Update README.md
Browse files
README.md
CHANGED
|
@@ -1,4 +1,12 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
tags:
|
| 3 |
- autotrain
|
| 4 |
- text-generation
|
|
@@ -6,4 +14,94 @@ widget:
|
|
| 6 |
- text: "I love AutoTrain because "
|
| 7 |
---
|
| 8 |
|
| 9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
model-index:
|
| 3 |
+
- name: zephyr-math
|
| 4 |
+
results: []
|
| 5 |
+
license: mit
|
| 6 |
+
datasets:
|
| 7 |
+
- rishiraj/guanaco-style-metamath
|
| 8 |
+
language:
|
| 9 |
+
- en
|
| 10 |
tags:
|
| 11 |
- autotrain
|
| 12 |
- text-generation
|
|
|
|
| 14 |
- text: "I love AutoTrain because "
|
| 15 |
---
|
| 16 |
|
| 17 |
+
# Zephyr Math 7B Trained Using AutoTrain
|
| 18 |
+
|
| 19 |
+
## Model Details
|
| 20 |
+
|
| 21 |
+
[rishiraj/zephyr-math](https://huggingface.co/rishiraj/zephyr-math) is the LLM (released under [Apache License 2.0](http://www.apache.org/licenses/)) fully fine-tuned on the [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA) dataset and based on the powerful [HuggingFaceH4/zephyr-7b-alpha](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha) model.
|
| 22 |
+
|
| 23 |
+
We try achieving State-Of-The-Art result in pass@1 on the [GSM8k Benchmarks](https://github.com/openai/grade-school-math). The A100 GPU used for this fine-tuning process is generously provided by [Weights & Biases](https://wandb.ai/site). I am thankful to [Soumik Rakshit](https://wandb.ai/geekyrakshit) from team W&B for constant support in this integration. The experiment can be tracked using Weights & Biases [here](https://wandb.ai/ml-colabs/huggingface/runs/gamw5iuf).
|
| 24 |
+

|
| 25 |
+
|
| 26 |
+
### Preparing the dataset
|
| 27 |
+
AutoTrain Advanced expects your CSV custom dataset in a certain format to work properly. Your training file must contain a "text" column on which the training will be done. For best results, the "text" column should have data in the **### Human: Question?### Assistant: Answer.** format. A great example for the kind of dataset AutoTrain Advanced expects would be [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco). However, if you observe the [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA) dataset, there are 3 columns - "query", "response" and "type". We will preprocess this dataset by removing the "type" column and combining the content of the "query" and "response" columns under one "text" column with the **### Human: Query?### Assistant: Response.** format. The resulting dataset is [rishiraj/guanaco-style-metamath](https://huggingface.co/datasets/rishiraj/guanaco-style-metamath) and it will be used for training.
|
| 28 |
+
|
| 29 |
+
### Adjusting hyperparameters
|
| 30 |
+
AutoTrain Advanced comes with a host hyperparameters we can tune to get the best model. While the default hyperparameters are a great start for everyone, I made a few changes there that are suitable for our use case. Here are the hyperparameters I used:
|
| 31 |
+
```
|
| 32 |
+
learning_rate = 2e-5
|
| 33 |
+
num_epochs = 3
|
| 34 |
+
batch_size = 4
|
| 35 |
+
block_size = 1024
|
| 36 |
+
trainer = "sft"
|
| 37 |
+
warmup_ratio = 0.03
|
| 38 |
+
weight_decay = 0.
|
| 39 |
+
gradient_accumulation = 4
|
| 40 |
+
use_fp16 = True
|
| 41 |
+
use_peft = True
|
| 42 |
+
use_int4 = True
|
| 43 |
+
merge_adapter = True
|
| 44 |
+
lora_r = 16
|
| 45 |
+
lora_alpha = 32
|
| 46 |
+
lora_dropout = 0.05
|
| 47 |
+
logging_steps = 10
|
| 48 |
+
log = "wandb"
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
### Results
|
| 52 |
+
Check out the [W&B Report]() for a detailed overview of the finetuned model including its Benchmark scores on a variety of tests like the ARC, HellaSwag, MMLU, TruthfulQA. I also included a comparison with other open-source LLMs on GSM8k Pass@1 and MATH Pass@1.
|
| 53 |
+
|
| 54 |
+
## Model Usage
|
| 55 |
+
|
| 56 |
+
Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
|
| 57 |
+
|
| 58 |
+
```python
|
| 59 |
+
import torch
|
| 60 |
+
from transformers import pipeline
|
| 61 |
+
|
| 62 |
+
pipe = pipeline("text-generation", model="rishiraj/zephyr-math", torch_dtype=torch.bfloat16, device_map="auto")
|
| 63 |
+
|
| 64 |
+
messages = [
|
| 65 |
+
{
|
| 66 |
+
"role": "system",
|
| 67 |
+
"content": "You are a friendly chatbot who always responds in the style of a pirate",
|
| 68 |
+
},
|
| 69 |
+
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
|
| 70 |
+
]
|
| 71 |
+
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 72 |
+
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
| 73 |
+
print(outputs[0]["generated_text"])
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
## Experiments
|
| 77 |
+
|
| 78 |
+
| Model | GSM8k Pass@1 | MATH Pass@1 |
|
| 79 |
+
|---------------------|--------------|-------------|
|
| 80 |
+
| MPT-7B | 6.8 | 3.0 |
|
| 81 |
+
| Falcon-7B | 6.8 | 2.3 |
|
| 82 |
+
| LLaMA-1-7B | 11.0 | 2.9 |
|
| 83 |
+
| LLaMA-2-7B | 14.6 | 2.5 |
|
| 84 |
+
| MPT-30B | 15.2 | 3.1 |
|
| 85 |
+
| LLaMA-1-13B | 17.8 | 3.9 |
|
| 86 |
+
| GPT-Neo-2.7B | 19.5 | -- |
|
| 87 |
+
| Falcon-40B | 19.6 | 2.5 |
|
| 88 |
+
| Baichuan-chat-13B | 23.9 | -- |
|
| 89 |
+
| Vicuna-v1.3-13B | 27.6 | -- |
|
| 90 |
+
| LLaMA-2-13B | 28.7 | 3.9 |
|
| 91 |
+
| InternLM-7B | 31.2 | -- |
|
| 92 |
+
| ChatGLM-2-6B | 32.4 | -- |
|
| 93 |
+
| GPT-J-6B | 34.9 | -- |
|
| 94 |
+
| LLaMA-1-33B | 35.6 | 3.9 |
|
| 95 |
+
| LLaMA-2-34B | 42.2 | 6.24 |
|
| 96 |
+
| RFT-7B | 50.3 | -- |
|
| 97 |
+
| LLaMA-1-65B | 50.9 | 10.6 |
|
| 98 |
+
| Qwen-7B | 51.6 | -- |
|
| 99 |
+
| WizardMath-7B | 54.9 | 10.7 |
|
| 100 |
+
| LLaMA-2-70B | 56.8 | 13.5 |
|
| 101 |
+
| WizardMath-13B | 63.9 | 14.0 |
|
| 102 |
+
| MAmmoTH-7B (COT) | 50.5 | 10.4 |
|
| 103 |
+
| MAmmoTH-7B (POT+COT)| 53.6 | 31.5 |
|
| 104 |
+
| Arithmo-Mistral-7B | 74.7 | 25.3 |
|
| 105 |
+
| MetaMath-7B | 66.5 | 19.8 |
|
| 106 |
+
| MetaMath-13B | 72.3 | 22.4 |
|
| 107 |
+
| 🔥 **Zephyr-Math-7B** | **??** | **??** |
|