---
license: llama3.2
library_name: transformers
pipeline_tag: text-generation
language:
- en
- ko
- fr
- zh
- es
---







# SAGE Reasoning 8B
*Advanced Hybrid Reasoning Model with Tool-Calling Capabilities*
[](https://huggingface.co/)
[](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE)
---
## Table of Contents
- [Overview](#overview)
- [Key Features](#key-features)
- [Evaluations](#evaluations)
- [License](#license)
- [Contact](#contact)
---
## Overview
SAGE Reasoning Family Models are instruction-tuned, text-in/text-out generative systems released under a permissive open license for commercial use.
## Key Features
### **Hybrid Reasoning Architecture**
- **Dual Mode Operation**: Capable of producing fast direct responses in standard LLM mode, or applying self-reflection before answering in reasoning mode
- **Advanced Training**: Uses **Iterated Distillation and Amplification (IDA)** - a scalable alignment method based on iterative self-improvement
### **Specialized Capabilities**
- **Code Generation**: Optimized for programming tasks with strong coding abilities
- **STEM Excellence**: Enhanced performance on science, technology, engineering, and mathematics problems
- **Instruction Following**: Superior adherence to complex instructions and prompts
- **Tool Calling**: Notable strength in tool-calling ability compared to similar-sized models
### **Global Reach**
- **Multilingual Support**: Over 30 languages supported
- **Extended Context**: 128k context window for handling large documents and conversations
- **Consistent Performance**: Both standard and reasoning variants consistently outperform other models in the same parameter class on public benchmarks
## Evaluations
We compare our models against state-of-the-art size-equivalent models in both direct mode and reasoning mode. For direct mode, we compare against Llama/Qwen instruct counterparts. For reasoning, we use Deepseek's R1 distilled counterparts and Qwen's QwQ model.
### Overall Performance Benchmarks
Comprehensive benchmark results showing SAGE Reasoning 3B performance across multiple evaluation metrics
### Livebench Global Average
Livebench global performance comparison demonstrating consistent superiority
### Tool Calling Performance
Tool calling capabilities comparison showing enhanced performance in function calling and tool utilization
---
# Usage
Here is a snippet below for usage with Transformers:
```python
import transformers
import torch
model_id = "sagea-ai/sage-reasoning-8b"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Give me a short introduction to LLMs."},
]
outputs = pipeline(
messages,
max_new_tokens=512,
)
print(outputs[0]["generated_text"][-1])
```
## Implementing extended thinking
- By default, the model will answer in the standard mode.
- To enable thinking, you can do any one of the two methods:
- Add a specific system prompt, or
- Set `enable_thinking=True` while applying the chat template.
> **_NOTE:_** For the SAGE reasoning 8b model, we suggest using `repetition_penalty=1.1` while implementing extended thinking.
### Method 1 - Add a specific system prompt.
To enable thinking, simply use this in the system prompt `system_instruction = 'Enable deep thinking subroutine.'`
If you already have a system_instruction, then use `system_instruction = 'Enable deep thinking subroutine.' + '\n\n' + system_instruction`.
Here is an example -
```python
import transformers
import torch
model_id = "sagea-ai/sage-reasoning-8b"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
DEEP_THINKING_INSTRUCTION = "Enable deep thinking subroutine."
messages = [
{"role": "system", "content": DEEP_THINKING_INSTRUCTION},
{"role": "user", "content": "Write a bash script that takes a matrix represented as a string with format '[1,2],[3,4],[5,6]' and prints the transpose in the same format."},
]
outputs = pipeline(
messages,
max_new_tokens=512,
)
print(outputs[0]["generated_text"][-1])
```
Similarly, if you have a system prompt, you can append the `DEEP_THINKING_INSTRUCTION` to the beginning in this way -
```python
DEEP_THINKING_INSTRUCTION = "Enable deep thinking subroutine."
system_prompt = "Reply to each prompt with only the actual code - no explanations."
prompt = "Write a bash script that takes a matrix represented as a string with format '[1,2],[3,4],[5,6]' and prints the transpose in the same format."
messages = [
{"role": "system", "content": DEEP_THINKING_INSTRUCTION + '\n\n' + system_prompt},
{"role": "user", "content": prompt}
]
```
### Method 2 - Set enable_thinking=True in the tokenizer
If you are using Huggingface tokenizers, then you can simply use add the argument `enable_thinking=True` to the tokenization (this option is added to the chat template).
Here is an example -
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "sagea-ai/sage-reasoning-8b"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to LLMs."
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
# Tool Calling
SAGE reasoning models support tool calling (single, parallel, multiple and parallel_multiple) both in standard and extended thinking mode.
Here is a snippet -
```python
# First, define a tool
def get_current_temperature(location: str) -> float:
"""
Get the current temperature at a location.
Args:
location: The location to get the temperature for, in the format "City, Country"
Returns:
The current temperature at the specified location in the specified units, as a float.
"""
return 22. # A real function should probably actually get the temperature!
# Next, create a chat and apply the chat template
messages = [
{"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
]
model_inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True)
text = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True, tokenize=False)
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
output_text = tokenizer.batch_decode(outputs)[0][len(text):]
print(output_text)
```
This will result in the output -
```
{"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
<|eot_id|>
```
You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so:
```python
tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
```
and then call the tool and append the result, with the `tool` role, like so:
```python
messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
```
After that, you can `generate()` again to let the model use the tool result in the chat:
```python
text = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True, tokenize=False)
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
output_text = tokenizer.batch_decode(outputs)[0][len(text):]
```
This should result in the string -
'The current temperature in Paris is 22.0 degrees.<|eot_id|>'
## License
This repository and the model weights are licensed under the [**Llama 3.2 Community License Agreement**](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) (Llama models' default license agreement).
[](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE)
## Contact
**Get in Touch with Our Team**
For inquiries, collaborations, or support, please reach out to us:
**Email**: [founders@sagea.space](mailto:founders@sagea.space)
---
SAGE Reasoning 8B
Advancing the frontier of hybrid reasoning models
