File size: 1,475 Bytes
cea4a4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from transformers import AutoModelForMaskedLM, AutoTokenizer, TrainingArguments, Trainer
from datasets import Dataset, DatasetDict
from transformers import DataCollatorForLanguageModeling

from src.MLM.datasets.preprocess_dataset import preprocess_dataset
from src.MLM.training_scripts.utils import get_new_model_name


def train_with_trainer(
    model_checkpoint: str,
    tokenizer: AutoTokenizer,
    dataset: DatasetDict,
    model_name: str | None = None,
    data_collator=None,
    num_epochs: int = 3,
):

    model = AutoModelForMaskedLM.from_pretrained(model_checkpoint)

    model_name = get_new_model_name(model_checkpoint=model_checkpoint, model_name=model_name)

    dataset = preprocess_dataset(dataset=dataset, tokenizer=tokenizer)

    if data_collator is None:
        data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15)

    training_args = TrainingArguments(
        model_name,
        evaluation_strategy="epoch",
        learning_rate=2e-5,
        weight_decay=0.01,
        push_to_hub=True,
        report_to="wandb",
        run_name=model_name,
        num_train_epochs=num_epochs,
        save_total_limit=1,
        save_strategy="epoch",
    )

    print(f"device: {training_args.device}")

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=dataset["train"],
        eval_dataset=dataset["val"],
        data_collator=data_collator,
    )

    trainer.train()