Delete README.md
Browse files
README.md
DELETED
|
@@ -1,184 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
library_name: Diffusers
|
| 3 |
-
pipeline_tag: text-to-image
|
| 4 |
-
inference: true
|
| 5 |
-
base_model:
|
| 6 |
-
- Qwen/Qwen-Image
|
| 7 |
-
---
|
| 8 |
-
|
| 9 |
-
This tiny model is for debugging. It is randomly initialized with the config adapted from [Qwen/Qwen-Image](https://huggingface.co/Qwen/Qwen-Image).
|
| 10 |
-
|
| 11 |
-
File size:
|
| 12 |
-
- ~10MB text_encoder/model.safetensors
|
| 13 |
-
- ~200KB transformer/diffusion_pytorch_model.safetensors
|
| 14 |
-
- ~5MB vae/diffusion_pytorch_model.safetensors
|
| 15 |
-
|
| 16 |
-
### Example usage:
|
| 17 |
-
|
| 18 |
-
```python
|
| 19 |
-
import torch
|
| 20 |
-
from diffusers import DiffusionPipeline
|
| 21 |
-
|
| 22 |
-
model_id = "tiny-random/Qwen-Image"
|
| 23 |
-
torch_dtype = torch.bfloat16
|
| 24 |
-
device = "cuda"
|
| 25 |
-
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
|
| 26 |
-
pipe = pipe.to(device)
|
| 27 |
-
|
| 28 |
-
positive_magic = {
|
| 29 |
-
"en": "Ultra HD, 4K, cinematic composition.", # for english prompt,
|
| 30 |
-
"zh": "超清,4K,电影级构图" # for chinese prompt,
|
| 31 |
-
}
|
| 32 |
-
prompt = '''A coffee shop entrance features a chalkboard sign reading "Qwen Coffee 😊 $2 per cup," with a neon light beside it displaying "通义千问". Next to it hangs a poster showing a beautiful Chinese woman, and beneath the poster is written "π≈3.1415926-53589793-23846264-33832795-02384197". Ultra HD, 4K, cinematic composition.'''
|
| 33 |
-
prompt += 'Some dummy random texts to make prompt long enough ' * 10
|
| 34 |
-
negative_prompt = " "
|
| 35 |
-
|
| 36 |
-
# Generate with different aspect ratios
|
| 37 |
-
aspect_ratios = {
|
| 38 |
-
"1:1": (1328, 1328),
|
| 39 |
-
"16:9": (1664, 928),
|
| 40 |
-
"9:16": (928, 1664),
|
| 41 |
-
"4:3": (1472, 1140),
|
| 42 |
-
"3:4": (1140, 1472)
|
| 43 |
-
}
|
| 44 |
-
|
| 45 |
-
for width, height in aspect_ratios.values():
|
| 46 |
-
image = pipe(
|
| 47 |
-
prompt=prompt + positive_magic["en"],
|
| 48 |
-
negative_prompt=negative_prompt,
|
| 49 |
-
width=width,
|
| 50 |
-
height=height,
|
| 51 |
-
num_inference_steps=4,
|
| 52 |
-
true_cfg_scale=4.0,
|
| 53 |
-
generator=torch.Generator(device="cuda").manual_seed(42)
|
| 54 |
-
).images[0]
|
| 55 |
-
print(image)
|
| 56 |
-
```
|
| 57 |
-
|
| 58 |
-
### Codes to create this repo:
|
| 59 |
-
|
| 60 |
-
```python
|
| 61 |
-
import json
|
| 62 |
-
|
| 63 |
-
import torch
|
| 64 |
-
from diffusers import (
|
| 65 |
-
AutoencoderKLQwenImage,
|
| 66 |
-
DiffusionPipeline,
|
| 67 |
-
FlowMatchEulerDiscreteScheduler,
|
| 68 |
-
QwenImagePipeline,
|
| 69 |
-
QwenImageTransformer2DModel,
|
| 70 |
-
)
|
| 71 |
-
from huggingface_hub import hf_hub_download
|
| 72 |
-
from transformers import AutoConfig, AutoTokenizer, Qwen2_5_VLForConditionalGeneration
|
| 73 |
-
from transformers.generation import GenerationConfig
|
| 74 |
-
|
| 75 |
-
source_model_id = "Qwen/Qwen-Image"
|
| 76 |
-
save_folder = "/tmp/tiny-random/Qwen-Image"
|
| 77 |
-
|
| 78 |
-
torch.set_default_dtype(torch.bfloat16)
|
| 79 |
-
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(source_model_id, subfolder='scheduler')
|
| 80 |
-
tokenizer = AutoTokenizer.from_pretrained(source_model_id, subfolder='tokenizer')
|
| 81 |
-
|
| 82 |
-
def save_json(path, obj):
|
| 83 |
-
import json
|
| 84 |
-
from pathlib import Path
|
| 85 |
-
Path(path).parent.mkdir(parents=True, exist_ok=True)
|
| 86 |
-
with open(path, 'w', encoding='utf-8') as f:
|
| 87 |
-
json.dump(obj, f, indent=2, ensure_ascii=False)
|
| 88 |
-
|
| 89 |
-
def init_weights(model):
|
| 90 |
-
import torch
|
| 91 |
-
torch.manual_seed(42)
|
| 92 |
-
with torch.no_grad():
|
| 93 |
-
for name, p in sorted(model.named_parameters()):
|
| 94 |
-
torch.nn.init.normal_(p, 0, 0.1)
|
| 95 |
-
print(name, p.shape, p.dtype, p.device)
|
| 96 |
-
|
| 97 |
-
