Falcon-Edge-3B-Instruct-CoreML / falcon_edge_generate.py
seba's picture
Upload 10 files
af901b1 verified
raw
history blame
9.7 kB
import os
import numpy as np
import coremltools as ct
import time
from transformers import AutoTokenizer
import shutil
from argparse import ArgumentParser
def copy_compiled_model(mlmodel: ct.models.MLModel, dest: str):
compiled_model_path = mlmodel.get_compiled_model_path()
shutil.copytree(compiled_model_path, dest, dirs_exist_ok=True)
def load_mlmodel(path, function_name, copy_compiled):
extension = os.path.splitext(path)[1]
if extension == ".mlmodelc":
return ct.models.CompiledMLModel(
path,
function_name=function_name,
compute_units=ct.ComputeUnit.CPU_AND_NE,
)
else:
mlmodel = ct.models.MLModel(
path,
function_name=function_name,
compute_units=ct.ComputeUnit.CPU_AND_NE,
)
if copy_compiled:
copy_compiled_model(mlmodel, path.replace(".mlpackage", ".mlmodelc"))
return mlmodel
def load_embeddings(path):
return np.load(path)
class ModelContainer:
def __init__(
self,
embeddings_path,
mlmodel_path,
lm_head_path,
cache_length,
hf_model,
temp=0.7,
min_p=0.1,
):
self.mlmodel_path = mlmodel_path
self.embeddings_path = embeddings_path
self.lm_head_path = lm_head_path
self.cache_length = cache_length
self.temp = temp
self.min_p = min_p
print("Loading embeddings...")
self.embeddings = load_embeddings(embeddings_path)
print("Loading generation model...")
self.generation_model = load_mlmodel(
mlmodel_path, f"model_input_1_cache_{cache_length}", copy_compiled=True
)
# self.prompt_model = None
print("Loading prompt model...")
self.prompt_model = load_mlmodel(
mlmodel_path.replace(".mlpackage", ".mlmodelc"),
f"model_input_64_cache_{cache_length}",
copy_compiled=False,
)
print("Loading lm head model...")
self.lm_head_model = load_mlmodel(
lm_head_path,
"min_p_length_1" if temp > 0 else "lm_head_length_1",
copy_compiled=True,
)
self.tokenizer = AutoTokenizer.from_pretrained(hf_model)
self.end_of_response_token_id = self.tokenizer("<|im_end|>").input_ids[0]
self.state = None
self.position = None
self.attention_mask = None
def initialize_generation(self):
self.state = self.generation_model.make_state()
attention_mask = np.arange(self.cache_length, dtype=np.int32)
attention_mask = attention_mask[:, None] >= attention_mask[None, :]
attention_mask = attention_mask[None, None, :, :]
self.attention_mask = np.where(
attention_mask,
np.array(0.0, dtype=np.float16),
np.array(-np.inf, dtype=np.float16),
)
self.position = 0
def load_prompt_model(self):
if self.prompt_model is None:
self.prompt_model = load_mlmodel(
self.mlmodel_path,
f"model_input_64_cache_{self.cache_length}",
copy_compiled=False,
)
def unload_prompt_model(self):
del self.prompt_model
self.prompt_model = None
def embed(self, ids):
return self.embeddings[ids] # .transpose(0, 2, 1) # [..., None, :]
def process_prompt(self, prompt):
if self.prompt_model is None:
self.load_prompt_model()
messages = [{"role": "user", "content": prompt}]
tokens = self.tokenizer.apply_chat_template(
messages, tokenize=True, add_generation_prompt=True
)
if self.position + len(tokens) >= self.cache_length:
return np.array([-1])
stop_processing = False
start_time = time.perf_counter()
processed_chunks = 0
for i in range(0, len(tokens), 64):
chunk = tokens[i : min(i + 64, len(tokens))]
if self.position + len(chunk) > self.cache_length:
stop_processing = True
break
processed_chunks += 1
embds = self.embed([chunk]).transpose(0, 2, 1)[
..., None, :
] # [..., None, :]
if len(chunk) < 64:
embds = np.concat(
(
embds,
np.zeros(
(1, embds.shape[1], 1, 64 - len(chunk)), dtype=np.float16
),
),
axis=-1,
)
kv_write_idx = np.array([self.position], dtype=np.int32)
