File size: 2,940 Bytes
cea4a4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from torch.utils.data import DataLoader
import pytorch_lightning as pl
import wandb
from torch import nn
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from pytorch_lightning import Trainer

import pandas as pd
from loguru import logger
from dotenv import load_dotenv
import torch

from src.regression.datasets import DecoderDatasetTorch
from src.regression.datasets import regression_dataset
from src.regression.PL import *

load_dotenv()


def train_decoder_PL(
    train: pd.DataFrame,
    test: pd.DataFrame,
    artifact_path: str | None = None,
    resume: bool | str = "must",
    run_id: str | None = None,
    run_name: str = "sanity",
    model_class=DecoderPL,
    max_epochs: int = 2,
    layer_norm: bool = True,
    embedding_column: str = "my_full_mean_embedding",
    device: str = "mps",
    *args,
    **kwargs
):

    torch.set_default_dtype(torch.float32)

    train = train[train.aov.notna()].reset_index(drop=True)
    test = test[test.aov.notna()].reset_index(drop=True)

    if run_name == "sanity":
        resume = False
        run_id = None
        max_epochs = 2
        train = train.loc[0:16, :]
        test = test.loc[0:16]

    # initializing dataset, dataloader and nn.module model
    train_dataset = DecoderDatasetTorch(df=train, embedding_column=embedding_column)
    train_dataloader = DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=8)

    test_dataset = DecoderDatasetTorch(df=test, embedding_column=embedding_column)
    test_dataloader = DataLoader(test_dataset, batch_size=8, shuffle=False, num_workers=8)

    wandb_logger = WandbLogger(
        project="transformers",
        entity="sanjin_juric_fot",
        log_model=True,
        reinit=True,
        resume=resume,
        id=run_id,
        name=run_name,
    )

    # here lightning comes into play
    if artifact_path is not None:
        artifact = wandb_logger.use_artifact(artifact_path)
        artifact_dir = artifact.download()
        litmodel = model_class.load_from_checkpoint(artifact_dir + "/" + "model.ckpt").to(device)

        logger.debug("logged from checkpoint")

        torch.multiprocessing.set_sharing_strategy("file_system")

    else:
        litmodel = model_class(input_dim=len(train.at[0, embedding_column]), layer_norm=layer_norm, *args, **kwargs).to(
            device
        )

    checkpoint_callback = ModelCheckpoint(monitor="val_loss", mode="min")
    lr_monitor = LearningRateMonitor(logging_interval="epoch")
    trainer = Trainer(
        accelerator=str(device),
        devices=1,
        logger=wandb_logger,
        log_every_n_steps=2,
        max_epochs=max_epochs,
        callbacks=[checkpoint_callback, lr_monitor],
    )

    logger.debug("training...")
    trainer.fit(
        model=litmodel,
        train_dataloaders=train_dataloader,
        val_dataloaders=test_dataloader,
    )