
- pos_embed_spatial, t_size, axis=0
45
- ) # [T, H*W, D // 4 * 3]
46
-
47
- pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1)
48
- pos_embed = pos_embed.reshape([-1, embed_dim]) # [T*H*W, D]
49
-
50
- if cls_token:
51
- pos_embed = np.concatenate(
52
- [np.zeros([cls_token_num, embed_dim]), pos_embed], axis=0
53
- )
54
- return pos_embed
55
-
56
- def get_3d_sincos_pos_embed_new(embed_dim, grid_size, t_size, cls_token=False, cls_token_num=4):
57
- """
58
- grid_size: tuple or list of (grid_height, grid_width)
59
- t_size: int of the temporal size
60
- return:
61
- pos_embed: [t_size*grid_height*grid_width, embed_dim] or [1+t_size*grid_height*grid_width, embed_dim] (w/ or w/o cls_token)
62
- """
63
- assert embed_dim % 4 == 0
64
- embed_dim_spatial = embed_dim // 4 * 3
65
- embed_dim_temporal = embed_dim // 4
66
-
67
- # 处理 grid_size 参数,支持 int 或 tuple/list
68
- if isinstance(grid_size, int):
69
- grid_h = grid_size
70
- grid_w = grid_size
71
- else:
72
- grid_h, grid_w = grid_size
73
-
74
- # spatial
75
- grid_h_arange = np.arange(grid_h, dtype=np.float32)
76
- grid_w_arange = np.arange(grid_w, dtype=np.float32)
77
- grid = np.meshgrid(grid_w_arange, grid_h_arange) # here w goes first
78
- grid = np.stack(grid, axis=0)
79
-
80
- grid = grid.reshape([2, 1, grid_h, grid_w])
81
- pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(
82
- embed_dim_spatial, grid
83
- )
84
-
85
- # temporal
86
- grid_t = np.arange(t_size, dtype=np.float32)
87
- pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(
88
- embed_dim_temporal, grid_t
89
- )
90
-
91
- # concate: [T, H, W] order
92
- pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :]
93
- pos_embed_temporal = np.repeat(
94
- pos_embed_temporal, grid_h * grid_w, axis=1 # 修改为 grid_h * grid_w
95
- ) # [T, H*W, D // 4]
96
-
97
- pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :]
98
- pos_embed_spatial = np.repeat(
99
- pos_embed_spatial, t_size, axis=0
100
- ) # [T, H*W, D // 4 * 3]
101
-
102
- pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1)
103
- pos_embed = pos_embed.reshape([-1, embed_dim]) # [T*H*W, D]
104
-
105
- if cls_token:
106
- pos_embed = np.concatenate(
107
- [np.zeros([cls_token_num, embed_dim]), pos_embed], axis=0
108
- )
109
- return pos_embed
110
-
111
- # --------------------------------------------------------
112
- # 2D sine-cosine position embedding
113
- # References:
114
- # Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py
115
- # MoCo v3: https://github.com/facebookresearch/moco-v3
116
- # --------------------------------------------------------
117
- def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
118
- """
119
- grid_size: int of the grid height and width
120
- return:
121
- pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
122
- """
123
- grid_h = np.arange(grid_size, dtype=np.float32)
124
- grid_w = np.arange(grid_size, dtype=np.float32)
125
- grid = np.meshgrid(grid_w, grid_h) # here w goes first
126
- grid = np.stack(grid, axis=0)
127
-
128
- grid = grid.reshape([2, 1, grid_size, grid_size])
129
- pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
130
- if cls_token:
131
- pos_embed = np.concatenate(
132
- [np.zeros([1, embed_dim]), pos_embed], axis=0
133
- )
134
- return pos_embed
135
-
136
-
137
- def get_1d_sincos_pos_embed(embed_dim, t_size, cls_token=False):
138
- """
139
- t_size: int of the temporal size
140
- return:
141
- pos_embed: [t_size, embed_dim] or [1+t_size, embed_dim] (w/ or w/o cls_token)
142
- """
143
- grid_t = np.arange(t_size, dtype=np.float32)
144
- pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid_t)
145
- if cls_token:
146
- pos_embed = np.concatenate(
147
- [np.zeros([1, embed_dim]), pos_embed], axis=0
148
- )
149
- return pos_embed
150
-
151
-
152
- def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
153
- assert embed_dim % 2 == 0
154
-
155
- # use half of dimensions to encode grid_h
156
- emb_h = get_1d_sincos_pos_embed_from_grid(
157
- embed_dim // 2, grid[0]
158
- ) # (H*W, D/2)
159
- emb_w = get_1d_sincos_pos_embed_from_grid(
160
- embed_dim // 2, grid[1]
161
- ) # (H*W, D/2)
162
-
163
- emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
164
- return emb
165
-
166
-
167
- def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
168
- """
169
- embed_dim: output dimension for each position
170
- pos: a list of positions to be encoded: size (M,)
171
- out: (M, D)
172
- """
173
- assert embed_dim % 2 == 0
174
- omega = np.arange(embed_dim // 2, dtype=np.float32)
175
- omega /= embed_dim / 2.0
176
- omega = 1.0 / 10000**omega # (D/2,)
177
-
178
- pos = pos.reshape(-1) # (M,)
179
- out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
180
-
181
- emb_sin = np.sin(out) # (M, D/2)
182
- emb_cos = np.cos(out) # (M, D/2)
183
-
184
- emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
185
- return emb
186
-
187
-
188
- def interpolate_pos_embed(checkpoint_model, model, orig_t_size=4, pos_name='vision_encoder.pos_embed'):
189
- if pos_name in checkpoint_model:
190
- pos_embed_checkpoint = checkpoint_model[pos_name]
191
- embedding_size = pos_embed_checkpoint.shape[-1] # channel dim
192
- num_patches = model.patch_embed.num_patches #
193
- num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1
194
-
195
- # we use 4 frames for pretraining
196
- new_t_size = model.T
197
- # height (== width) for the checkpoint position embedding
198
- orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5)
199
- # height (== width) for the new position embedding
200
- new_size = int((num_patches // (new_t_size))** 0.5)
201
-
202
- # class_token and dist_token are kept unchanged
203
- if orig_t_size != new_t_size:
204
- print(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})")
205
- extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
206
- # only the position tokens are interpolated
207
- pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
208
- # B, L, C -> B, T, HW, C -> BHW, C, T (B = 1)
209
- pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size)
210
- pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size)
211
- pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear')
212
- pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
213
- pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
214
- new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
215
- checkpoint_model[pos_name] = new_pos_embed
216
- pos_embed_checkpoint = new_pos_embed
217
-
218
- # class_token and dist_token are kept unchanged
219
- if orig_size != new_size:
220
- print(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})")
221
- extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
222
- # only the position tokens are interpolated
223
- pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
224
- # B, L, C -> BT, H, W, C -> BT, C, H, W
225
- pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
226
- pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
227
- pos_tokens = torch.nn.functional.interpolate(
228
- pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
229
- # BT, C, H, W -> BT, H, W, C -> B, T, H, W, C
230
- pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size)
231
- pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
232
- new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
233
- checkpoint_model[pos_name] = new_pos_embed
234
- else:
235
- raise NotImplementedError