Spaces:
Paused
Paused
File size: 8,033 Bytes
681b5d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import argparse
import os
import numpy as np
from accelerate import Accelerator
import torch
import trimesh
torch.autograd.set_detect_anomaly(True)
from cube3d.training.trainer import Trainer
from cube3d.training.bert_infer import Infer
from cube3d.training.engine import Engine, EngineFast
from cube3d.training.utils import normalize_bbox, select_device
from cube3d.training.dataset import CubeDataset, LegosDataset, LegosTestDataset
MESH_SCALE = 0.96
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def rescale(vertices: np.ndarray, mesh_scale: float = MESH_SCALE) -> np.ndarray:
"""Rescale the vertices to a cube, e.g., [-1, -1, -1] to [1, 1, 1] when mesh_scale=1.0"""
vertices = vertices
bbmin = vertices.min(0)
bbmax = vertices.max(0)
center = (bbmin + bbmax) * 0.5
scale = 2.0 * mesh_scale / (bbmax - bbmin).max()
vertices = (vertices - center) * scale
return vertices
def load_scaled_mesh(file_path: str) -> trimesh.Trimesh:
"""
Load a mesh and scale it to a unit cube, and clean the mesh.
Parameters:
file_obj: str | IO
file_type: str
Returns:
mesh: trimesh.Trimesh
"""
mesh: trimesh.Trimesh = trimesh.load(file_path, force="mesh")
mesh.remove_infinite_values()
mesh.update_faces(mesh.nondegenerate_faces())
mesh.update_faces(mesh.unique_faces())
mesh.remove_unreferenced_vertices()
if len(mesh.vertices) == 0 or len(mesh.faces) == 0:
raise ValueError("Mesh has no vertices or faces after cleaning")
mesh.vertices = rescale(mesh.vertices)
return mesh
def load_and_process_mesh(file_path: str, n_samples: int = 8192):
"""
Loads a 3D mesh from the specified file path, samples points from its surface,
and processes the sampled points into a point cloud with normals.
Args:
file_path (str): The file path to the 3D mesh file.
n_samples (int, optional): The number of points to sample from the mesh surface. Defaults to 8192.
Returns:
torch.Tensor: A tensor of shape (1, n_samples, 6) containing the processed point cloud.
Each point consists of its 3D position (x, y, z) and its normal vector (nx, ny, nz).
"""
mesh = load_scaled_mesh(file_path)
positions, face_indices = trimesh.sample.sample_surface(mesh, n_samples)
normals = mesh.face_normals[face_indices]
point_cloud = np.concatenate(
[positions, normals], axis=1
) # Shape: (num_samples, 6)
point_cloud = torch.from_numpy(point_cloud.reshape(1, -1, 6)).float()
return point_cloud
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="cube shape generation script")
parser.add_argument(
"--config-path",
type=str,
default="cube3d/configs/open_model_v0.5.yaml",
help="Path to the configuration YAML file.",
)
parser.add_argument(
"--mesh-path",
type=str,
required=True,
help="Path to the input mesh file.",
)
parser.add_argument(
"--data-dir",
type=str,
required=True,
help="Path to the input dataset file.",
)
parser.add_argument(
"--gpt-ckpt-path",
type=str,
required=True,
help="Path to the main GPT checkpoint file.",
)
parser.add_argument(
"--save-gpt-ckpt-path",
type=str,
required=True,
help="Path to the save main GPT checkpoint file.",
)
parser.add_argument(
"--shape-ckpt-path",
type=str,
required=True,
help="Path to the shape encoder/decoder checkpoint file.",
)
parser.add_argument(
"--expname",
type=str,
required=True,
help="Path to the tensorboard file.",
)
parser.add_argument(
"--fast-training",
help="Use optimized training with cuda graphs",
default=False,
action="store_true",
)
parser.add_argument(
"--prompt",
type=str,
required=True,
help="Text prompt for generating a 3D mesh",
)
parser.add_argument(
"--top-p",
type=float,
default=None,
help="Float < 1: Keep smallest set of tokens with cumulative probability ≥ top_p. Default None: deterministic generation.",
)
parser.add_argument(
"--bounding-box-xyz",
nargs=3,
type=float,
help="Three float values for x, y, z bounding box",
default=None,
required=False,
)
parser.add_argument(
"--render-gif",
help="Render a turntable gif of the mesh",
default=False,
action="store_true",
)
parser.add_argument(
"--disable-postprocessing",
help="Disable postprocessing on the mesh. This will result in a mesh with more faces.",
default=False,
action="store_true",
)
parser.add_argument(
"--resolution-base",
type=float,
default=8.0,
help="Resolution base for the shape decoder.",
)
args = parser.parse_args()
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(log_dir=os.path.join('runs', args.expname))
else:
print("Tensorboard not available: not logging progress")
device = select_device()
print(f"Using device: {device}")
mode = 'test'
accelerator = Accelerator()
# Initialize engine based on fast_training flag
if args.fast_training:
print(
"Using cuda graphs, this will take some time to warmup and capture the graph."
)
engine = EngineFast(
args.config_path, args.gpt_ckpt_path, args.shape_ckpt_path, args.save_gpt_ckpt_path, device=accelerator.device, mode=mode #device
)
print("Compiled the graph.")
else:
engine = Engine(
args.config_path, args.gpt_ckpt_path, args.shape_ckpt_path, device=device
)
if args.bounding_box_xyz is not None:
args.bounding_box_xyz = normalize_bbox(tuple(args.bounding_box_xyz))
point_cloud = load_and_process_mesh(args.mesh_path)
output = engine.shape_model.encode(point_cloud.to(device)) #
indices = output[3]["indices"]
print("Got the following shape indices:")
print(indices)
print("Indices shape: ", indices.shape)
train_config = Trainer.get_default_config()
train_config.learning_rate = 5e-4 # many possible options, see the file
train_config.max_iters = 40000
train_config.batch_size = 1 if mode=='test' else 28
train_config.save_interval = 1000
train_dataset = LegosDataset(args)
test_dataset = LegosTestDataset(args)
dataset = test_dataset if mode=='test' else train_dataset
if mode!='test':
trainer = Trainer(
config=train_config,
engine=engine,
accelerator=accelerator,
tb=tb_writer,
prompt=args.prompt,
train_dataset=dataset,
indices=indices,
resolution_base=args.resolution_base,
disable_postprocessing=args.disable_postprocessing,
top_p=args.top_p,
bounding_box_xyz=args.bounding_box_xyz,
save_gpt_ckpt_path=args.save_gpt_ckpt_path,
mode = mode
)
trainer.run()
else:
infer = Infer(
config=train_config,
engine=engine,
accelerator=accelerator,
tb=tb_writer,
prompt=args.prompt,
train_dataset=dataset,
indices=indices,
resolution_base=args.resolution_base,
disable_postprocessing=args.disable_postprocessing,
top_p=args.top_p,
bounding_box_xyz=args.bounding_box_xyz,
save_gpt_ckpt_path=args.save_gpt_ckpt_path,
mode = mode
)
infer.run()
|