ctr-ll4 / src /regression /training_scripts /train_full_model_PL.py
sanjin7's picture
Upload src/ with huggingface_hub
cea4a4b
from torch.utils.data import DataLoader
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import Trainer
import pandas as pd
from loguru import logger
from dotenv import load_dotenv
import torch
from pytorch_lightning.callbacks import LearningRateMonitor
from src.regression.datasets import FullModelDatasetTorch
from src.regression.PL import *
def train_full_model_PL(
train: pd.DataFrame,
test: pd.DataFrame,
artifact_path: str | None = None,
resume: bool | str = "must",
run_id: str | None = None,
run_name: str = "sanity",
model_class=FullModelPL,
max_epochs: int = 2,
layer_norm: bool = False,
):
torch.set_default_dtype(torch.float32)
load_dotenv()
nontext_features = ["aov"]
train = train[train.aov.notna()].reset_index(drop=True)
test = test[test.aov.notna()].reset_index(drop=True)
if run_name == "sanity":
resume = False
run_id = None
train = train.loc[0:16, :]
test = test.loc[0:16]
# initializing dataset, dataloader and nn.module model
train_dataset = FullModelDatasetTorch(df=train, nontext_features=nontext_features)
train_dataloader = DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=8)
test_dataset = FullModelDatasetTorch(df=test, nontext_features=nontext_features)
test_dataloader = DataLoader(test_dataset, batch_size=8, shuffle=False, num_workers=8)
wandb_logger = WandbLogger(
project="transformers",
entity="sanjin_juric_fot",
log_model=True,
reinit=True,
resume=resume,
id=run_id,
name=run_name,
)
# here lightning comes into play
if artifact_path is not None:
artifact = wandb_logger.use_artifact(artifact_path)
artifact_dir = artifact.download()
litmodel = model_class.load_from_checkpoint(artifact_dir + "/" + "model.ckpt").to("mps")
logger.debug("logged from checkpoint")
# for name, layer in litmodel.named_modules():
# if isinstance(layer, nn.Linear) and name == "linear2":
# break
# layer_dict = {"linear2": layer}
# litmodel = LitAdModelLHS(
# nontext_features=nontext_features, layer_dict=layer_dict
# )
else:
litmodel = model_class(
model_name="bert-base-uncased",
nontext_features=nontext_features,
layer_norm=layer_norm,
).to("mps")
checkpoint_callback = ModelCheckpoint(monitor="val_loss", mode="min")
lr_monitor = LearningRateMonitor(logging_interval="epoch")
trainer = Trainer(
accelerator="mps",
devices=1,
logger=wandb_logger,
log_every_n_steps=2,
max_epochs=max_epochs,
callbacks=[checkpoint_callback, lr_monitor],
)
# trainer = Trainer(logger=wandb_logger, log_every_n_steps=2, max_epochs=2, callbacks=[checkpoint_callback])
logger.debug("training...")
trainer.fit(
model=litmodel,
train_dataloaders=train_dataloader,
val_dataloaders=test_dataloader,
)