--- license: mit --- use normal pipeline to run it example: ``` from diffusers import LTX2Pipeline from diffusers.pipelines.ltx2.export_utils import encode_video repo= 'smthem/ltx-2-19b-dev-diffusers-4bit' ### text_encoder from transformers import Gemma3ForConditionalGeneration text_encoder = Gemma3ForConditionalGeneration.from_pretrained( repo, subfolder="text_encoder", ) ### transformer transformer_4bit = AutoModel.from_pretrained( repo, subfolder="transformer", ) pipeline = LTX2Pipeline.from_pretrained("smthem/ltx-2-19b-dev-diffusers-test",transformer=transformer_4bit,text_encoder=text_encoder,torch_dtype=torch.float16,) pipeline.enable_model_cpu_offload() prompt='A video of a dog dancing to energetic electronic dance music' negative_prompt="blurry, out of focus, overexposed, underexposed, low contrast, washed out colors, excessive noise, " "grainy texture, poor lighting, flickering, motion blur, distorted proportions, unnatural skin tones, " "deformed facial features, asymmetrical face, missing facial features, extra limbs, disfigured hands, " "wrong hand count, artifacts around text, inconsistent perspective, camera shake, incorrect depth of " "field, background too sharp, background clutter, distracting reflections, harsh shadows, inconsistent " "lighting direction, color banding, cartoonish rendering, 3D CGI look, unrealistic materials, uncanny " "valley effect, incorrect ethnicity, wrong gender, exaggerated expressions, wrong gaze direction, " "mismatched lip sync, silent or muted audio, distorted voice, robotic voice, echo, background noise, " "off-sync audio,incorrect dialogue, added dialogue, repetitive speech, jittery movement, awkward " "pauses, incorrect timing, unnatural transitions, inconsistent framing, tilted camera, flat lighting, " "inconsistent tone, cinematic oversaturation, stylized filters, or AI artifacts." video, audio = pipeline( prompt=prompt, negative_prompt=negative_prompt, height=512, width=768, num_frames=121, frame_rate=25, num_inference_steps=20, guidance_scale=guidance_scale, generator=torch.Generator(device="cuda").manual_seed(42), output_type="np", return_dict=False, ) # Convert video to uint8 (but keep as NumPy array) video = (video * 255).round().astype("uint8") video = torch.from_numpy(video) encode_video( video[0], fps=args.frame_rate, audio=audio[0].float().cpu(), audio_sample_rate=pipeline.vocoder.config.output_sampling_rate, # should be 24000 output_path=os.path.join(args.output_dir, args.output_filename), ) ```