import torch import torch.nn as nn from einops import rearrange from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func from flash_attn.bert_padding import unpad_input, pad_input class FlashAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None): super().__init__() self.softmax_scale = softmax_scale self.dropout_p = attention_dropout def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None, max_s=None, need_weights=False): """Implements the multihead softmax attention. Arguments --------- qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None if unpadded: (nnz, 3, h, d) key_padding_mask: a bool tensor of shape (B, S) """ assert not need_weights assert qkv.dtype in [torch.float16, torch.bfloat16] assert qkv.is_cuda if cu_seqlens is None: batch_size = qkv.shape[0] seqlen = qkv.shape[1] if key_padding_mask is None: qkv = rearrange(qkv, 'b s ... -> (b s) ...') max_s = seqlen cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=qkv.device) output = flash_attn_varlen_qkvpacked_func( qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal ) output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) else: nheads = qkv.shape[-2] x = rearrange(qkv, 'b s three h d -> b s (three h d)') x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask) x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads) output_unpad = flash_attn_varlen_qkvpacked_func( x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal ) output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices, batch_size, seqlen), 'b s (h d) -> b s h d', h=nheads) else: assert max_s is not None output = flash_attn_varlen_qkvpacked_func( qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal ) return output, None import numpy as np import torch # -------------------------------------------------------- # 3D sine-cosine position embedding # References: # MVD: https://github.com/ruiwang2021/mvd/blob/main/modeling_finetune.py # -------------------------------------------------------- def get_3d_sincos_pos_embed(embed_dim, grid_size, t_size, cls_token=False, cls_token_num=4): """ grid_size: int of the grid height and width t_size: int of the temporal size return: pos_embed: [t_size*grid_size*grid_size, embed_dim] or [1+t_size*grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ assert embed_dim % 4 == 0 embed_dim_spatial = embed_dim // 4 * 3 embed_dim_temporal = embed_dim // 4 # spatial grid_h = np.arange(grid_size, dtype=np.float32) grid_w = np.arange(grid_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size, grid_size]) pos_embed_spatial = get_2d_sincos_pos_embed_from_grid( embed_dim_spatial, grid ) # temporal grid_t = np.arange(t_size, dtype=np.float32) pos_embed_temporal = get_1d_sincos_pos_embed_from_grid( embed_dim_temporal, grid_t ) # concate: [T, H, W] order pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :] pos_embed_temporal = np.repeat( pos_embed_temporal, grid_size**2, axis=1 ) # [T, H*W, D // 4] pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :] pos_embed_spatial = np.repeat( pos_embed_spatial, t_size, axis=0 ) # [T, H*W, D // 4 * 3] pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1) pos_embed = pos_embed.reshape([-1, embed_dim]) # [T*H*W, D] if cls_token: pos_embed = np.concatenate( [np.zeros([cls_token_num, embed_dim]), pos_embed], axis=0 ) return pos_embed def get_3d_sincos_pos_embed_new(embed_dim, grid_size, t_size, cls_token=False, cls_token_num=4): """ grid_size: tuple or list of (grid_height, grid_width) t_size: int of the temporal size return: pos_embed: [t_size*grid_height*grid_width, embed_dim] or [1+t_size*grid_height*grid_width, embed_dim] (w/ or w/o cls_token) """ assert embed_dim % 4 == 0 embed_dim_spatial = embed_dim // 4 * 3 embed_dim_temporal = embed_dim // 4 # 处理 grid_size 参数,支持 int 或 tuple/list if isinstance(grid_size, int): grid_h = grid_size grid_w = grid_size else: grid_h, grid_w = grid_size # spatial grid_h_arange = np.arange(grid_h, dtype=np.float32) grid_w_arange = np.arange(grid_w, dtype=np.float32) grid = np.meshgrid(grid_w_arange, grid_h_arange) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_h, grid_w]) pos_embed_spatial = get_2d_sincos_pos_embed_from_grid( embed_dim_spatial, grid ) # temporal grid_t = np.arange(t_size, dtype=np.float32) pos_embed_temporal = get_1d_sincos_pos_embed_from_grid( embed_dim_temporal, grid_t ) # concate: [T, H, W] order pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :] pos_embed_temporal = np.repeat( pos_embed_temporal, grid_h * grid_w, axis=1 # 