Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- LunarLander-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: LunarLander-v2
|
| 16 |
+
type: LunarLander-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: 289.92 +/- 19.78
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
| 25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a21abe33880>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a21abe33920>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a21abe339c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a21abe33a60>", "_build": "<function ActorCriticPolicy._build at 0x7a21abe33b00>", "forward": "<function ActorCriticPolicy.forward at 0x7a21abe33ba0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a21abe33c40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a21abe33ce0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a21abe33d80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a21abe33e20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a21abe33ec0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a21abe33f60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a21abfbfc80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1753543586931279530, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAABaYfU9bxd3P3ISQD6+GgC/Zbs+PhZmoLsAAAAAAAAAAKYSgL0RFQg/P54HPcp03b5udFS9/hiDPQAAAAAAAAAAZgY1OyloM7qAFDY2mioGMeymyrqW7Ga1AACAPwAAgD/A3eM90C+YP504JD+mZCa/dvtsPQN1WD4AAAAAAAAAABpOK73JKRY9ov8APqLsir5IYo89F9UQPQAAAAAAAAAAWuNhPrgwzj4FJ9e+9DDbvjzJbj6Gb2m+AAAAAAAAAADNHBu8qkWAPuPGwT0lOOG+8izaPagSFD0AAAAAAAAAAGYaUz0lXKc/xYpsPova+b58I709CG2hPQAAAAAAAAAAzTD2PDsNvz3LhGc9/j3Jvljnsz1Org49AAAAAAAAAACAauA99a1fPlVewL5OkZ2+rji+vWQGhjsAAAAAAAAAALPPOb2i7E4/eOhbPeFq7767clS9aOBGPAAAAAAAAAAAAIYMPFr4DD6NWOg9vpK8vu9zSj4Zrcq9AAAAAAAAAACzfiW94eyjulYnAbV81T6vGZlFutK7bjQAAIA/AACAP80MaTvkgxY+gwWlvlNdj76Zs3C+ww/aPAAAAAAAAAAA41uePgHXYz8YkHw+e18TvxTq7j7iqo87AAAAAAAAAADNgiG89hRqujquirf3k26yDdAoOmOjojYAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHNUyWVu76KMAWyUS/GMAXSUR0CZP0wHJLdvdX2UKGgGR0Bw/LVYp2ECaAdL6WgIR0CZQLV9F4LUdX2UKGgGR0Bya7ONYKYzaAdL5GgIR0CZQNknkT6BdX2UKGgGR0ByoGzposZpaAdL8mgIR0CZQQzE74i5dX2UKGgGR0BuExcu8K5TaAdL32gIR0CZQacjqv/zdX2UKGgGR0By3QyFfzBiaAdL8mgIR0CZQb8an753dX2UKGgGR0BwJ+1pj+aSaAdLz2gIR0CZQcdmQKa5dX2UKGgGR0Bz2+tRvWH2aAdL+mgIR0CZQfLQHAymdX2UKGgGR0ByTK5sj3VTaAdLzGgIR0CZQpois4kvdX2UKGgGR0By/irsByS3aAdL/GgIR0CZQsXpW3jNdX2UKGgGR0Bx2+hdt2s8aAdL1GgIR0CZQs3FkxyodX2UKGgGR0Bt+I9RrJr+aAdL7GgIR0CZQ3D6WPcSdX2UKGgGR0ByN/teD3/QaAdLz2gIR0CZQ4bgTAWSdX2UKGgGR0BxkmP+4smOaAdL82gIR0CZQ4nlnyuqdX2UKGgGR0ByPelabF0gaAdL0WgIR0CZQ6KfWcz7dX2UKGgGR0BucMTYdyT7aAdLymgIR0CZQ7eyRjjJdX2UKGgGR0BynpyuIRAbaAdL7GgIR0CZREq+8Gs4dX2UKGgGR0BMoPN3W4EwaAdLm2gIR0CZRO/echC/dX2UKGgGR0BvbF1B+nZTaAdL12gIR0CZRW8Z1mrbdX2UKGgGR0BvH5j2Bas7aAdL3mgIR0CZRdH446wMdX2UKGgGR0Bw4iMS9M9KaAdLx2gIR0CZRi2ZiNKidX2UKGgGR0Bxw7i704BFaAdL6WgIR0CZRmtqpLmIdX2UKGgGR0ByilQgs9SuaAdL5GgIR0CZRz8rqdH2dX2UKGgGR0ByzB6/qPfbaAdLymgIR0CZR5FF2FFldX2UKGgGR0BzTHVoYekpaAdL8GgIR0CZR96KLsKLdX2UKGgGR0BxDIpQUHpsaAdL5mgIR0CZXBJemelLdX2UKGgGR0BxguphnanKaAdLx2gIR0CZXC3Cbc46dX2UKGgGR0BxXPuw5eZ5aAdL72gIR0CZXEzfaYeDdX2UKGgGR0BzYMMmWt2caAdL12gIR0CZXGyULUkOdX2UKGgGR0BwjQB0ZFXraAdL1mgIR0CZXLBoEjgRdX2UKGgGR0BwIzWZqmCRaAdL4WgIR0CZXLZBLPD6dX2UKGgGR0BwQvF+/gzhaAdL6GgIR0CZXPO3lS0jdX2UKGgGR0Bxm0+V1Oj7aAdL9GgIR0CZXg5ZKWcCdX2UKGgGR0BzK0Ahje9BaAdL72gIR0CZXrhV2icodX2UKGgGR0BwBjhn8KoiaAdL72gIR0CZXxZMcp9adX2UKGgGR0BvOV6E8JUpaAdL1WgIR0CZXz7SiM5wdX2UKGgGR0Bx3W+AVfu1aAdL8WgIR0CZX3sGgSOBdX2UKGgGR0BztsmgJ1JUaAdL6mgIR0CZX5Xd0q6OdX2UKGgGR0Bxw2RGMGX5aAdL5GgIR0CZYG8VHnU2dX2UKGgGR0BxqBGBnSOSaAdL7mgIR0CZYG7T2FnJdX2UKGgGR0BwhZafSQYDaAdL52gIR0CZYLp3X7LudX2UKGgGR0ByA1A8jiXIaAdL2GgIR0CZYQ7u2JBPdX2UKGgGR0BxP3blA/s3aAdL3mgIR0CZYRX05EMLdX2UKGgGR0BwVtDneSB9aAdL2WgIR0CZYTJoTPB0dX2UKGgGR0Bz68N3GGVSaAdL3mgIR0CZYWuJUHY6dX2UKGgGR0BzByQ+2VmjaAdL1mgIR0CZYYJtSAH3dX2UKGgGR0Bx3UmAskIHaAdLzGgIR0CZYZLlFMIvdX2UKGgGR0BxqL0kGA09aAdL72gIR0CZYfv38GcGdX2UKGgGR0Bwz6Pgeii7aAdLzWgIR0CZYyjc2zfKdX2UKGgGR0BvLvQF9roGaAdL6WgIR0CZYy0ulGgBdX2UKGgGR0BwNmg9Net0aAdLyWgIR0CZY+9wm3OOdX2UKGgGR0BwHpSOzY29aAdL4GgIR0CZZATJQtSRdX2UKGgGR0By7hXgccU/aAdL32gIR0CZZCQEpy6udX2UKGgGR0BwY/gEU0vXaAdL5mgIR0CZZHcuJ1q4dX2UKGgGR0Bykv0qYqoZaAdL2GgIR0CZZRo86mwadX2UKGgGR0ByP/ASFoL5aAdLzWgIR0CZZakDIRywdX2UKGgGR0BwB7rNW2gGaAdL02gIR0CZZa3H7xd6dX2UKGgGR0BzrwMNMGoraAdL1mgIR0CZZbjYZl4DdX2UKGgGR0BzO5ruYx+KaAdL9WgIR0CZZclZX+2mdX2UKGgGR0Bw57GS6lLwaAdL22gIR0CZZi+UQkHEdX2UKGgGR0Bz8ZJFspG4aAdL/GgIR0CZZjK+BYmtdX2UKGgGR0Bu4uTHKfWdaAdL4WgIR0CZZmU6PsAvdX2UKGgGR0Bv3A7zTWoWaAdLzGgIR0CZZn189fTkdX2UKGgGR0BzHo4CIUJwaAdNEAFoCEdAmWdlbu+h5HV9lChoBkdAcljSZSeiBWgHS9VoCEdAmWfeuA7Pp3V9lChoBkdAcFtTC+De02gHS9toCEdAmWgD8Lron3V9lChoBkdAckCyuIRAbGgHS8toCEdAmWhRz/6wdXV9lChoBkdAbZxFG5MDfWgHS9toCEdAmWjYkVvddnV9lChoBkdAbfrmPo3aSWgHS+FoCEdAmWlXKnvUjXV9lChoBkdAcrfFgDzRQmgHS/toCEdAmWl2X5WRzXV9lChoBkdAcFj4wAU+LWgHS9RoCEdAmWpDHCGetnV9lChoBkdAcOvuJ1q33GgHS9NoCEdAmWpa7Ackt3V9lChoBkdAcQaPDpC8e2gHS9poCEdAmWpz3AVO9HV9lChoBkdAcELm/Firk2gHS+FoCEdAmWqNfoicG3V9lChoBkdAcXqYmb9ZR2gHS/hoCEdAmWqNAC4jKXV9lChoBkdAcppl2NedCmgHS81oCEdAmWrnXZoPCnV9lChoBkdAcjz1ejVQRGgHS9poCEdAmWr1ZPl+3HV9lChoBkdAcydum78Nx2gHS+1oCEdAmWtYClrM1XV9lChoBkdAcQ1PmPo3aWgHS+RoCEdAmWt9sBQvYnV9lChoBkdAcsotihFmWmgHS9BoCEdAmWxv0mMOw3V9lChoBkdAcJDZ62OQyWgHS8loCEdAmWxtGy5ZsHV9lChoBkdAcjJN96Tnq2gHS+1oCEdAmWypYkmhNHV9lChoBkdAcSS8kleF+WgHS9ZoCEdAmW2POlfqo3V9lChoBkdAcr9HNorWiGgHS/VoCEdAmW2zFAE+xHV9lChoBkdAcMA4uK4x12gHS85oCEdAmW35VbRne3V9lChoBkdAcJNu0kWykmgHS95oCEdAmW43fdhy83V9lChoBkdAcZMvOhTOxGgHS8poCEdAmW72zSkTH3V9lChoBkdAcr93uuzQeGgHS9RoCEdAmW8Bq0tyxXV9lChoBkdAcw4Zf2K2rmgHS9NoCEdAmW8uYD1XeXV9lChoBkdAcGbW1+iJwmgHS+xoCEdAmW9571Iy03V9lChoBkdAcsbSH/Lkj2gHS+1oCEdAmW+wXAM2FXV9lChoBkdAcYKi0OVgQmgHS99oCEdAmW/vRArxzHV9lChoBkdAbbeDvmYBvWgHS+ZoCEdAmXAHDziCKHV9lChoBkdAciXgE2YOUmgHS9RoCEdAmXAXNLUTc3V9lChoBkdAcKfo1DSgG2gHS+toCEdAmXDIdELH/HV9lChoBkdAcYL/RE4NqmgHS9RoCEdAmXF3mq5sj3V9lChoBkdAbx3HrhR64WgHS99oCEdAmXF3yVfNRnV9lChoBkdAc0OLbYbsGGgHS+5oCEdAmXHQCW/rSnV9lChoBkdAQRHCj1wo9mgHS49oCEdAmXIw176YV3V9lChoBkdAb3N2yLQ5WGgHS9NoCEdAmXJSMxXXAnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 423, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025", "Python": "3.11.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c1fd087863e59cc55561109eb06eeea4cb7439c527eb21008ff19a2cb258286b
|
| 3 |
+
size 148004
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a21abe33880>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a21abe33920>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a21abe339c0>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a21abe33a60>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a21abe33b00>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