positions = np.arange(self.position, self.position + 64, dtype=np.int32)[
None, :
]
attention_mask = self.attention_mask[
:, :, self.position : self.position + 64
]
pred = self.prompt_model.predict(
{
"hidden_states": embds,
"kv_write_idx": kv_write_idx,
"positions": positions,
"attention_mask": attention_mask,
},
self.state,
)
self.position += len(chunk)
self.unload_prompt_model()
end_time = time.perf_counter()
print(
f"==== Processed {processed_chunks * 64} tokens in {end_time - start_time:.2f} seconds, {processed_chunks * 64 / (end_time - start_time):.2f} tokens per second, current position: {self.position}",
)
if stop_processing:
return np.array([-1], dtype=np.int32)
output_hidden_states = pred["output_hidden_states"][..., [len(chunk) - 1]]
return self.lm_head(output_hidden_states)
def lm_head(self, hidden_states):
if self.temp > 0:
input_id = self.lm_head_model.predict(
{
"hidden_states": hidden_states,
"temp": np.array([self.temp], dtype=np.float16),
"p": np.array([self.min_p], dtype=np.float16),
"random_number": np.random.uniform(0.0, 1.0, (1,)),
}
)["sampled_index"][:, 0]
else:
input_id = self.lm_head_model.predict(
{
"hidden_states": hidden_states,
}
)[
"argmax"
][:, 0]
return input_id
def generate(self, input_id: np.array):
stop_generation = False
# for i in range(max_new_tokens):
start_time = time.perf_counter()
generated_tokens = 0
while self.position < self.cache_length:
generated_tokens += 1
embd = self.embed(input_id).transpose(0, 3, 1, 2)
hidden_states = self.generation_model.predict(
{
"hidden_states": embd,
"kv_write_idx": np.array([self.position], dtype=np.int32),
"positions": np.array([[self.position]], dtype=np.int32),
"attention_mask": self.attention_mask[:, :, [self.position]],
},
self.state,
)["output_hidden_states"]
if stop_generation:
print()
# print("Loading prompt model...")
self.position += 1
break
input_id = self.lm_head(hidden_states)
input_id_item = input_id.item()
if input_id_item == self.end_of_response_token_id:
stop_generation = True
print(self.tokenizer.decode(input_id_item), end="", flush=True)
self.position += 1
end_time = time.perf_counter()
print(
f"==== Generated {generated_tokens} tokens in {end_time - start_time:.2f} seconds, {generated_tokens / (end_time - start_time):.2f} tokens per second, current position: {self.position}",
)
# if stop_generation:
# self.load_prompt_model()
def loop(self):
self.initialize_generation()
print("Begin conversation...")
while True:
print(">>> ", end="", flush=True)
self.load_prompt_model()
prompt = input()
prompt_result = self.process_prompt(prompt)
if prompt_result.item() == -1:
print("\n--- END OF CONVERSATION: MAX CONTEXT LENGTH REACHED ---\n")
break
print(self.tokenizer.decode(prompt_result.item()), end="", flush=True)
self.generate(prompt_result)
if self.position >= (self.cache_length):
print("\n--- END OF CONVERSATION: MAX CONTEXT LENGTH REACHED ---\n")
break
def parse_args():
parser = ArgumentParser()
parser.add_argument("--model", type=str, required=True)
parser.add_argument("--lm_head", type=str, required=True)
parser.add_argument("--embeddings", type=str, required=True)
parser.add_argument(
"--cache_length",
type=int,
choices=[512, 1024, 2048, 2048 + 1024, 4096, 4096 + 2048, 8192],
default=1024,
)
parser.add_argument("--min_p", type=float, default=0.1)
parser.add_argument("--temp", type=float, default=0.7)
# parser.add_argument("--hf_model", type=str, default="")
return parser.parse_args()
def main():
args = parse_args()
ModelContainer(
args.embeddings,
args.model,
args.lm_head,
args.cache_length,
"tiiuae/Falcon-E-1B-Instruct",
args.temp,
args.min_p,
).loop()
if __name__ == "__main__":
main()