with open(hf_hub_download(source_model_id, filename='text_encoder/config.json', repo_type='model'), 'r', encoding='utf - 8') as f:
|
| 98 |
-
config = json.load(f)
|
| 99 |
-
config.update({
|
| 100 |
-
'hidden_size': 32,
|
| 101 |
-
'intermediate_size': 64,
|
| 102 |
-
'max_window_layers': 1,
|
| 103 |
-
'num_attention_heads': 2,
|
| 104 |
-
'num_hidden_layers': 2,
|
| 105 |
-
'num_key_value_heads': 1,
|
| 106 |
-
'sliding_window': 64,
|
| 107 |
-
'tie_word_embeddings': True,
|
| 108 |
-
'use_sliding_window': True,
|
| 109 |
-
})
|
| 110 |
-
del config['torch_dtype']
|
| 111 |
-
config['rope_scaling']['mrope_section'] = [4, 2, 2]
|
| 112 |
-
config['text_config'].update({
|
| 113 |
-
'hidden_size': 32,
|
| 114 |
-
'intermediate_size': 64,
|
| 115 |
-
'num_attention_heads': 2,
|
| 116 |
-
'num_hidden_layers': 2,
|
| 117 |
-
'num_key_value_heads': 1,
|
| 118 |
-
'sliding_window': 64,
|
| 119 |
-
'tie_word_embeddings': True,
|
| 120 |
-
'max_window_layers': 1,
|
| 121 |
-
'use_sliding_window': True,
|
| 122 |
-
'layer_types': ['full_attention', 'sliding_attention']
|
| 123 |
-
})
|
| 124 |
-
del config['text_config']['torch_dtype']
|
| 125 |
-
config['text_config']['rope_scaling']['mrope_section'] = [4, 2, 2]
|
| 126 |
-
config['vision_config'].update(
|
| 127 |
-
{
|
| 128 |
-
'depth': 2,
|
| 129 |
-
'fullatt_block_indexes': [0],
|
| 130 |
-
'hidden_size': 32,
|
| 131 |
-
'intermediate_size': 64,
|
| 132 |
-
'num_heads': 2,
|
| 133 |
-
'out_hidden_size': 32,
|
| 134 |
-
}
|
| 135 |
-
)
|
| 136 |
-
del config['vision_config']['torch_dtype']
|
| 137 |
-
save_json(f'{save_folder}/text_encoder/config.json', config)
|
| 138 |
-
text_encoder_config = AutoConfig.from_pretrained(f'{save_folder}/text_encoder')
|
| 139 |
-
text_encoder = Qwen2_5_VLForConditionalGeneration(text_encoder_config).to(torch.bfloat16)
|
| 140 |
-
generation_config = GenerationConfig.from_pretrained(source_model_id, subfolder='text_encoder')
|
| 141 |
-
# text_encoder.config.generation_config = generation_config
|
| 142 |
-
text_encoder.generation_config = generation_config
|
| 143 |
-
init_weights(text_encoder)
|
| 144 |
-
|
| 145 |
-
with open(hf_hub_download(source_model_id, filename='transformer/config.json', repo_type='model'), 'r', encoding='utf-8') as f:
|
| 146 |
-
config = json.load(f)
|
| 147 |
-
config.update({
|
| 148 |
-
'attention_head_dim': 32,
|
| 149 |
-
'axes_dims_rope': [8, 12, 12],
|
| 150 |
-
'joint_attention_dim': 32,
|
| 151 |
-
'num_attention_heads': 1,
|
| 152 |
-
'num_layers': 2,
|
| 153 |
-
})
|
| 154 |
-
del config['pooled_projection_dim'] # not used
|
| 155 |
-
save_json(f'{save_folder}/transformer/config.json', config)
|
| 156 |
-
transformer_config = QwenImageTransformer2DModel.load_config(f'{save_folder}/transformer')
|
| 157 |
-
transformer = QwenImageTransformer2DModel.from_config(transformer_config)
|
| 158 |
-
init_weights(transformer)
|
| 159 |
-
|
| 160 |
-
with open(hf_hub_download(source_model_id, filename='vae/config.json', repo_type='model'), 'r', encoding='utf-8') as f:
|
| 161 |
-
config = json.load(f)
|
| 162 |
-
config.update({
|
| 163 |
-
'num_res_blocks': 1,
|
| 164 |
-
'base_dim': 16,
|
| 165 |
-
'dim_mult': [1, 2, 4, 4],
|
| 166 |
-
})
|
| 167 |
-
del config['latents_mean'] # not used
|
| 168 |
-
del config['latents_std'] # not used
|
| 169 |
-
save_json(f'{save_folder}/vae/config.json', config)
|
| 170 |
-
vae_config = AutoencoderKLQwenImage.load_config(f'{save_folder}/vae')
|
| 171 |
-
vae = AutoencoderKLQwenImage.from_config(vae_config)
|
| 172 |
-
init_weights(vae)
|
| 173 |
-
|
| 174 |
-
pipeline = QwenImagePipeline(
|
| 175 |
-
scheduler=scheduler,
|
| 176 |
-
text_encoder=text_encoder,
|
| 177 |
-
tokenizer=tokenizer,
|
| 178 |
-
transformer=transformer,
|
| 179 |
-
vae=vae,
|
| 180 |
-
)
|
| 181 |
-
pipeline = pipeline.to(torch.bfloat16)
|
| 182 |
-
pipeline.save_pretrained(save_folder, safe_serialization=True)
|
| 183 |
-
print(pipeline)
|
| 184 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|