a21abe33ba0>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a21abe33c40>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a21abe33ce0>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a21abe33d80>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a21abe33e20>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a21abe33ec0>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a21abe33f60>",
|
| 19 |
+
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a21abfbfc80>"
|
| 21 |
+
},
|
| 22 |
+
"verbose": 1,
|
| 23 |
+
"policy_kwargs": {},
|
| 24 |
+
"num_timesteps": 1015808,
|
| 25 |
+
"_total_timesteps": 1000000,
|
| 26 |
+
"_num_timesteps_at_start": 0,
|
| 27 |
+
"seed": null,
|
| 28 |
+
"action_noise": null,
|
| 29 |
+
"start_time": 1753543586931279530,
|
| 30 |
+
"learning_rate": 0.0003,
|
| 31 |
+
"tensorboard_log": null,
|
| 32 |
+
"_last_obs": {
|
| 33 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 34 |
+
":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAABaYfU9bxd3P3ISQD6+GgC/Zbs+PhZmoLsAAAAAAAAAAKYSgL0RFQg/P54HPcp03b5udFS9/hiDPQAAAAAAAAAAZgY1OyloM7qAFDY2mioGMeymyrqW7Ga1AACAPwAAgD/A3eM90C+YP504JD+mZCa/dvtsPQN1WD4AAAAAAAAAABpOK73JKRY9ov8APqLsir5IYo89F9UQPQAAAAAAAAAAWuNhPrgwzj4FJ9e+9DDbvjzJbj6Gb2m+AAAAAAAAAADNHBu8qkWAPuPGwT0lOOG+8izaPagSFD0AAAAAAAAAAGYaUz0lXKc/xYpsPova+b58I709CG2hPQAAAAAAAAAAzTD2PDsNvz3LhGc9/j3Jvljnsz1Org49AAAAAAAAAACAauA99a1fPlVewL5OkZ2+rji+vWQGhjsAAAAAAAAAALPPOb2i7E4/eOhbPeFq7767clS9aOBGPAAAAAAAAAAAAIYMPFr4DD6NWOg9vpK8vu9zSj4Zrcq9AAAAAAAAAACzfiW94eyjulYnAbV81T6vGZlFutK7bjQAAIA/AACAP80MaTvkgxY+gwWlvlNdj76Zs3C+ww/aPAAAAAAAAAAA41uePgHXYz8YkHw+e18TvxTq7j7iqo87AAAAAAAAAADNgiG89hRqujquirf3k26yDdAoOmOjojYAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
|
| 35 |
+
},
|
| 36 |
+
"_last_episode_starts": {
|
| 37 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 38 |
+
":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
|
| 39 |
+
},
|
| 40 |
+
"_last_original_obs": null,
|
| 41 |
+
"_episode_num": 0,
|
| 42 |
+
"use_sde": false,
|
| 43 |
+
"sde_sample_freq": -1,
|
| 44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
| 45 |
+
"_stats_window_size": 100,
|
| 46 |
+
"ep_info_buffer": {
|
| 47 |
+