修改为 grid_h * grid_w ) # [T, H*W, D // 4] pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :] pos_embed_spatial = np.repeat( pos_embed_spatial, t_size, axis=0 ) # [T, H*W, D // 4 * 3] pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1) pos_embed = pos_embed.reshape([-1, embed_dim]) # [T*H*W, D] if cls_token: pos_embed = np.concatenate( [np.zeros([cls_token_num, embed_dim]), pos_embed], axis=0 ) return pos_embed # -------------------------------------------------------- # 2D sine-cosine position embedding # References: # Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py # MoCo v3: https://github.com/facebookresearch/moco-v3 # -------------------------------------------------------- def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ grid_h = np.arange(grid_size, dtype=np.float32) grid_w = np.arange(grid_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size, grid_size]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token: pos_embed = np.concatenate( [np.zeros([1, embed_dim]), pos_embed], axis=0 ) return pos_embed def get_1d_sincos_pos_embed(embed_dim, t_size, cls_token=False): """ t_size: int of the temporal size return: pos_embed: [t_size, embed_dim] or [1+t_size, embed_dim] (w/ or w/o cls_token) """ grid_t = np.arange(t_size, dtype=np.float32) pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid_t) if cls_token: pos_embed = np.concatenate( [np.zeros([1, embed_dim]), pos_embed], axis=0 ) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid( embed_dim // 2, grid[0] ) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid( embed_dim // 2, grid[1] ) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float32) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb def interpolate_pos_embed(checkpoint_model, model, orig_t_size=4, pos_name='vision_encoder.pos_embed'): if pos_name in checkpoint_model: pos_embed_checkpoint = checkpoint_model[pos_name] embedding_size = pos_embed_checkpoint.shape[-1] # channel dim num_patches = model.patch_embed.num_patches # num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1 # we use 4 frames for pretraining new_t_size = model.T # height (== width) for the checkpoint position embedding orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5) # height (== width) for the new position embedding new_size = int((num_patches // (new_t_size))** 0.5) # class_token and dist_token are kept unchanged if orig_t_size != new_t_size: print(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})") extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] # B, L, C -> B, T, HW, C -> BHW, C, T (B = 1) pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size) pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size) pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear') pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size) pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) checkpoint_model[pos_name] = new_pos_embed pos_embed_checkpoint = new_pos_embed # class_token and dist_token are kept unchanged if orig_size != new_size: print(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})") extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] # B, L, C -> BT, H, W, C -> BT, C, H, W pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size) pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) # BT, C, H, W -> BT, H, W, C -> B, T, H, W, C pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) pos_tokens = pos_tokens.flatten(1, 3) # B, L, C new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) checkpoint_model[pos_name] = new_pos_embed else: raise NotImplementedError import math import torch import torch.nn.functional as F from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from timm.models.registry import register_model from torch import nn import torch.utils.checkpoint as checkpoint from functools import partial from einops import rearrange from flash_attn.modules.mlp import FusedMLP from flash_attn.ops.rms_norm import DropoutAddRMSNorm import einops class CrossAttention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., attn_head_dim=None, out_dim=None): super().