Sifera V1
A fine-tuned version of Qwen2.5-1.5B-Instruct for:
- Text Summarization
- Note Taking
- Key Point Extraction
- Q&A Generation
- Document Explanation
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("shivam909067/Sifera-V1")
tokenizer = AutoTokenizer.from_pretrained("shivam909067/Sifera-V1")
messages = [
{"role": "system", "content": "You are Sifera, an AI assistant for note-taking."},
{"role": "user", "content": "Summarize this text: ..."}
]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=500)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Training
Fine-tuned using LoRA on custom note-taking and summarization datasets.
- Downloads last month
- 63