Create fake_news.py
Browse files- fake_news.py +50 -0
fake_news.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from faker import Faker
|
| 3 |
+
import random
|
| 4 |
+
from datetime import datetime, timedelta
|
| 5 |
+
|
| 6 |
+
fake = Faker()
|
| 7 |
+
|
| 8 |
+
def generate_fake_data(num_nodes=10, num_links=5):
|
| 9 |
+
nodes = []
|
| 10 |
+
links = []
|
| 11 |
+
topics = ["Environment", "Politics", "Technology", "Health", "Economy"]
|
| 12 |
+
emotions = ["trust", "joy", "fear", "sadness", "anger", "surprise"]
|
| 13 |
+
sentiments = ["positive", "negative", "neutral"]
|
| 14 |
+
|
| 15 |
+
# Generate nodes
|
| 16 |
+
for i in range(1, num_nodes + 1):
|
| 17 |
+
node = {
|
| 18 |
+
"id": i,
|
| 19 |
+
"headline": fake.sentence(nb_words=6),
|
| 20 |
+
"topic": random.choice(topics),
|
| 21 |
+
"emotion": random.choice(emotions),
|
| 22 |
+
"time": (datetime.now() - timedelta(days=random.randint(0, 365))).strftime("%Y-%m-%d"),
|
| 23 |
+
"sentiment": random.choice(sentiments)
|
| 24 |
+
}
|
| 25 |
+
nodes.append(node)
|
| 26 |
+
|
| 27 |
+
# Generate links
|
| 28 |
+
for _ in range(num_links):
|
| 29 |
+
source = random.randint(1, num_nodes)
|
| 30 |
+
target = random.randint(1, num_nodes)
|
| 31 |
+
while target == source:
|
| 32 |
+
target = random.randint(1, num_nodes)
|
| 33 |
+
|
| 34 |
+
link = {
|
| 35 |
+
"source": source,
|
| 36 |
+
"target": target,
|
| 37 |
+
"semantic_sim": round(random.uniform(0.1, 1.0), 2),
|
| 38 |
+
"causal": random.choice([True, False]),
|
| 39 |
+
"causal_note": fake.sentence(nb_words=8) if random.random() > 0.5 else None
|
| 40 |
+
}
|
| 41 |
+
links.append(link)
|
| 42 |
+
|
| 43 |
+
return {"nodes": nodes, "links": links}
|
| 44 |
+
|
| 45 |
+
def main(num_nodes=10, num_links=5):
|
| 46 |
+
data = generate_fake_data(num_nodes, num_links)
|
| 47 |
+
return json.dumps(data, indent=2)
|
| 48 |
+
|
| 49 |
+
if __name__ == "__main__":
|
| 50 |
+
print(main())
|