__init__() if out_dim is None: out_dim = dim self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = qk_scale or head_dim ** -0.5 assert all_head_dim == dim self.q = nn.Linear(dim, all_head_dim, bias=False) self.k = nn.Linear(dim, all_head_dim, bias=False) self.v = nn.Linear(dim, all_head_dim, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.k_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.k_bias = None self.v_bias = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, out_dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, k=None, v=None): B, N, C = x.shape N_k = k.shape[1] N_v = v.shape[1] q_bias, k_bias, v_bias = None, None, None if self.q_bias is not None: q_bias = self.q_bias k_bias = self.k_bias v_bias = self.v_bias q = F.linear(input=x, weight=self.q.weight, bias=q_bias) q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) # (B, N_head, N_q, dim) k = F.linear(input=k, weight=self.k.weight, bias=k_bias) k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) v = F.linear(input=v, weight=self.v.weight, bias=v_bias) v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) q = q * self.scale attn = (q @ k.transpose(-2, -1)) # (B, N_head, N_q, N_k) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class AttentiveBlock(nn.Module): def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, attn_head_dim=None, out_dim=None): super().__init__() self.norm1_q = norm_layer(dim) self.norm1_k = norm_layer(dim) self.norm1_v = norm_layer(dim) self.cross_attn = CrossAttention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim, out_dim=out_dim) if drop_path > 0.: print(f"Use DropPath in projector: {drop_path}") self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None): x_q = self.norm1_q(x_q + pos_q) x_k = self.norm1_k(x_kv + pos_k) x_v = self.norm1_v(x_kv) x = self.cross_attn(x_q, k=x_k, v=x_v) return x class AttentionPoolingBlock(AttentiveBlock): def forward(self, x): x_q = x.mean(1, keepdim=True) x_kv, pos_q, pos_k = x, 0, 0 x = super().forward(x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None) x = x.squeeze(1) return x class RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) class LayerScale(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False): super().__init__() self.inplace = inplace self.lr_scale = nn.Parameter(init_values * torch.ones(dim)) self.force_fp32 = force_fp32 @torch.cuda.amp.autocast(enabled=False) def forward(self, x): if self.force_fp32: output_type = x.dtype out = x.float().mul_(self.lr_scale.float()) if self.inplace else x.float() * self.lr_scale.float() return out.to(dtype=output_type) else: out = x.mul_(self.lr_scale) if self.inplace else x * self.lr_scale return out class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_flash_attn=False, causal=False, norm_layer=nn.LayerNorm, qk_normalization=False, use_fused_rmsnorm=False): super().__init__() assert dim % num_heads == 0, 'dim should be divisible by num_heads' self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.use_flash_attn = use_flash_attn if use_flash_attn: self.causal = causal self.inner_attn = FlashAttention(attention_dropout=attn_drop) self.qk_normalization = qk_normalization self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity() self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity() self.use_fused_rmsnorm = use_fused_rmsnorm def _naive_attn(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) if self.qk_normalization: B_, H_, N_, D_ = q.shape q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) attn = ((q * self.scale) @ k.transpose(-2, -1)) # attn = attn - attn.max(-1)[0].unsqueeze(-1) # in case of overflow for fp16 attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x def _flash_attn(self, x, key_padding_mask=None, need_weights=False): qkv = self.qkv(x) qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads) if self.qk_normalization: q, k, v = qkv.unbind(2) if self.use_fused_rmsnorm: q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape) k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape) else: q = self.q_norm(q.flatten(-2, -1)).view(q.shape) k = self.k_norm(k.flatten(-2, -1)).view(k.shape) qkv = torch.stack([q, k, v], dim=2) context, _ = self.inner_attn( qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal ) outs = self.proj(rearrange(context, "b s h d -> b s (h d)")) outs = self.proj_drop(outs) return outs def forward(self, x): x = self._naive_attn(x) if not self.use_flash_attn else self._flash_attn(x) return x class Mlp(nn.Module): """ MLP as used in Vision Transformer, MLP-Mixer and related networks """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features bias = to_2tuple(bias) drop_probs = to_2tuple(drop) self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0]) self.act = act_layer() self.drop1 = nn.Dropout(drop_probs[0]) self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) self.drop2 = nn.Dropout(drop_probs[1]) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop1(x) x = self.fc2(x) x = self.drop2(x) return x class Block(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None, drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flash_attn=False, use_fused_mlp=False, fused_mlp_heuristic=1, with_cp=False, qk_normalization=False, layerscale_no_force_fp32=False, use_fused_rmsnorm=False): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, use_flash_attn=use_flash_attn, causal=False, norm_layer=norm_layer, qk_normalization=qk_normalization, use_fused_rmsnorm=use_fused_rmsnorm) self.ls1 = LayerScale(dim, init_values=init_values, force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity() # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) if use_fused_mlp: self.mlp = FusedMLP(in_features=dim, hidden_features=mlp_hidden_dim, heuristic=fused_mlp_heuristic) else: self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.ls2 = LayerScale(dim, init_values=init_values, force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.with_cp = with_cp self.use_fused_rmsnorm = use_fused_rmsnorm def forward(self, x, residual=None): def _inner_forward(x, residual=None): if self.use_fused_rmsnorm: x, residual = self.norm1(x, residual) x = self.drop_path1(self.ls1(self.attn(x))) x, residual = self.norm2(x, residual) x = self.drop_path2(self.ls2(self.mlp(x))) return x, residual else: assert residual is None x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) return x if self.with_cp: return checkpoint.checkpoint(_inner_forward, x, residual) else: return _inner_forward(x, residual=residual) class PatchEmbed(nn.Module): """ 3D Image to Patch Embedding """ def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, num_frames=8, tubelet_size=1, norm_layer=None ): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.tubelet_size = tubelet_size self.grid_size = ( num_frames // tubelet_size, img_size[0] // patch_size[0], img_size[1] // patch_size[1] ) # (T, H, W) self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2] self.proj = nn.Conv3d( in_channels=in_chans, out_channels=embed_dim, kernel_size=(tubelet_size, patch_size[0], patch_size[1]), stride=(tubelet_size, patch_size[0], patch_size[1]) ) self.norm = norm_layer(embed_dim) self.norm_before = norm_layer(tubelet_size * math.prod(patch_size) * 3) def forward(self, x): B, C, T, H, W = x.shape x = x.permute(0, 2, 3, 4, 1) x = einops.rearrange(x, "b (t1 t2) (ht hp) (wt wp) c -> b (t1 ht wt) (t2 hp wp c)", t2=self.tubelet_size, hp=self.patch_size[0], wp=self.patch_size[1]) x = self.norm_before(x) # x.shape: [B, T, HW, C] x = einops.rearrange(x, "b (t1 ht wt) (t2 hp wp c) -> b (t1 t2) (ht hp) (wt wp) c", t1=T//self.tubelet_size, ht=H//self.patch_size[0], t2=self.tubelet_size, hp=self.patch_size[0], wp=self.patch_size[1]) x = x.permute(0, 4, 1, 2, 3) x = self.proj(x) x = x.flatten(3).permute(0, 2, 3, 1) x = self.norm(x) return x class InternVideoNextBackbone(nn.Module): def __init__( self, in_chans: int = 3, patch_size: int = 14, img_size: int = 224, qkv_bias: bool = False, drop_path_rate: float = 0.25, embed_dim: int = 1408, head_drop_path_rate: float = 0., num_heads: int = 16, mlp_ratio: float = 4.3637, init_values: float = 1e-5, qk_normalization: bool = True, depth: int = 40, use_flash_attn: bool = True, use_fused_rmsnorm: bool = True, use_fused_mlp: bool = True, fused_mlp_heuristic: int = 1, attn_pool_num_heads: int = 16, clip_embed_dim: int = 768, layerscale_no_force_fp32: bool = False, num_frames: int = 16, tubelet_size: int = 1, sep_pos_embed: bool = False, use_checkpoint: bool = False, checkpoint_num: int = 0, cls_token_num: int = 4, ): super().__init__() self.cls_token_num = cls_token_num assert use_flash_attn == use_fused_rmsnorm == use_fused_mlp, print( 'use_flash_attn, use_fused_rmsnorm and use_fused_mlp should be consistent') print(mlp_ratio) self.use_flash_attn = use_flash_attn self.embed_dim = embed_dim if use_fused_rmsnorm: norm_layer_for_blocks = partial(DropoutAddRMSNorm, eps=1e-6, prenorm=True) else: norm_layer_for_blocks = partial(RMSNorm, eps=1e-6) self.norm_layer_for_blocks = norm_layer_for_blocks self.patch_embed = PatchEmbed( img_size, patch_size, in_chans, embed_dim, num_frames=num_frames, tubelet_size=tubelet_size, norm_layer=partial(RMSNorm, eps=1e-6) ) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, cls_token_num, embed_dim)) self.sep_pos_embed = sep_pos_embed if sep_pos_embed: print("Use seperable position embedding") grid_size = self.patch_embed.grid_size self.grid_size = grid_size self.pos_embed_spatial = nn.Parameter(torch.zeros(1, grid_size[1] * grid_size[2], embed_dim)) self.pos_embed_temporal = nn.Parameter(torch.zeros(1, grid_size[0], embed_dim)) self.pos_embed_cls = nn.Parameter(torch.zeros(1, 1, embed_dim)) else: print("Use joint position embedding") self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + cls_token_num, embed_dim)) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # choose which layer to use checkpoint with_cp_list = [False] * depth if use_checkpoint: for idx in range(depth): if idx < checkpoint_num: with_cp_list[idx] = True print(f"Droppath rate: {dpr}") print(f"Checkpoint list: {with_cp_list}") self.blocks = nn.ModuleList([ Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias, norm_layer=norm_layer_for_blocks, drop_path=dpr[i], init_values=init_values, attn_drop=0., use_flash_attn=use_flash_attn, use_fused_mlp=use_fused_mlp, fused_mlp_heuristic=fused_mlp_heuristic, with_cp=with_cp_list[i], qk_normalization=qk_normalization, layerscale_no_force_fp32=layerscale_no_force_fp32, use_fused_rmsnorm=use_fused_rmsnorm) for i in range(depth)]) self.clip_projector = AttentionPoolingBlock( dim=embed_dim, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=head_drop_path_rate, norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim ) self.init_pos_embed() trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) self.fix_init_weight() def init_pos_embed(self): print("Init pos_embed from sincos pos_embed") if self.sep_pos_embed: pos_embed_spatial = get_2d_sincos_pos_embed( self.pos_embed_spatial.shape[-1], self.patch_embed.grid_size[1], # height & weight ) self.pos_embed_spatial.data.copy_(torch.from_numpy(pos_embed_spatial).float().unsqueeze(0)) pos_embed_temporal = get_1d_sincos_pos_embed( self.pos_embed_spatial.shape[-1], self.patch_embed.grid_size[0], # t_size ) self.pos_embed_temporal.data.copy_(torch.from_numpy(pos_embed_temporal).float().unsqueeze(0)) else: pos_embed = get_3d_sincos_pos_embed( self.pos_embed.shape[-1], self.patch_embed.grid_size[1], # height & weight self.patch_embed.grid_size[0], # t_size cls_token=True, cls_token_num=self.cls_token_num ) self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) @property def dtype(self): return self.patch_embed.proj.weight.dtype def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return { 'pos_embed', 'pos_embed_spatial', 'pos_embed_temporal', 'pos_embed_cls', 'cls_token' } def forward(self, x, projected=False): x = self.patch_embed(x.type(self.dtype)) B, T, L, C = x.shape # T: temporal; L: spatial x = x.view([B, T * L, C]) # append cls token cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) # add pos_embed if self.sep_pos_embed: pos_embed = self.pos_embed_spatial.repeat( 1, self.grid_size[0], 1 ) + torch.repeat_interleave( self.pos_embed_temporal, self.grid_size[1] * self.grid_size[2], dim=1, ) pos_embed = torch.cat( [ self.pos_embed_cls.expand(pos_embed.shape[0], -1, -1), pos_embed, ], 1, ) else: pos_embed = self.pos_embed x = x + pos_embed residual = None for blk in self.blocks: if isinstance(x, tuple) and len(x) == 2: x, residual = x x = blk(x, residual=residual) if isinstance(x, tuple) and len(x) == 2: x, residual = x if residual is not None: x = x + residual if projected: return self.clip_projector(x) return x[:, self.cls_token_num:, :] @register_model def internvideo_next_base_patch14_224(pretrained=False, **kwargs): model = InternVideoNextBackbone( img_size=224, patch_size=14, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, attn_pool_num_heads=16, clip_embed_dim=768, **kwargs ) return model @register_model def internvideo_next_large_patch14_224(pretrained=False, **kwargs): model = InternVideoNextBackbone( img_size=224, patch_size=14, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, attn_pool_num_heads=16, clip_embed_dim=768, **kwargs ) return model from transformers import AutoConfig, PreTrainedModel from .modeling_config import InternVideoNextConfig import logging logger = logging.getLogger(__name__) class InternVideoNext(PreTrainedModel): config_class = InternVideoNextConfig def __init__(self, config=None): super().__init__(config=config) self.model_config = config.model_config logger.info("Model config: {}".format(self.model_config)) self.model = InternVideoNextBackbone(**self.model_config) def forward(self, pixel_values): return self.model(pixel_values, projected=True) def extract_features(self, pixel_values): return self.model(pixel_values)