":type:": "<class 'collections.deque'>",
|
| 48 |
+
":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHNUyWVu76KMAWyUS/GMAXSUR0CZP0wHJLdvdX2UKGgGR0Bw/LVYp2ECaAdL6WgIR0CZQLV9F4LUdX2UKGgGR0Bya7ONYKYzaAdL5GgIR0CZQNknkT6BdX2UKGgGR0ByoGzposZpaAdL8mgIR0CZQQzE74i5dX2UKGgGR0BuExcu8K5TaAdL32gIR0CZQacjqv/zdX2UKGgGR0By3QyFfzBiaAdL8mgIR0CZQb8an753dX2UKGgGR0BwJ+1pj+aSaAdLz2gIR0CZQcdmQKa5dX2UKGgGR0Bz2+tRvWH2aAdL+mgIR0CZQfLQHAymdX2UKGgGR0ByTK5sj3VTaAdLzGgIR0CZQpois4kvdX2UKGgGR0By/irsByS3aAdL/GgIR0CZQsXpW3jNdX2UKGgGR0Bx2+hdt2s8aAdL1GgIR0CZQs3FkxyodX2UKGgGR0Bt+I9RrJr+aAdL7GgIR0CZQ3D6WPcSdX2UKGgGR0ByN/teD3/QaAdLz2gIR0CZQ4bgTAWSdX2UKGgGR0BxkmP+4smOaAdL82gIR0CZQ4nlnyuqdX2UKGgGR0ByPelabF0gaAdL0WgIR0CZQ6KfWcz7dX2UKGgGR0BucMTYdyT7aAdLymgIR0CZQ7eyRjjJdX2UKGgGR0BynpyuIRAbaAdL7GgIR0CZREq+8Gs4dX2UKGgGR0BMoPN3W4EwaAdLm2gIR0CZRO/echC/dX2UKGgGR0BvbF1B+nZTaAdL12gIR0CZRW8Z1mrbdX2UKGgGR0BvH5j2Bas7aAdL3mgIR0CZRdH446wMdX2UKGgGR0Bw4iMS9M9KaAdLx2gIR0CZRi2ZiNKidX2UKGgGR0Bxw7i704BFaAdL6WgIR0CZRmtqpLmIdX2UKGgGR0ByilQgs9SuaAdL5GgIR0CZRz8rqdH2dX2UKGgGR0ByzB6/qPfbaAdLymgIR0CZR5FF2FFldX2UKGgGR0BzTHVoYekpaAdL8GgIR0CZR96KLsKLdX2UKGgGR0BxDIpQUHpsaAdL5mgIR0CZXBJemelLdX2UKGgGR0BxguphnanKaAdLx2gIR0CZXC3Cbc46dX2UKGgGR0BxXPuw5eZ5aAdL72gIR0CZXEzfaYeDdX2UKGgGR0BzYMMmWt2caAdL12gIR0CZXGyULUkOdX2UKGgGR0BwjQB0ZFXraAdL1mgIR0CZXLBoEjgRdX2UKGgGR0BwIzWZqmCRaAdL4WgIR0CZXLZBLPD6dX2UKGgGR0BwQvF+/gzhaAdL6GgIR0CZXPO3lS0jdX2UKGgGR0Bxm0+V1Oj7aAdL9GgIR0CZXg5ZKWcCdX2UKGgGR0BzK0Ahje9BaAdL72gIR0CZXrhV2icodX2UKGgGR0BwBjhn8KoiaAdL72gIR0CZXxZMcp9adX2UKGgGR0BvOV6E8JUpaAdL1WgIR0CZXz7SiM5wdX2UKGgGR0Bx3W+AVfu1aAdL8WgIR0CZX3sGgSOBdX2UKGgGR0BztsmgJ1JUaAdL6mgIR0CZX5Xd0q6OdX2UKGgGR0Bxw2RGMGX5aAdL5GgIR0CZYG8VHnU2dX2UKGgGR0BxqBGBnSOSaAdL7mgIR0CZYG7T2FnJdX2UKGgGR0BwhZafSQYDaAdL52gIR0CZYLp3X7LudX2UKGgGR0ByA1A8jiXIaAdL2GgIR0CZYQ7u2JBPdX2UKGgGR0BxP3blA/s3aAdL3mgIR0CZYRX05EMLdX2UKGgGR0BwVtDneSB9aAdL2WgIR0CZYTJoTPB0dX2UKGgGR0Bz68N3GGVSaAdL3mgIR0CZYWuJUHY6dX2UKGgGR0BzByQ+2VmjaAdL1mgIR0CZYYJtSAH3dX2UKGgGR0Bx3UmAskIHaAdLzGgIR0CZYZLlFMIvdX2UKGgGR0BxqL0kGA09aAdL72gIR0CZYfv38GcGdX2UKGgGR0Bwz6Pgeii7aAdLzWgIR0CZYyjc2zfKdX2UKGgGR0BvLvQF9roGaAdL6WgIR0CZYy0ulGgBdX2UKGgGR0BwNmg9Net0aAdLyWgIR0CZY+9wm3OOdX2UKGgGR0BwHpSOzY29aAdL4GgIR0CZZATJQtSRdX2UKGgGR0By7hXgccU/aAdL32gIR0CZZCQEpy6udX2UKGgGR0BwY/gEU0vXaAdL5mgIR0CZZHcuJ1q4dX2UKGgGR0Bykv0qYqoZaAdL2GgIR0CZZRo86mwadX2UKGgGR0ByP/ASFoL5aAdLzWgIR0CZZakDIRywdX2UKGgGR0BwB7rNW2gGaAdL02gIR0CZZa3H7xd6dX2UKGgGR0BzrwMNMGoraAdL1mgIR0CZZbjYZl4DdX2UKGgGR0BzO5ruYx+KaAdL9WgIR0CZZclZX+2mdX2UKGgGR0Bw57GS6lLwaAdL22gIR0CZZi+UQkHEdX2UKGgGR0Bz8ZJFspG4aAdL/GgIR0CZZjK+BYmtdX2UKGgGR0Bu4uTHKfWdaAdL4WgIR0CZZmU6PsAvdX2UKGgGR0Bv3A7zTWoWaAdLzGgIR0CZZn189fTkdX2UKGgGR0BzHo4CIUJwaAdNEAFoCEdAmWdlbu+h5HV9lChoBkdAcljSZSeiBWgHS9VoCEdAmWfeuA7Pp3V9lChoBkdAcFtTC+De02gHS9toCEdAmWgD8Lron3V9lChoBkdAckCyuIRAbGgHS8toCEdAmWhRz/6wdXV9lChoBkdAbZxFG5MDfWgHS9toCEdAmWjYkVvddnV9lChoBkdAbfrmPo3aSWgHS+FoCEdAmWlXKnvUjXV9lChoBkdAcrfFgDzRQmgHS/toCEdAmWl2X5WRzXV9lChoBkdAcFj4wAU+LWgHS9RoCEdAmWpDHCGetnV9lChoBkdAcOvuJ1q33GgHS9NoCEdAmWpa7Ackt3V9lChoBkdAcQaPDpC8e2gHS9poCEdAmWpz3AVO9HV9lChoBkdAcELm/Firk2gHS+FoCEdAmWqNfoicG3V9lChoBkdAcXqYmb9ZR2gHS/hoCEdAmWqNAC4jKXV9lChoBkdAcppl2NedCmgHS81oCEdAmWrnXZoPCnV9lChoBkdAcjz1ejVQRGgHS9poCEdAmWr1ZPl+3HV9lChoBkdAcydum78Nx2gHS+1oCEdAmWtYClrM1XV9lChoBkdAcQ1PmPo3aWgHS+RoCEdAmWt9sBQvYnV9lChoBkdAcsotihFmWmgHS9BoCEdAmWxv0mMOw3V9lChoBkdAcJDZ62OQyWgHS8loCEdAmWxtGy5ZsHV9lChoBkdAcjJN96Tnq2gHS+1oCEdAmWypYkmhNHV9lChoBkdAcSS8kleF+WgHS9ZoCEdAmW2POlfqo3V9lChoBkdAcr9HNorWiGgHS/VoCEdAmW2zFAE+xHV9lChoBkdAcMA4uK4x12gHS85oCEdAmW35VbRne3V9lChoBkdAcJNu0kWykmgHS95oCEdAmW43fdhy83V9lChoBkdAcZMvOhTOxGgHS8poCEdAmW72zSkTH3V9lChoBkdAcr93uuzQeGgHS9RoCEdAmW8Bq0tyxXV9lChoBkdAcw4Zf2K2rmgHS9NoCEdAmW8uYD1XeXV9lChoBkdAcGbW1+iJwmgHS+xoCEdAmW9571Iy03V9lChoBkdAcsbSH/Lkj2gHS+1oCEdAmW+wXAM2FXV9lChoBkdAcYKi0OVgQmgHS99oCEdAmW/vRArxzHV9lChoBkdAbbeDvmYBvWgHS+ZoCEdAmXAHDziCKHV9lChoBkdAciXgE2YOUmgHS9RoCEdAmXAXNLUTc3V9lChoBkdAcKfo1DSgG2gHS+toCEdAmXDIdELH/HV9lChoBkdAcYL/RE4NqmgHS9RoCEdAmXF3mq5sj3V9lChoBkdAbx3HrhR64WgHS99oCEdAmXF3yVfNRnV9lChoBkdAc0OLbYbsGGgHS+5oCEdAmXHQCW/rSnV9lChoBkdAQRHCj1wo9mgHS49oCEdAmXIw176YV3V9lChoBkdAb3N2yLQ5WGgHS9NoCEdAmXJSMxXXAnVlLg=="
|
| 49 |
+
},
|
| 50 |
+
"ep_success_buffer": {
|
| 51 |
+
":type:": "<class 'collections.deque'>",
|
| 52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
+
},
|
| 54 |
+
"_n_updates": 423,
|
| 55 |
+
"observation_space": {
|
| 56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
+
":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
