Spaces:
Paused
Paused
| from dataclasses import dataclass, field | |
| import torch | |
| class Cache: | |
| key_states: torch.Tensor | |
| value_states: torch.Tensor | |
| _supports_index_copy: bool = field(init=False) # For CUDA graph support | |
| def __post_init__(self): | |
| self._supports_index_copy = self._check_index_copy_support() | |
| def _check_index_copy_support(self) -> bool: | |
| """Verifies support for `index_copy_` on device.""" | |
| try: | |
| device = self.key_states.device | |
| dummy = torch.tensor([0, 0], device=device) | |
| dummy.index_copy_(0, torch.tensor([0], device=device), torch.tensor([1], device=device)) | |
| return True | |
| except NotImplementedError: | |
| return False | |
| def update(self, curr_pos_id: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> None: | |
| """ | |
| Updates the cache based on device operator support. | |
| Args: | |
| curr_pos_id (torch.Tensor): Current position indices for decoding. | |
| k (torch.Tensor): The keys to update | |
| v (torch.Tensor): The values to update | |
| """ | |
| if self._supports_index_copy: # CUDA/CPU | |
| self.key_states.index_copy_(2, curr_pos_id, k) | |
| self.value_states.index_copy_(2, curr_pos_id, v) | |
| # # 非原地操作:创建新张量并赋值,不修改原始张量 | |
| # self.key_states = self.key_states.index_copy(2, curr_pos_id, k) # 用index_copy(非原地) | |
| # # self.value_states = self.value_states.index_copy(2, curr_pos_id, v) # 替换index_copy_ | |
| # self.value_states = self.value_states.clone().index_copy(2, curr_pos_id, v) | |
| else: # MPS | |
| self.key_states[:, :, curr_pos_id:curr_pos_id +1, ...].copy_(k) | |
| self.value_states[:, :, curr_pos_id:curr_pos_id +1, ...].copy_(v) | |
| # self.key_states[:, :, curr_pos_id:curr_pos_id +1, ...].copy_(k) # 原地操作 | |
| # self.value_states[:, :, curr_pos_id:curr_pos_id +1, ...].copy_(v) # 原地操作 |