Update README.md
Browse files
README.md
CHANGED
|
@@ -4,6 +4,7 @@ datasets:
|
|
| 4 |
language:
|
| 5 |
- en
|
| 6 |
library_name: transformers
|
|
|
|
| 7 |
---
|
| 8 |
ONNX model - a fine tuned version of DistilBERT which can be used to classify text as one of:
|
| 9 |
- neutral, offensive_language, harmful_behaviour, hate_speech
|
|
@@ -12,10 +13,51 @@ The model was trained using the [csfy tool](https://github.com/mrseanryan/csfy)
|
|
| 12 |
|
| 13 |
The base model is required (distilbert-base-uncased)
|
| 14 |
|
| 15 |
-
For an example of how to run the model, see the [csfy tool](https://github.com/mrseanryan/csfy).
|
| 16 |
|
| 17 |
-
The output is a number indicating the class -
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
---
|
| 21 |
license: mit
|
|
|
|
| 4 |
language:
|
| 5 |
- en
|
| 6 |
library_name: transformers
|
| 7 |
+
base_model: distilbert/distilbert-base-uncased
|
| 8 |
---
|
| 9 |
ONNX model - a fine tuned version of DistilBERT which can be used to classify text as one of:
|
| 10 |
- neutral, offensive_language, harmful_behaviour, hate_speech
|
|
|
|
| 13 |
|
| 14 |
The base model is required (distilbert-base-uncased)
|
| 15 |
|
| 16 |
+
For an example of how to run the model, see below - or see the [csfy tool](https://github.com/mrseanryan/csfy).
|
| 17 |
|
| 18 |
+
The output is a number indicating the class - it is decoded via the label_mapping.json file.
|
| 19 |
|
| 20 |
+
# Usage
|
| 21 |
+
|
| 22 |
+
```python
|
| 23 |
+
# Loading the label mappings
|
| 24 |
+
import json
|
| 25 |
+
def load_label_mappings():
|
| 26 |
+
with open("./label_mapping.json", encoding="utf-8") as f:
|
| 27 |
+
data = json.load(f)
|
| 28 |
+
return data['labels']
|
| 29 |
+
|
| 30 |
+
label_mappings = load_label_mappings()
|
| 31 |
+
|
| 32 |
+
# Loading the model
|
| 33 |
+
import onnxruntime as ort
|
| 34 |
+
from transformers import DistilBertTokenizer
|
| 35 |
+
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
| 36 |
+
ort_session = ort.InferenceSession("./toxic-or-neutral-text-labelled.onnx")
|
| 37 |
+
|
| 38 |
+
# Predicting label for given text
|
| 39 |
+
def predict_via_onnx(text, ort_session, tokenizer, label_mappings):
|
| 40 |
+
model_expected_input_shape = ort_session.get_inputs()[0].shape
|
| 41 |
+
print("Model expects input shape:", model_expected_input_shape)
|
| 42 |
+
inputs = tokenizer(text, return_tensors="np", padding="max_length", truncation=True, max_length=model_expected_input_shape[1])
|
| 43 |
+
print("input shape", inputs['input_ids'].shape)
|
| 44 |
+
|
| 45 |
+
input_ids = inputs['input_ids']
|
| 46 |
+
if input_ids.ndim == 1:
|
| 47 |
+
input_ids = input_ids[np.newaxis, :]
|
| 48 |
+
ort_inputs = {ort_session.get_inputs()[0].name: input_ids}
|
| 49 |
+
|
| 50 |
+
ort_inputs['input_ids'] = ort_inputs['input_ids'].astype(np.int64)
|
| 51 |
+
|
| 52 |
+
ort_outputs = ort_session.run(None, ort_inputs)
|
| 53 |
+
predictions = np.argmax(ort_outputs, axis=-1)
|
| 54 |
+
|
| 55 |
+
predicted_label = label_mappings[predictions.item()]
|
| 56 |
+
return predicted_label
|
| 57 |
+
|
| 58 |
+
predicted_label = predict_via_onnx("How do I get to the beach?", ort_session, tokenizer, label_mappings)
|
| 59 |
+
print(predicted_label)
|
| 60 |
+
```
|
| 61 |
|
| 62 |
---
|
| 63 |
license: mit
|