File size: 5,477 Bytes
cea4a4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import emoji
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from loguru import logger
from torch import nn
from torch.optim.lr_scheduler import CosineAnnealingLR
from torchmetrics import R2Score

from src.utils import get_sentiment
from src.utils.neural_networks import set_layer
from config import DEVICE

torch.set_default_dtype(torch.float32)


class DecoderPL(pl.LightningModule):
    def __init__(
        self,
        input_dim: int = 774,
        layer_norm: bool = True,
        layer_dict: dict = {},
        device=DEVICE,
        T_max: int = 10,
        start_lr: float = 5 * 1e-4,
    ):
        super().__init__()

        # layers
        self.linear1 = set_layer(
            layer_dict=layer_dict,
            name="linear1",
            alternative=nn.Linear(in_features=input_dim, out_features=512),
        )

        self.linear2 = set_layer(
            layer_dict=layer_dict,
            name="linear2",
            alternative=nn.Linear(in_features=512, out_features=264),
        )

        self.linear3 = set_layer(
            layer_dict=layer_dict,
            name="linear3",
            alternative=nn.Linear(in_features=264, out_features=64),
        )

        self.linear4 = set_layer(
            layer_dict=layer_dict,
            name="linear4",
            alternative=nn.Linear(in_features=64, out_features=1),
        )

        self.activation = nn.LeakyReLU(negative_slope=0.01)

        if not layer_norm:
            self.layers = [
                self.linear1,
                self.activation,
                self.linear2,
                self.activation,
                self.linear3,
                self.activation,
                self.linear4,
            ]
        else:
            self.layernorm1 = nn.LayerNorm(normalized_shape=(1, self.linear1.out_features))
            self.layernorm2 = nn.LayerNorm(normalized_shape=(1, self.linear2.out_features))
            self.layernorm3 = nn.LayerNorm(normalized_shape=(1, self.linear3.out_features))
            self.layers = [
                self.linear1,
                self.layernorm1,
                self.activation,
                self.linear2,
                self.layernorm2,
                self.activation,
                self.linear3,
                self.layernorm3,
                self.activation,
                self.linear4,
            ]

        # initialize weights
        [self.initialize_weights(layer) for layer in self.layers]

        # optimizer and scheduler
        self.optimizer = torch.optim.AdamW(filter(lambda p: p.requires_grad, self.parameters()), lr=start_lr)
        self.scheduler = CosineAnnealingLR(self.optimizer, T_max=T_max)

        # else
        self.save_hyperparameters(ignore=["model"])
        self.MSE = nn.MSELoss()
        self.R2 = R2Score()

    def initialize_weights(self, module):

        if isinstance(module, nn.Linear):
            logger.debug("linear weights initialized")
            torch.nn.init.xavier_uniform_(module.weight)
            module.bias.data.fill_(0.01)

    def forward(self, x: torch.Tensor):

        if x.dim() == 2:
            x = x.unsqueeze(dim=1)

        for layer in self.layers:
            x = layer(x)

        x = x.squeeze()

        if x.dim() == 0:
            x = x.unsqueeze(dim=0)

        return x.to(torch.float32)

    def training_step(self, batch):

        loss_and_metrics = self._get_loss(batch, get_metrics=True)
        pred = loss_and_metrics["pred"]
        act = loss_and_metrics["act"]
        loss = loss_and_metrics["loss"]

        self.log("train_loss", loss, on_epoch=True, on_step=False, prog_bar=True, logger=True)

        return {"loss": loss, "pred": pred, "act": act}

    def configure_optimizers(self):

        optimizer = self.optimizer
        scheduler = self.scheduler
        return dict(optimizer=optimizer, lr_scheduler=scheduler)

    def lr_scheduler_step(self, scheduler, optimizer_idx, metric):
        logger.debug(scheduler)
        if metric is None:
            scheduler.step()
        else:
            scheduler.step(metric)

    def validation_step(self, batch, batch_idx):
        """used for logging metrics"""
        loss_and_metrics = self._get_loss(batch, get_metrics=True)
        loss = loss_and_metrics["loss"]

        # Log loss and metric
        self.log("val_loss", loss, on_epoch=True, prog_bar=True, logger=True)

    def training_epoch_end(self, training_step_outputs):

        training_step_outputs = list(training_step_outputs)

        training_step_outputs.pop()

        output_dict = {k: [dic[k] for dic in training_step_outputs] for k in training_step_outputs[0]}

        pred = torch.stack(output_dict["pred"])
        act = torch.stack(output_dict["act"])

        loss = torch.sub(pred, act)
        loss_sq = torch.square(loss)

        TSS = float(torch.var(act, unbiased=False))
        RSS = float(torch.mean(loss_sq))
        R2 = 1 - RSS / TSS

        self.log("train_R2", R2, prog_bar=True, logger=True)

    def _get_loss(self, batch, get_metrics: bool = False):
        """convenience function since train/valid/test steps are similar"""
        pred = self.forward(x=batch["embedding"]).to(torch.float32)

        act, loss = None, None

        if "ctr" in batch.keys():
            act = batch["ctr"].to(torch.float32)
            loss = self.MSE(pred, act).to(torch.float32)

        return {"loss": loss, "pred": pred, "act": act}