File size: 5,208 Bytes
cea4a4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import emoji
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from loguru import logger
from torch import nn
from torch.optim.lr_scheduler import CosineAnnealingLR
from torchmetrics import R2Score
from transformers import BertModel, BertTokenizerFast

from src.utils import get_sentiment, vectorise_dict
from src.utils.neural_networks import set_layer
from config import DEVICE

from .DecoderPL import DecoderPL
from .EncoderPL import EncoderPL


torch.set_default_dtype(torch.float32)


class FullModelPL(pl.LightningModule):
    def __init__(
        self,
        model_name: str = "bert-base-uncased",
        nontext_features: list[str] = ["aov"],
        encoder: EncoderPL | None = None,
        decoder: DecoderPL | None = None,
        layer_norm: bool = True,
        device=DEVICE,
        T_max: int = 10,
    ):
        super().__init__()

        # layers
        self.encoder = (
            encoder.to(self.device)
            if encoder is not None
            else EncoderPL(model_name=model_name, device=device).to(self.device)
        )
        self.decoder = (
            decoder.to(self.device)
            if decoder is not None
            else DecoderPL(
                input_dim=768 + len(nontext_features) + 5,
                layer_norm=layer_norm,
                device=device,
            ).to(self.device)
        )

        # else
        self.MSE = nn.MSELoss()
        self.R2 = R2Score()

        self.optimizer = torch.optim.AdamW(filter(lambda p: p.requires_grad, self.parameters()), lr=3 * 1e-4)
        self.scheduler = CosineAnnealingLR(self.optimizer, T_max=T_max)

        # self.save_hyperparameters(ignore=["decoder", "encoder"])

    def forward(self, input_dict: dict):

        input_dict = input_dict.copy()
        text = input_dict.pop("text")

        print(f"text: {text}")

        if "ctr" in input_dict.keys():
            input_dict.pop("ctr")

        # encode
        sentence_embedding = self.encoder.forward(text=text)

        # sentiment
        sentiment = get_sentiment_for_list_of_texts(text)
        input_dict = input_dict | sentiment

        input_dict = {k: v.to(self.device) for k, v in input_dict.items()}

        # concat nontext features to embedding
        nontext_vec = vectorise_dict(input_dict)
        nontext_tensor = torch.stack(nontext_vec).T.unsqueeze(1).to(torch.float32)
        # logger.debug(f"nontext tensor type: {nontext_tensor.dtype}")
        print(f"{sentence_embedding.get_device()}, {nontext_tensor.get_device()}")
        x = torch.cat((sentence_embedding, nontext_tensor), 2)

        print(self.decoder.device)
        print(x.get_device())

        # decode
        result = self.decoder.forward(x)
        return result

    def training_step(self, batch):

        loss_and_metrics = self._get_loss(batch, get_metrics=True)
        pred = loss_and_metrics["pred"]
        act = loss_and_metrics["act"]
        loss = loss_and_metrics["loss"]

        self.log("train_loss", loss, on_epoch=True, on_step=False, prog_bar=True, logger=True)

        return {"loss": loss, "pred": pred, "act": act}

    def configure_optimizers(self):

        for name, param in self.named_parameters():
            if "bert" in name:
                param.requires_grad = False

        optimizer = self.optimizer
        scheduler = self.scheduler
        return dict(optimizer=optimizer, lr_scheduler=scheduler)

    def lr_scheduler_step(self, scheduler, optimizer_idx, metric):
        logger.debug(scheduler)
        if metric is None:
            scheduler.step()
        else:
            scheduler.step(metric)

    def validation_step(self, batch, batch_idx):
        """used for logging metrics"""
        loss_and_metrics = self._get_loss(batch, get_metrics=True)
        loss = loss_and_metrics["loss"]

        # Log loss and metric
        self.log("val_loss", loss, on_epoch=True, prog_bar=True, logger=True)

    def training_epoch_end(self, training_step_outputs):

        training_step_outputs = list(training_step_outputs)

        training_step_outputs.pop()

        output_dict = {k: [dic[k] for dic in training_step_outputs] for k in training_step_outputs[0]}

        pred = torch.stack(output_dict["pred"])
        act = torch.stack(output_dict["act"])

        loss = torch.sub(pred, act)
        loss_sq = torch.square(loss)

        TSS = float(torch.var(act, unbiased=False))
        RSS = float(torch.mean(loss_sq))
        R2 = 1 - RSS / TSS

        self.log("train_R2", R2, prog_bar=True, logger=True)

    def _get_loss(self, batch, get_metrics: bool = False):
        """convenience function since train/valid/test steps are similar"""
        pred = self.forward(input_dict=batch).to(torch.float32)

        act, loss = None, None

        if "ctr" in batch.keys():
            act = batch["ctr"].to(torch.float32).to(self.device)
            loss = self.MSE(pred, act).to(torch.float32)

        return {"loss": loss, "pred": pred, "act": act}


def get_sentiment_for_list_of_texts(texts: list[str]) -> dict:
    ld = [get_sentiment(text) for text in texts]
    v = {k: torch.Tensor([dic[k] for dic in ld]) for k in ld[0]}
    return v