|
| 58 |
+
"dtype": "float32",
|
| 59 |
+
"bounded_below": "[ True True True True True True True True]",
|
| 60 |
+
"bounded_above": "[ True True True True True True True True]",
|
| 61 |
+
"_shape": [
|
| 62 |
+
8
|
| 63 |
+
],
|
| 64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 68 |
+
"_np_random": null
|
| 69 |
+
},
|
| 70 |
+
"action_space": {
|
| 71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
| 72 |
+
":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
|
| 73 |
+
"n": "4",
|
| 74 |
+
"start": "0",
|
| 75 |
+
"_shape": [],
|
| 76 |
+
"dtype": "int64",
|
| 77 |
+
"_np_random": null
|
| 78 |
+
},
|
| 79 |
+
"n_envs": 16,
|
| 80 |
+
"n_steps": 1024,
|
| 81 |
+
"gamma": 0.999,
|
| 82 |
+
"gae_lambda": 0.98,
|
| 83 |
+
"ent_coef": 0.01,
|
| 84 |
+
"vf_coef": 0.5,
|
| 85 |
+
"max_grad_norm": 0.5,
|
| 86 |
+
"batch_size": 64,
|
| 87 |
+
"n_epochs": 4,
|
| 88 |
+
"clip_range": {
|
| 89 |
+
":type:": "<class 'function'>",
|
| 90 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 91 |
+
},
|
| 92 |
+
"clip_range_vf": null,
|
| 93 |
+
"normalize_advantage": true,
|
| 94 |
+
"target_kl": null,
|
| 95 |
+
"lr_schedule": {
|
| 96 |
+
":type:": "<class 'function'>",
|
| 97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 98 |
+
}
|
| 99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b11d85a027dfabcbb688c3cdc71170525facf5aae462dc32483291d1fb07af69
|
| 3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a2ed4233f6f70d3b5294f4210d631df24d22539e31908737821827806d98308b
|
| 3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
| 3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025
|
| 2 |
+
- Python: 3.11.13
|
| 3 |
+
- Stable-Baselines3: 2.0.0a5
|
| 4 |
+
- PyTorch: 2.6.0+cu124
|
| 5 |
+
- GPU Enabled: True
|
| 6 |
+
- Numpy: 2.0.2
|
| 7 |
+
- Cloudpickle: 3.1.1
|
| 8 |
+
- Gymnasium: 0.28.1
|
| 9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:39f97d3937fd6d288aace2697d0a2df0ca1e3754fd86b50715218d370febb5d7
|
| 3 |
+
size 150624
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": 289.9216704516547, "std_reward": 19.780983967735786, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-07-26T15:53:06.656297"}
|