sainikhiljuluri2015's picture
Upload NVIDIA Orchestrator merged cybersecurity model
de2abd0 verified
from typing import Dict, Any
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
class EndpointHandler:
def __init__(self, path: str = ""):
"""Initialize model and tokenizer."""
self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model = AutoModelForCausalLM.from_pretrained(
path,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
self.model.eval()
self.device = next(self.model.parameters()).device
print(f"Model loaded on {self.device}")
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""Handle inference request."""
inputs = data.get("inputs", data.get("input", ""))
params = data.get("parameters", {})
encoded = self.tokenizer(
inputs,
return_tensors="pt",
truncation=True,
max_length=2048
).to(self.device)
with torch.no_grad():
outputs = self.model.generate(
**encoded,
max_new_tokens=params.get("max_new_tokens", 256),
temperature=params.get("temperature", 0.7),
top_p=params.get("top_p", 0.9),
do_sample=params.get("do_sample", True),
repetition_penalty=params.get("repetition_penalty", 1.1),
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
)
generated = outputs[0][encoded["input_ids"].shape[1]:]
text = self.tokenizer.decode(generated, skip_special_tokens=True)
return {"generated_text": text}